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Abstract: Heavy metal contamination in water resources is a major issue worldwide. Metals released
into the environment endanger human health, owing to their persistence and absorption into the
food chain. Cadmium is a highly toxic heavy metal, which causes severe health hazards in human
beings as well as in animals. To overcome the issue, current research focused on cadmium ion
removal from the polluted water by using porous magnetic chitosan composite produced from
Kaphal (Myrica esculenta) leaves. The synthesized composite was characterized by BET, XRD, FT-IR,
FE-SEM with EDX, and VSM to understand the structural, textural, surface functional, morphological-
compositional, and magnetic properties, respectively, that contributed to the adsorption of Cd.
The maximum Cd adsorption capacities observed for the Fe3O4 nanoparticles (MNPs) and porous
magnetic chitosan (MCS) composite were 290 mg/g and 426 mg/g, respectively. Both the adsorption
processes followed second-order kinetics. Batch adsorption studies were carried out to understand
the optimum conditions for the fast adsorption process. Both the adsorbents could be regenerated for
up to seven cycles without appreciable loss in adsorption capacity. The porous magnetic chitosan
composite showed improved adsorption compared to MNPs. The mechanism for cadmium ion
adsorption by MNPs and MCS has been postulated. Magnetic-modified chitosan-based composites
that exhibit high adsorption efficiency, regeneration, and easy separation from a solution have broad
development prospects in various industrial sewage and wastewater treatment fields.

Keywords: adsorption; cadmium removal; chitosan; MNPs; wastewater treatment

1. Introduction

Water is the main component for the survival of all living organisms. However, it is
gravely endangered due to the massive amount of pollution caused by domestic, industrial,
and agricultural actions. Water scarcity and quality have emerged as major issues for
long-term development [1,2]. Many water contaminants, including organic and inorganic
constituents, have been mentioned in the literature [3]. Heavy metal-contaminated water
bodies pose serious problems owing to their toxic behavior and bioaccumulation [4–7].

Cadmium is one of the non-essential heavy metals that is regarded as highly noxious
and carcinogenic due to its non-biodegradability and ability to bioaccumulate in the envi-
ronment. It is classified as a human carcinogen by the Environmental Protection Agency,
(EPA), US, with a maximum permissible limit of 0.005 mg/L in drinking water [8].
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Various methods for removing Cd (II) from the aqueous environment that is often
used include chemical precipitation, membrane treatment, ion exchange, electro-dialysis,
membrane flotation, electrochemical methods, ultra-filtration, etc. [9]. However, these
processes, have several limitations, including lower effectiveness, high energy require-
ments, expensive disposal, and incomplete removal. Adsorption is extensively used for
wastewater treatment due to its, quick response, low cost, simple operation, absence of
sludge production, and reusability [10–12].

Various types of adsorbents have been used to remove Cd from wastewater. Among
them, natural polysaccharide polymers, particularly chitosan, and its derivatives, have
gained the attention of researchers owing to their renewable nature, sustainability, and
adsorption efficiency [13–15]. Chitosan (CS), which is formed by the deacetylation of
chitin, is present in the shells of crustacean crabs and shrimps, insect carapaces, and fungal
and plant cell walls. CS, as one of nature’s most abundant biopolymers, has sparked
widespread scientific interest due to its low cost, non-toxicity, inadequate hydrophilicity,
biocompatibility, and biodegradability. It has many functional groups, including -NH2
and -OH, which facilitate good sorption of heavy metal ions. Raw chitosan, like many
other widely used materials, cannot be efficiently separated from aqueous medium using
traditional separation methods. As a result, attempts have been made to recycle CS by
combining it with magnetic nanoparticles [16,17]. Because magnetic chitosan composites
benefit from both chitosan (excellent adsorption performance) and magnetic material (easy
magnetic separation), combining CS with a magnetic component is an effective way to
address the above-mentioned inadequacies [18,19].

Due to their high chelating capacity and ease of magnetic separation, porous magnetic
chitosan (MCS) material has been considered an efficient adsorbent for Cd removal [20].
A schematic representation of the application of MCS for the adsorption of Cd (II) and
the reuse of the adsorbent is provided in Figure 1. The combination of MNPs and CS
successfully excludes chitosan’s inherent drawbacks for application as an adsorbent, and
its separation and reuse. Furthermore, the -OH groups on the surface of MNPs can form a
hydrogen bonding network with chitosan by interacting with its -OH and -NH2 groups.
As a result, the stability and integrity of the composite are retained even under acidic
or alkaline environments [21]. Various chitosan-based materials were synthesized with
magnetic NPs because of their lower internal diffusion resistance and higher specific
surface area. MNPs, on the other side, get easily oxidized in air and are chemically active
resulting in aggregation and loss of magnetism. Because of their small size, these NPs cause
secondary contamination. Magnetic cores with larger sizes, on the other hand, can aid in
the magnetic separation process [22]. Porous Magnetic chitosan composites have been used
extensively and successfully to eliminate pollutants such as dyes, heavy metal ions, and
other organic contaminants.
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During the modification process, functional groups such as hydroxyl and carboxyl
groups increased. Various studies are performed for the removal of Cd (II) by magnetically
modified material, and the results showed that after the material was magnetically modified,
the pH value, specific surface area, and polar oxygen-containing functional groups all
increased, resulting in a saturated adsorption capacity. The mechanism of MCS to remove
Cd is surface complexation and electrostatic adsorption. The strong affinity of iron oxide
for Cd can enhance the complexation between them.

Plant extracts have been proposed as an easy and convenient alternative to chemical
and physical methods for the preparation of metallic nanoparticles and their composites in
recent years owing to the concerns of sustainability and environmental deterioration using
conventional non-renewable sources. MNPs are one of these nanoparticles that have caught
the interest of many researchers. Myrica esculenta leaf extract contains a variety of bioactive
phytoconstituents, including phenolic compounds, glycosides, alkaloids, triterpenoids, and
volatile oils [23].

