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Experimentals 

S1. Gas Permeation Measurement: Constant-Volume/Variable-Pressure 

Measurements  

S 1.1. Single gas separation analysis 

Gas permeability measurements of pure gases were evaluated using a 

vacuum-applied time-lag instrument based on a constant-volume/variable-

pressure method. All of the experiments were carried out at a feed pressure of 

1 bar and a temperature of 30 °C. To remove all residual gases, before the 

measurement, both upstream and downstream were evacuated thoroughly to 

below 10-5 Torr (1.33×10-8 bar) until the readout appeared to be zero.  The 

downstream volume was found to be 57 cm3 by calibration using a Kapton 

membrane. A Baraton transducer (MKS; Model No. 626B02TBE) with full 

scales of 10,000 and 2 Torr was used to measure the upstream and 

downstream pressures respectively. The permeate side pressure was recorded 

as a function of time using a transducer. The permeability coefficient was 

obtained from the linear slope of the downstream pressure versus a time plot 

(dp/dt) according to the following equation: 

 

Where P is the permeability expressed in barrer (1 Barrer = 10−10 [cm3 (STP) 

cm cm−2 s −1 cm Hg−1 ], V (cm3 ) is the downstream volume, l (cm) is the 

membrane thickness, A (cm2 ) is the effective area of the membrane, T (K) is 
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the measurement temperature, po (Torr) is the pressure of the feed gas in the 

upstream chamber, and dp/dt is the rate of the pressure change under a 

steady state. The permeation tests were repeated at least three times for each 

gas and the standard deviation from the mean values of the permeabilities 

was within ca. 3%. The sample-to-sample reproducibility was high and within 

3%. The effective membrane areas were 1.13 cm2. The ideal perm-selectivity, 

αA/B, of the membrane for a pair of gases (A and B) is defined as the ratio of 

the individual gas permeability coefficients: 

( )A
B

PAα  =           2
 PB

 

The diffusivity and solubility were obtained from the time-lag (θ) value 

according to the following equations: 

2lD =           (3)
6θ

 

PS =            (4) 
D

 

Where, D (cm2 s -1) is the diffusivity coefficient, l is the membrane thickness 

(cm), and θ is the time lag (s), as obtained from the intercept of the linear 

steady-state part of the downstream pressure versus a time plot. The 

solubility, S, was calculated from Equation (4) with the permeability and 

diffusivity obtained from Equation (3) and (4). 
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Figure S1. 1H NMR spectra of (a) UiO-66-NH2, (b) PEGDE and (c) 6FDA-

durene 

 

 

 

Figure S2. EDX elemental mapping images of (a) MMM-3, (b) MMM-5, (c) 

MMM-10, and (d) MMM-15 
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Figure S3. Thermal characteristics with respect to the PEG-MOF content (a) 

UiO-66-NH2 and PEG-MOF and (b) MMMs 

 

Table S1. BET surface area and pore volume of MOF and modified MOF   

Name Surface area 
m2/g 

Pore volume 

UiO-66-NH2 1041.80 0.458 

PEG-MOF 317.47 0.179 
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Table S2. Gas separation properties of various gas separation membranes 

Filler Polymer 
Loading 
(wt %) 

Measurement 
conditions PCO2 (barrer) 

CO2/CH4 
selectivity 

CO2/N2 
selectivity Ref. 

PI membranes 
--- 6FDA-MDA ---  15.8 44.9 24.7 [1] 

--- PI-BAFL-6FDA --- 25 °C at 
76 cmHg. 98 ----- 29 [2] 

--- 6FDA-DAM-PI --- 15 psi and 35 °C 1100 20.9 19.1 [3] 
Commercial Polymers 

--- polyurethane --- 4 bar 38.4 -- 39.2 [4] 
--- Pebax --- 6 bar; 298 K 299 8.8 27.2 [5] 

--- 
Cellulose 

acetate ---  6.3 30 30 
[6] --- Polysulfone ---  5.6 22.4 22.4 

--- Polycarbonate ---  4.23 32.5 23.5 
MMMs 

ZIF-8 DMPBI-BuI 30 35 oC, 20 bar 53.9 15.7 11.3 [7] 
UiO-66-

NH2 6FDA-ODA 25 10 bar, 35 oC 13.7 44.7 --- [8] 

UiO-66-
NH2 6FDA–Durene 20 1 bar, 35 oC 1470 16.4 --- [8] 

UiO 66-
NH2 

Matrimid 9725 30 
9 bar; 308 K; 

equimolar CO2 
and CH4 

37.9 47.7 --- [5] 

ZIF-8 PU 30 4 bar 14.2 13.7 --- [5] 

ZIF-8 
Polydopamine-

polyimide 7 1 bar; 308 K 380 25 19 [5] 

ZIF-8 Pebax 10 6 bar; 298 K 433 8.5 30.9 [5] 
ZIF-8 6FDA-durene 33.3 wt % 35 °C and 3.5 atm 1552.9 11.07 11.3 [9] 

UiO-66 Matrimid 10 4 bar, 37 °C 7.8 --- 29.4 
[10] Azo-UiO-

66 
Matrimid 10 4 bar, 37 °C 10 --- 37 

PEG-
UiO-66-

NH2 
6FDA–Durene 

0 

1 bar, 30 oC 

973.9 14.7 12.7 

This work 
3 1572.13 22.6 19.4 
5 1600 22.2 19.1 

10 1671 23.4 19.0 
15 1789.5 18.1 14.0 
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