To the best of our knowledge, there has not been much research done to assess the
effectiveness of magnetic chitosan employing leaf extract of Myrica esculenta (Kaphal) for
removing cadmium from aqueous solutions. Therefore, our aim is to develop a green
synthetic process to produce chitosan—Fe3O4 composite using Myrica esculenta leaf extract
as a reducing agent. This has resulted in the development of a novel porous magnetic
chitosan composite in the present work that turned out to be an efficient material for Cd (II)
ion removal. The MCS composite as well as the Fe3O4 nanoparticles were characterized
using XRD, BET sorptometry, FT-IR, FE-SEM, EDX, and VSM for evaluating their physico-
chemical properties and also for determining the effect of such properties on the adsorption
process parameters, namely, contact time, pH, adsorbent dose, and initial concentration of
the analyte (Cd2+). The potential of MNPs and magnetic chitosan composite as potential
adsorbents for Cd (II) was further probed using kinetic models and adsorption isotherms.
Moreover, the reusability of the composite was investigated up to seven cycles.

2. Materials and Method
2.1. Materials

FeCl2·4H2O, Chitosan (degree of deacetylation ≥ 95%; viscosity: 100–200 mPa.s),
FeCl3·6H2O, and acetic acid (CH3COOH), used during the preparation for adsorbents
were of analytical-grade and were procured from Sigma Aldrich (St. Louis, MO, USA). Cd
(NO3)2·4H2O was purchased from E. Merck, Mumbai, India. All aqueous solutions for
the adsorption studies were prepared using Millipore Milli-Q® ultrapure water (Jaipur,
Rajasthan). As Cd (II) has been chosen as the model contaminant in this investigation,
a solution of Cd (II) of desired concentrations was prepared and used as an adsorbate
solution. Dried Kaphal leaves were sourced from the farmlands of Uttarakhand.

2.2. Preparation of Aqueous Leaf Extract of Myrica esculenta (Kaphal)

To remove any pollutants, the Kaphal leaves were thoroughly washed with distilled
water after being collected from the highlands of Uttarakhand, India. The leaves were
manually cut into little pieces, air-dried for a week at room temperature, and then manually
ground in a home kitchen grinder; 4 g of the resulting fine powder was then added
into double-distilled water and stirred at 70 ◦C for 45 min. It was then filtered, and the
filtrate was stored at 4 ◦C (Figure 2). The synthesis process for Fe3O4 nanoparticles and
Fe3O4/Chitosan Composite is shown in the Supplementary file.

2.3. Characterization of the Adsorbents

The XRD of the MNPs and the CS composite were recorded on (Bruker D8 Discover
X-ray Diffractometer, Karlsruhe, Germany) using Cu Kα radiation. The XRD pattern was
recorded in the 2θ range of 10◦ and 70◦.

By using a surface area analyzer N2 adsorption desorption studies were carried out
on Quantachrome Autosorb iQ Surface Analyzer, CIQTEK, Hefei, China). For the analysis



Polymers 2023, 15, 4339 4 of 21

of the surface area, the samples were first degassed for 3.0 h to remove volatile gases and
were then placed in a surface area analyzer for N2 adsorption-desorption.

Polymers 2023, 15, x FOR PEER REVIEW 4 of 21 
 

 

solution of Cd (II) of desired concentrations was prepared and used as an adsorbate so-

lution. Dried Kaphal leaves were sourced from the farmlands of Uttarakhand. 

2.2. Preparation of Aqueous Leaf Extract of Myrica esculenta (Kaphal) 

To remove any pollutants, the Kaphal leaves were thoroughly washed with distilled 

water after being collected from the highlands of Uttarakhand, India. The leaves were 

manually cut into little pieces, air-dried for a week at room temperature, and then man-

ually ground in a home kitchen grinder; 4 g of the resulting fine powder was then added 

into double-distilled water and stirred at 70 °C for 45 min. It was then filtered, and the 

filtrate was stored at 4 °C (Figure 2). The synthesis process for Fe3O4 nanoparticles and 

Fe3O4/Chitosan Composite is shown in the Supplementary file. 

 

Figure 2. Preparation of plant extract of Myrica esculenta (Kaphal). 

2.3. Characterization of the Adsorbents 

The XRD of the MNPs and the CS composite were recorded on (Bruker D8 Discover 

X-ray Diffractometer, Karlsruhe, Germany) using Cu Kα radiation. The XRD pattern was 

recorded in the 2θ range of 10° and 70°. 

By using a surface area analyzer N2 adsorption desorption studies were carried out 

on Quantachrome Autosorb iQ Surface Analyzer, CIQTEK, Hefei, China). For the analy-

sis of the surface area, the samples were first degassed for 3.0 h to remove volatile gases 

and were then placed in a surface area analyzer for N2 adsorption-desorption. 

A Perkin-Elmer FT–IR spectrometer was used to record the FTIR spectra. A spectrum 

of the adsorbents in the range of 400–4000 cm−1 to characterize the nature of chemical 

bonding and the type of surface functional group. 

FE-SEM was used to investigate the morphology of MNPs and MCS composites as 

well as their elemental composition. FE-SEM equipped with EDAX (FEI QUANTA 

FEG250, Oregon, OH, USA) and an INCA Energy X-MAX-50, Oregon, OH, USA) was 

employed to characterize the morphology and chemical composition of the adsorbents 

used in the study. 

A LakeShore 7404 (Lakeshore cryotronics, Westerville, OH, USA) vibrating sample 

magnetometer was used to determine the magnetization properties of the adsorbents. 

The magnetic sample is positioned on the sample holder and placed between the elec-

tromagnetic poles, normally horizontally, for VSM measurement. 

2.4. Batch Adsorption Studies for the Adsorption of Cd (II) Using MNPs and Chitosan/Fe3O4 

Composite as Adsorbents 

To study the optimal adsorption performance and investigate the adsorption 

mechanism, batch adsorption experiments were performed. Different parameters were 

examined in fixed ranges, including, adsorbent dose (0.01–0.1 g), pH (2–11), temperature 

(303, 313, and 323 K), contact time (5–50 min), initial metal concentration (10–100 mgL−1), 

and adsorption/desorption studies, to better understand the potential of MNPs and MCS 

 

Figure 2. Preparation of plant extract of Myrica esculenta (Kaphal).

A Perkin-Elmer FT–IR spectrometer was used to record the FTIR spectra. A spectrum
of the adsorbents in the range of 400–4000 cm−1 to characterize the nature of chemical
bonding and the type of surface functional group.

FE-SEM was used to investigate the morphology of MNPs and MCS composites
as well as their elemental composition. FE-SEM equipped with EDAX (FEI QUANTA
FEG250, Oregon, OH, USA) and an INCA Energy X-MAX-50, Oregon, OH, USA) was em-
ployed to characterize the morphology and chemical composition of the adsorbents used in
the study.

A LakeShore 7404 (Lakeshore cryotronics, Westerville, OH, USA) vibrating sample
magnetometer was used to determine the magnetization properties of the adsorbents. The
magnetic sample is positioned on the sample holder and placed between the electromag-
netic poles, normally horizontally, for VSM measurement.

2.4. Batch Adsorption Studies for the Adsorption of Cd (II) Using MNPs and Chitosan/Fe3O4
Composite as Adsorbents

To study the optimal adsorption performance and investigate the adsorption mecha-
nism, batch adsorption experiments were performed. Different parameters were examined
in fixed ranges, including, adsorbent dose (0.01–0.1 g), pH (2–11), temperature (303, 313,
and 323 K), contact time (5–50 min), initial metal concentration (10–100 mgL−1), and ad-
sorption/desorption studies, to better understand the potential of MNPs and MCS as
adsorbents for Cd (II). The C0 (initial concentration) values were used to conduct the
adsorption isotherms. After the adsorption process, atomic absorption spectroscopy was
utilized to examine the heavy metal ion concentration remaining in the filtrate. The removal
effectiveness (%) and equilibrium adsorption capacity (qe) of the adsorbents, namely, MNPs
and MCS composite. For Cd (II) was given by Equations (1) and (2).

% Adsorption =
(C0 −Ce)× 100

C0
(1)

Adsorption Capacity
(
qe
)
=

(C0 −Ce)×V
m

(2)

where, V is the volume of metal ion solution, m is the mass of adsorbent dose, C0 is the
initial metal ion concentrations, Ce is the residual Cd (II) ion concentration, and qe is the
adsorption capacity at Ce, respectively.
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3. Result and Discussion
3.1. Adsorbent Characterization
3.1.1. X-ray Diffraction

To understand the chemical and physical structure of the magnetic particles encapsu-
lated in the CS matrix, X-ray diffraction (XRD) is a highly valuable technique. Figure 3a,b
represent the XRD patterns of MNPs and porous MCS composite. The crystalline phase of
magnetic NPs and porous magnetic chitosan composite were analyzed by XRD.
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Figure 3. XRD spectra for (a) MNPs [before and after Cd (II) adsorption], (b) Porous MCS adsorbent
[before and after Cd (II) adsorption].

The diffraction peaks at 2θ values of 30.2◦, 35.6◦, 43.2◦, 53.6◦, 57.2◦, and 62.9◦ corre-
spond to the (220), (311), (400), (422), (511), and (440) planes of MNPs (JCPDS file number
01-075-0033) [24]. These peaks closely resemble the standard XRD pattern of Fe3O4. Thus,
the XRD pattern demonstrated the formation of magnetic particles. Diffraction peaks at
2θ values in the range of 21◦ to 28◦ were attributed to amorphous chitosan (Figure 3b).
Moreover, the peaks typical of Fe3O4 were also present in the composite as expected [25].

3.1.2. BET Sorptometry for Evaluating the Textural Properties of Adsorbents

N2 gas adsorption-desorption isotherms were observed in the relative pressures (p/p0)
values ranging from 0 to 1 to estimate the surface area and porosity values of the synthesized
adsorbents. BET sorptometry was performed to investigate the average pore radius, surface
area, and pore volume of the material. About 25.0 mg of material was degassed at 300 ◦C
for analysis. According to IUPAC standards, the N2 adsorption-desorption isotherms are
Type IV, which agrees with the mesoporous nature of the composite [26]. The surface area
and total pore volume of MNPs and MCS were 105 m2/g, 173 m2/g, and 0.3410 cc/g, and
0.4305 cc/g, respectively (Table 1). The Langmuir surface area of the MNPs and MCS was
201.084 m2/g and 536.934 m2/g, respectively (Figure 4). Thus, the higher surface area is
responsible for the higher adsorption capacity of porous MCS compared to MNPs.

Table 1. Surface parameters of MNPs and MCS adsorbents before cadmium adsorption.

Parameters MNPs MCS

BET specific surface area (m2/g) 105 173
Langmuir surface area (m2/g) 201 537
Average pore size (Å) 64.36 49.77
Total pore volume (cc/g) 0.3410 0.4305
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Figure 4. N2 sorption isotherm of (a) MNPs, (b) MCS composite.

The Langmuir curve and BET multipoint of MNPs and porous MCS are expressed in
detail in the Supporting Information (Figure S3).

3.1.3. Fourier Transform Infrared (FT-IR) Spectroscopy

For understanding the nature of chemical bonding and the kind of surface functionali-
ties the adsorbents used in this study were examined using FT-IR spectroscopy. The FT-IR
spectra of chitosan and MNPs are shown in Figure 5a. Likewise, the FT-IR spectra of the
MCS composite before and after the adsorption process are shown in Figure 5b.
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Figure 5. TIR spectra for (a) Chitosan and Fe3O4 nanoparticles, (b) MCS adsorbent [before and after
Cd (II) adsorption].

The absorption bands in the range of 3200–3400 cm−1 corresponded to N–H and O–H
stretching vibrations of CS (Figure 5a). The bands at 2922 cm−1 and 2861 cm−1 were due to
the C-H symmetric and unsymmetric stretching vibrations of the –CH2 groups in CS. The
-NH deformation, C-N axial deformation, -CH3 bending vibration, and stretching vibration
of C-O-C in the chitosan structure appeared at, around 1413, 1367, and 1021 cm−1. The
existence of chitosan in the composite and its structural integrity was confirmed by the
appearance of peaks at 1652 cm−1 and 1550 cm−1, which corresponds to the N-H bending
vibration of primary amine [27].

The absorption bands characteristic of MNPs were observed in the FT-IR spectrum
(Figure 5a). Metal oxygen bonds typical of MNPs were observed in the range of 400 and
850 cm−1. The absorption band at 546 cm−1 was attributed to the Fe-O stretching vibration
of MNPs. This band is very sharp and has strong intensity, indicating the crystallinity of the
sample. The broad bands around 3404 cm−1 and 1612 cm−1 were due to the O–H stretching
vibration of surface-adsorbed water molecules. The band located around 1388 cm−1
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and 1076 cm−1 were attributed to the unsymmetric and symmetric stretching vibrations
of COO- [28].

Similar peaks were observed in the FT-IR spectrum of the MCS composite. In addition,
some specific bands correspond to the original formation of new bonds between chitosan
and Fe3O4 and some bands of chitosan have moved slightly from their original positions
owing to atomic-level interactions between chitosan and MNPs. In the FT-IR spectrum
of the MCS composite (Figure 5b), specific bands were observed at 3370 cm−1 which was
attributed to N-H stretching vibration. The band at 1652 and 1550 cm−1 was attributed to
C=O stretching vibration in the CS, for the N-H scissoring from the primary amine due to
free amino groups in the CS and was compared with the standard chitosan [29]. The peak
at 552 cm−1 for the Fe-O group was due to bare magnetic nanoparticles. This spectrum
(Figure 5b) unambiguously showed the presence of both CS and MNPs in the compos-
ite [30]. The NMR spectrum of Myrica esculenta leaf extract has been already discussed
by Nguyan et al. [31].

3.1.4. FE-SEM-EDX

FE-SEM was used to find out the morphology of MNPs and MCS composite, and EDAX
was utilized to determine the elemental composition. SEM and EDX images of both the
adsorbents were displayed in Figure 6 (EDX result shown in Figure S4). Spherical-shaped
particles with agglomeration were observed in synthesized magnetic NPs (Figure 6a) as
well as MCS (Figure 6b) composite in the FE-SEM images. Fe3O4 NPs exhibited a smooth
surface, and the particles had an irregular shape, as observed in Figure 6a. In Figure 6b, the
FE-SEM image of MCS was shown to exhibit a rough, granular surface after chitosan was
bonded to Fe3O4. Agglomeration of the particles on the surface of the composite cannot be
ruled out [32]. EDX spectra of the Fe3O4 sample confirm the presence of iron (Figure S4).
The EDX spectra of MNPs and MCS are shown in Supporting Information (Figure S4). The
mass percentage of carbon in MCS composite is higher than in MNPs, which proved MCS
composite had lesser hydrophilicity properties.
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3.1.5. Vibrating Sample Magnetometer Study for Evaluating the Magnetic Property
of the Adsorbents

To evaluate the adsorbents’ magnetic properties, VSM (Vibrating-sample magnetome-
ter) tests were utilized [20]. The magnetic properties of investigated magnetic materials
were studied by measuring the magnetization curves (Figure 7). The results showed
that all magnetization curves pass through the origin, which indicated that there was
no residual magnetization occurring in test samples and these materials have super-
paramagnetism [33]. By changing H between Oe +10,000 and −10,000 Oe, magnetization
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hysteresis was produced. MNPs had a saturation magnetization of 55.070 emu/g. The sat-
uration magnetization of MCS decreased to 24.186 emu/g after the formation of composite
between MNPs and chitosan, indicating that the adsorbent was still super-paramagnetic
and that it would be easier to separate the adsorbent from solution by gravity and mag-
netism within a short period of time [34]. The lower Ms value for MCS could be explained
by the quenching of surface magnetic moment in the material owing to the presence of
non-magnetic species, such as CS as expected [35]. Even though MCS’ saturation magneti-
zation value was obviously lower than that of MNPs, the application of a magnet allowed
the adsorbent to immediately aggregate and to be separated in the 20 s [32].

Polymers 2023, 15, x FOR PEER REVIEW 8 of 21 
 

 

 

Figure 6. FE-SEM image of (a) MNPs, and (b) MCS composite. 

3.1.5. Vibrating Sample Magnetometer Study for Evaluating the Magnetic Property of the 

Adsorbents 

To evaluate the adsorbents’ magnetic properties, VSM (Vibrating-sample magne-

tometer) tests were utilized [20]. The magnetic properties of investigated magnetic mate-

rials were studied by measuring the magnetization curves (Figure 7). The results showed 

that all magnetization curves pass through the origin, which indicated that there was no 

residual magnetization occurring in test samples and these materials have su-

per-paramagnetism [33]. By changing H between Oe +10,000 and −10,000 Oe, magnetiza-

tion hysteresis was produced. MNPs had a saturation magnetization of 55.070 emu/g. 

The saturation magnetization of MCS decreased to 24.186 emu/g after the formation of 

composite between MNPs and chitosan, indicating that the adsorbent was still su-

per-paramagnetic and that it would be easier to separate the adsorbent from solution by 

gravity and magnetism within a short period of time [34]. The lower Ms value for MCS 

could be explained by the quenching of surface magnetic moment in the material owing 

to the presence of non-magnetic species, such as CS as expected [35]. Even though MCS’ 

saturation magnetization value was obviously lower than that of MNPs, the application 

of a magnet allowed the adsorbent to immediately aggregate and to be separated in the 

20 s [32]. 

 

Figure 7. Magnetization curves of the Fe3O4, MCS composite, and MCS composite after Cd (II) ad-

sorption. 

  

Figure 7. Magnetization curves of the Fe3O4, MCS composite, and MCS composite after Cd (II)
adsorption.

3.2. Adsorption Experiments
3.2.1. Study of Kinetics of Adsorption of Cd (II) onto the Adsorbents, MNPs,
and MCS Composite

To find out the appropriate rate expression and adsorption mechanism, the adsorption
kinetics was examined [36]. Several models were examined for the adsorption of contam-
inants in water onto the surface of adsorbents and also to identify the main mechanism
of such adsorption process and the kinetics of adsorption [37]. Adsorption kinetics was
investigated in this work by fitting Lagergren’s pseudo-first-order (PFO) and Ho’s second-
order models. The adsorption process was determined using the Elovich and intra-particle
diffusion (IPD) models [38].

The PFO kinetic model represents weak interaction between sorbate and sorbent pre-
dominantly proceeding via physisorption. The PFO kinetic model is represented below [39]

ln (qe − qt) = lnqe − k1 × t (3)

PSO kinetic model is based on chemisorption. Pseudo–second order kinetics is repre-
sented as [40].

t/qt = 1/(k2 × qe
2) + t/qe (4)

The IPD model is given by Equation (5).

qt = kid ×
√

t + C (5)

The Elovich model is specified by Equation(6).

qt = (1/β) ln (α × β × t) + (1/β) lnt (6)
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where, k1 (min−1) and k2 (g/mg/min) are the rate constants of PFO and PSO,
kid—intraparticle diffusion rate constant (mg/(gmin−0.5)), constant C is the y-intercept,
α is the initial rate of adsorption, β is the desorption constant [41].

Four kinetic models were studied, and the kinetic parameters deduced from various
models are summarized in Table S1 [42,43].

From the R2 analysis of kinetic models, the best-fitted model for Cd (II) adsorption
on MNPs at 50 mg/L was Elovich, and at 100 mg/L was IPD. Also, from the R2 analysis
of kinetic models, the PSO model was the best fit for MCS. The pseudo-second-order
model’s correlation coefficient (R2) was observed to be significantly greater than other
models employed for MCS adsorbent, which means that the mechanism of adsorption was
governed by this model (Figure 8).
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Figure 8. (a) PFO and (b) PSO for MNPs and MCS composite.

3.2.2. Adsorption Isotherm Models

Adsorption isotherms describe how adsorbents and adsorbates interact in aqueous
media at the attained saturation point. The most popular isotherm models, including
Langmuir, Freundlich, Dubinin–Radushkevich, and Temkin isotherm models, were utilized.

The Langmuir isotherm is characterized by single-layer sorption onto a surface with
countless open sites without interaction between the adsorbate molecules under the as-
sumption that the material is regular and homogeneous. The model’s primary problem
is its assumption that the energies of the adsorbent sites at each location are uniform.
Equation (7) describes the Langmuir isotherm’s linear for [44]

1
qe

=
1

KLqmaxCe
+

1
qmax

(7)

where qmax represents the material’s maximum adsorption capacity, and KL is the Langmuir
adsorption constant (L/mg) representing the attraction of binding sites [45].

RL, the dimensionless constant separation factor is employed to express the important
characteristic of the Langmuir isotherm:

RL =
1

1 + KLC0

The value of RL shows whether the adsorption isotherm is favorable, linear, or unfa-
vorable. The value of RL was found in the range of 0.0717–0.898 for the MCS composite.
This shows the efficient interaction between the MCS composite and cadmium ions [46].
Figure 9a shows the Langmuir plot for MNPs and MCS composite. The values of KL and
qmax are calculated using the slope and intercept of the linear regression plot of 1/Ce vs.
1/qe, which also provides the R2 value, which indicates how well the experimental results
correspond with the mathematical isotherm model.
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Figure 9. (a) Langmuir, (b) Freundlich curves for Fe3O4 and MCS composite as adsorbents for Cd (II)
at different temperatures.

If adsorption happens on heterogeneous surfaces, the Freundlich adsorption isotherm
is an empirical equation that is utilized to describe multilayer (physisorption) adsorption
as well as monolayer (chemisorption) [42].The linearized Freundlich isotherm equation is
explained by Equation (8).

Logqe = log KF +
1
n

log Ce (8)

where KF is the Freundlich constant of the adsorbent, and n is the adsorption intensity
of the adsorbent. 1/n is the adsorption intensity which signifies the heterogeneity of the
adsorbent sites as well as the relative distribution of energy. KF and n are dimensionless
constants. The value of n > 1 and 1/n < 1 indicates the favorable condition for adsorption.
In this study, the value of n ranged between 1.075 and 1.222 which is greater than 1 for
MCS composite, indicating favorable adsorption. The graph of lnCeVs lnqe gives a straight
line with intercept KF and slope 1/n as shown in Figure 9b. The R2 values are 0.97, 0.95,
and 0.97 for MNPs at 303, 313, and 323 K and 0.94, 0.92, 0.92 for MCS at 303 K, 313 K and
323 K (Table S2) [45].

The Temkin Isotherm Model was used to characterize the adsorption considering
the interaction between adsorbate and adsorbent, which resulted in a linear reduction
in isotherm when the heat of adsorption of all molecules in the layer was included
Equation (9) provides the isotherm:

qe = βlnKT + βlnCe (9)

where, β = RT/b.
β represents the heat of adsorption (J/mol) and KT is the Temkin isotherm constant

(L/g). The plot of qeVs lnCe produces a straight line with slope β and intercept βlnKT. b is
the Temkin constant which is associated with the sorption heat (J/ mg) (Figure S6).

The adsorption is characterized by a uniform distribution of binding energies. The
binding energies were 199.28, 185.86, and 146.10 J/mol for MNPs and 132.85, 94.68, and
69.43 J/mol for MCS at 308, 303, and 298 K, respectively [46–48].

The D-R isotherm can be used to find out the adsorption mechanism.
Dubinin-Radushkevich (D-R) isotherm (Dubinin, 1960) is:

lnqe = lnqm − βε2 (10)

ε2 and b are constants. The D-R constants qm and b were calculated from the slope and
intercept of lnqeVs ε2 [37]. The qm calculated by the D-R model was 640.699 mg/g and
598.7594 mg/g for MNPs and MCS composite at 303 K, respectively (Figure S4).
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Four isotherm models were studied, and the significant parameters are shown
in Table S2.

3.3. Thermodynamic Studies

To investigate the spontaneity, feasibility, and endo/exothermic nature, thermody-
namic data plays an important role. The effect of solution temperature (20–50 ◦C) on Cd (II)
ion adsorption was investigated under optimal conditions. Standard entropy (S), enthalpy
(H), and Gibbs free energy (G) were calculated as thermodynamic parameters. The Van’t
Hoff equation was used to calculate these thermodynamic parameters.

Kd =
qe(w/v)

Ce
(11)

lnKd = ∆S0/R − ∆H0/RT (12)

∆G0 = −RT lnKd (13)

where ∆G0 is the Gibbs free energy, ∆S0 is the entropy, and ∆H0 is the enthalpy, Kd is the
distribution coefficient for the adsorption process.

Equation (11) can be used to calculate the value of Kd after the values of qe and Ce
have been determined experimentally. Using the value of Kd in Equation (12), the values of
enthalpy and entropy can be calculated. Using Equation (12), the slope and intercept of the
plot ln (Kd) vs. 1/T in Figure 10 would give the values ∆H0 and ∆S0, respectively.
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Figure 10. Linear dependence of ln (Kd) on 1/T based on adsorption thermodynamics for (a) MNPs
and (b) MCS at various temperatures.

From Table S3, the positive value of ∆H shows that the adsorption process is endother-
mic, which confirms the chemisorption nature of adsorption. The negative value of ∆G
at all three temperatures for MNPs and at 303 K for MCS composite indicated that the
spontaneity of the process was favored at these temperatures. The positive value of ∆S
showed a rise in randomness during the adsorption of Cd (II).

3.4. Reusability of Adsorbent

Metal ion desorption from the sorbent and adsorbent regeneration are critical chal-
lenges in terms of adsorbent reusability. The major goals of the regeneration process are to
recover useful components from the adsorbed phase and to restore the sorption capability of
the exhausted material [49]. Figure 11 displays the results of seven adsorption-regeneration
cycles (Figure 11a,b). Using various agents including HCl (0.05 M, 0.1 M), and NaOH
(0.05 M, 0.1 M), the batch technique was used to evaluate the desorption of the sorbed
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cadmium from Fe3O4 and MCS composite. It was discovered that 0.1 M HCl produced
the greatest amount of Cd (II) desorption (98%) while using 0.1 M NaOH, the desorption
efficiency was observed to be 84%. Adsorption, as well as desorption cycles, were repeated
seven times utilizing the same adsorbents to assess the adsorbent’s reusability. After each
cycle of adsorption, the solid portion of the adsorbent was centrifuged and further mixed
in DI water. This mixture was then agitated for about 1/2 h. The remaining suspension
was once again used for a different batch experiment. Seven rounds of a similar process
were performed. The removal capacity of the regenerated sorbent gradually reduced in
comparison to the original adsorbent. As a result, MCS was an effective reusable adsorbent
that could be used to recover Cd (II) ions from aqueous medium. The percentage removal
of Cd (II) decreased from the first to seventh cycle (i) 99.99% to 80.44% for MCS, (ii) 95.1%
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3.5. Comparative Studies

MnFe2O4/CS microspheres were prepared by coating chitosan on MnFe2O4. Max-
imum sorption capacity was observed to be 60.6 mg/g for Cd (II) removal. The experi-
ments showed that the composite could maintain sorption capacities after three cycles of
adsorption–regeneration [50]. A new nanobiosorbent based on methionine-glutaraldehyde
Schiff’s base-modified cross-linked chitosan magnetic beads was prepared by Salehi et al.
(2020) for the elimination of Cd (II). The utmost sorption capacity was observed to be
163.9 mg/g [51]. Chitosan and sodium tripolyphosphate cross-linked chitosan beads
were synthesized for cadmium removal from an aqueous medium by Babakhani and
Sartaj (2020). The maximum sorption capacity was observed to be 99.87 mg/g [52].
Attapulgite/CoFe2O4@SiO2-chitosan/EDTA was synthesized by solvothermal and sol-
gel techniques. The maximum sorption capacity was observed to be 127.79 mg/g [53].
Fan et al. (2017) studied the sorption of cadmium by using magnetic chitosan nanopar-
ticles. The maximum sorption capacity was observed to be 36.42 mg/g for Cd (II). Rela-
tively, the maximum sorption capacity for pure Fe3O4 nanoparticles was observed to be
13.04 mg/g [54]. Li et al. (2017) prepared chitosan/polyethylenimine grafted magnetic
gelatin to eliminate cadmium from wastewater. According to the Cd (II) sorption results,
the process can be explained by a monolayer forming on the surface of the material with
321 mg/g from the Langmuir isotherm [55]. The relative adsorption capacity of various
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adsorbents for Cd (II) and the relative adsorption performance of MCS-based adsorbents
for heavy metal ions removal are shown in Tables 2 and 3, respectively.

Table 2. The relative adsorption capacity of various adsorbents for Cd (II).

S. No. Materials Qe(mg/g) Reference

1 Egg-albumen-formaldehyde-based magnetic polymeric resin 149.3 [56]
2 Mesoporous magnetic nanocomposite 158.68 [57]
3 Amino-decorated magnetic metal-organic framework 693.0 [58]
4 Carboxymethyl chitosan/sodium alginate/graphene oxide@ Fe3O4 beads 86.28 [59]

6 Poly(γ-glutamic acid) modified magnetic Fe3O4-GO-(o-MWCNTs)
hybrid nanocomposite 625.00 [60]

7 Citric acid- and Fe3O4-modified sugarcane bagasse 33.2 [61]
8 Fe3O4@Biuret-formaldehyde pre polymeric resin 92.6 [62]
9 Fe3O4/FeMoS4/MgAl-LDH nanocomposite 140.50 [63]
10 Fe3O4@PDA microspheres 296.4 [64]
11 Fe3O4/SiO2/PP 30.1 [65]
12 Fe3O4 nanoparticles 290 This work
13 Fe3O4/Chitosan composite 426 This work

Table 3. The relative adsorption performance of MCS-based adsorbents for heavy metal ions removal.

S. No. Materials Heavy Metals Qe(mg/g) Reference

1. Magnetic chitosan composite
Ni(II)
Cu(II)
Pb(II)

108.9
216.8
220.9

[35]

2. Magnetic chitosan nanocomposites modified with graphene
oxide and polyethyleneimine

As(V)
Hg(II)

220.26
124.84 [66]

3. Chitosan magnetic beads modified with cysteine glutaraldehyde
Schiff’s base

Cu(II)
Cr(VI)

156.49
138.53 [67]

4. PEI-grafted magnetic gelatin Pb(II)
Cd (II)

341
321 [68]

5. Magnetic chitosan/polyethyleneimine embedded hydrophobic
sodium alginate composite

Cr(VI)
Cu(II)

87.53
351.03 [69]

6. Magnetic graphene oxide/chitosan composite beads Ni(II) 80.48 [70]

7. Magnetic Fe3O4/Chitosan nanoparticles Pb(II)
Cd (II)

79.24
36.42 [54]

8. Magnetic chitosan/graphene oxide (MCGO) materials Pb(II) 76.94 [71]

9. Xanthate-modified cross-linked magnetic chitosan/poly(vinyl
alcohol) particles

Pb(II)
Cu(II)

59.855
139.797 [72]

10. Magnetic anaerobic granule sludge/chitosan composite Pb(II)
Cu(II)

97.97
83.65 [73]

3.6. Adsorption Studies
3.6.1. Variation of Adsorbent Dose

The amount of the adsorbent used is a crucial factor in calculating sorption capacity.
Studies were carried out by changing the sorbent dosage from 0.01 to 0.1 g/L, while
all other factors such as contact duration, temperature, and rpm were held constant to
optimize the sorbent dose for the elimination of Cd (II) ions from the aqueous medium.
Adsorption capacity experienced a substantial reduction with increasing adsorbent doses.
This may be explained by the fact that a greater sorbent dose makes it easier for Cd (II)
ions to access active sites on the pores of magnetic chitosan composite, which enhances
removal rates. More easily accessible functional groups and adsorption sites for metal
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ions were responsible for the increment. However, higher adsorbent dosage most certainly
enhances particle interactions, like aggregation, which is due to high sorbent concentration.
As a result, the adsorbent’s active surface area is significantly reduced, which lowers its
capacity for adsorption. The adsorption process achieves the equilibrium point due to the
overcrowding of adsorbent particles brought on by the overlapping of adsorption sites after
a gradual decline in the sorption capacity of Cd (II) ions from the wastewater. The decline
in the ratio of Cd (II) per mass unit of sorbent might potentially account for this [20,22].
The adsorption capacity for MCS fell from 613.75 mg/g to about 249.99 mg/g for Co(100)
and from 488.7 mg/g to 124.99 mg/g for Co(50) as the sorbent dosage rose from 0.01 g/L
to 0.1 g/L. Also, the adsorption capacity for MNPs fell from 363.75 mg/g to 248.75 mg/g
for Co(100) and from 238.75 mg/g to 123.875 mg/g for Co(50) as the sorbent dosage rose
from 0.01 g/L to 0.1 g/L, as shown in Figure 12a.
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Figure 12. Effect of (a) adsorbent dose, (b) pH, (c) contact time, (d) initial concentration for adsorption
of Cd (II) on Fe3O4 and MCS composite, respectively.

3.6.2. Variation in pH

The solution’s pH is a very important factor that strongly affects the sorption process
because it influences the charge of the surface by protonation and deprotonation of the
material and degree of ionization. By conducting equilibrium adsorption experiments at
various pH levels, the impact of the suspending medium’s pH on Cd (II) removal was
investigated. In the current study, the influence of solution pH on the sorption of Cd
(II) by MNPs and MCS was examined throughout a pH range of 2–11 (Figure 12b). Tem-
perature, dose, rpm, dosage, and other factors were all held constant. Low adsorption
efficiency was found at low pH which was caused by competition between the Cd (II) ion
and the H+ ion for placements on material active sites. Additionally, the concentration
of adsorbent positive charges is large in acidic conditions, which results in electrostatic
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repulsion between the magnetic composite and the Cd (II), decreasing the efficiency of Cd
(II) elimination. The removal of cadmium reduces when the pH rises from 2 to 6 because
the positive charges on the adsorbent surface are reduced, repulsive forces are stronger, and
the positive charges are less attractive [74]. The electrostatic attraction was strengthened
as the pH increased, which progressively raised the degree of deprotonation of func-
tional groups and improved the sorption capacity. The utmost removal was seen between
pH 6.0 and 8.0 [75].

3.6.3. Variation of Contact Time

It has a pronounced effect on the elimination of adsorbate species from aqueous
medium. To assess the Cd (II) adsorption behavior by MNPs and magnetic chitosan
composite, the influence of time of contact between the adsorbent and adsorbate was
optimized in this work by altering the contact duration from 5 to 50 min. By separating the
supernatant at different times, the effect of contact time on sorption capacity was measured.
The adsorption rate was quick in the beginning, as seen in Figure 12c. The initial strong
absorption of Cd (II) ion was owing to high adsorbate and adsorbent interactions with
low solute-solute interaction and more adsorption site accessibility. As the time increased,
equilibrium was attained in the adsorption as more and more active sites were occupied.
However, after equilibrium was reached, mass transfer diminished and the repulsion of
the adsorbate molecule on the surface and inside the solution increased.

It took around 50 min to achieve equilibrium for uptake of Cd (II) [76]. The increment
in time can offer plenty of chances for Cd(II) to adsorb to the composite surface. Figure 12c
shows that on raising the contact time from 5 to 50 min, the sorption capacity increased
from 81.458 to 416.65, 60.625 to 208.33, 39.79 to 414.79, and 27.29 to 206.458 mg/g for MCS
(100 mg/L), MCS (50 mg/L), MNPs (100 mg/L), and MNPs (50 mg/L).

The results demonstrated that the adsorbents showed fast removal of Cd (II) within
50 min which is faster when we compare with the reported literature of other adsorbents
employed for the Cd (II) removal [77].

3.6.4. Variation of Concentration

The elimination of Cd (II) by adsorption on MNPs and magnetic composite (MSC)
was examined in relation to the effect of initial concentration. It appears that the metal ion’s
initial concentration is significant and influences the sorption capacity. Because the initial
concentration of Cd (II) may offer the driving force required to transfer a mass of Cd (II)
between the water phase and the adsorbent surface, the concentration of Cd (II) can also
impact the performance of the sorption process.

With the rise in the concentration of Cd (II), there was a decrease in % removal.
The experiments were performed at different initial concentrations varying from 10 to
100 mg/L. The graph (Figure 12d) illustrates that with an increase in the concentration of
Cd (II) ions, there is a decrease in Cd (II) removal % and a rise in sorption capacity. The
presence of active surfaces and sites in the MNPs and MCS composite structure for the
assignment of Cd (II) can be related to improving efficiency at low initial concentrations
of Cd (II). Additionally, when the concentration of cadmium rises, the %-age of Cd (II)
removal decreases, which is explained by the saturation of the MSC’s active sites above a
specific level of Cd (II), at which point the system enters equilibrium and no further Cd (II)
adsorption takes place [22].

The % removal of Cd (II) by adsorption onto the adsorbent decreases from
99.96 to 97.09, 99.99 to 97.25, and 99.999 to 97.45 for MCS (303 K, 313 K, and 323 K)
and from 89.1 to 93.81, 89.9 to 94.1, and 91.0 to 94.5 for MNPs (303 K, 313 K, and 323 K),
respectively (Figure 12d).

4. Adsorption Mechanism

The Cd (II) ion has an empty d orbit, and both nitrogen and oxygen atoms have
lone electron pairs that can attach metal ions to create the complex via electron pair shar-
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ing. Fe3O4 enclosed in CS NPs and MNPs not only provides rich functional groups
(-OH, -COOH, and -CO-NH-) as a binding site for heavy metal ions but also has a greater
specific surface area to maximize functional group utilization. Functional groups on
Fe3O4-loaded CS NPs and MNPs are freely available for metal ion coordination bonding.

Since negatively charged adsorbents might be quickly absorbed by positively charged
groups, such as –OH2+ and –NH+

3 in acidic conditions, the electrostatic attraction was
a potential adsorption mechanism. The negatively charged functional groups like COO-
and AOA on the surface of Fe3O4 -loaded CS NPs and the Cd (II) ion may establish an
electrostatic interaction. Therefore, under the influence of both coordination bonds with
the oxygen atom in Fe3O4 and electrostatic attraction, the adsorbents demonstrated a
significant adsorption capacity for the Cd (II) ion.

The amines and secondary alcohol functional groups are the major sites for complexing,
according to the FTIR analysis of the magnetic chitosan composite before and after Cd (II)
adsorption (Figure 13). There is a slight shift in the position of various bands in the MCS
after the adsorption of the metal ion, Cd (II). From the XRD data, there was a slight shift in
the diffraction peaks after the adsorption of Cd (II). Also, from the magnetization results,
the decrease in magnetization indirectly asserted the formation of a composite between CS
and MNPs.
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The oxygen of the alcohol and the nitrogen of the amino group has a pair of electrons
that can add themselves to a proton by coordinated covalent bonds. While nitrogen has a
larger capacity to donate its pair of electrons to a cadmium ion to form a complex through
a coordinated and covalent bond, oxygen has a stronger attraction of the electron pair by
the atom nucleus. This leads us to suggest that the mechanism shown in Figure 13 governs
the formation of the complexes between Cd (II) and adsorbent. In this mechanism, the
cadmium ion acts as a Lewis acid that may take in electron pairs due to its vacant orbitals.
The amine and hydroxyl groups, on the other hand, which have non-shared electron pairs,
serve as Lewis bases by giving their electron pair.

5. Conclusions

In the present study, magnetic chitosan composition was synthesized via a green route
and thoroughly characterized by a variety of physical-chemical techniques. Afterward,
the composite materials were successfully utilized for the adsorption of Cd (II). Elaborate
studies on the kinetics and thermodynamic aspects of adsorption were carried out.For
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comparison, MNPs were also used as adsorbents for Cd (II). MCS showed excellent and
high adsorption capacity compared to native MNPs. The adsorption capacity values of
426 mg/g for MCS and 290 mg/g for NPs were observed. The BET surface area values
of MCS and NPs were found to be 178 and 105 m2/g, respectively. Both adsorbents
showed second-order kinetics. The optimum process parameters include an adsorbent
dose of 0.05 g/L, a contact time of 50 min, and a pH value of 6.0 with an initial Cd (II)
concentration of 100 and 50 mg/L. The adsorption processes on both the adsorbents were
feasible and spontaneous as evident from the thermodynamic parameters. The composite
material showed good regeneration capacity with an 80.44% removal tendency up to the
seventh cycle while MNPs showed low removal capacity of 42% by the seventh and the
last cycle. This research provides some insights into the aspects that influence the design
of adsorbents with superior performance and easy recovery for Cd (II) ion absorption.
Magnetic composites have promising applications in water treatment. Its outstanding
selective adsorption considerably improves the material’s adsorption efficiency, and it may
be specially treated for wastewater enriched with various compounds. Furthermore, the
magnetic chitosan adsorption material is easy and simple to recycle, with a high recycling
rate. These benefits can lower wastewater treatment costs and increase economic efficiency.
So, from the present study, it is concluded that the green synthesized MCS composite with
MNPs enhanced the stability of hybrid material and also improved the removal capacity of
Cd (II) with good regeneration ability and effective field study results.
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