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Experimentals

S1. Gas Permeation Measurement: Constant-Volume/Variable-Pressure
Measurements

S 1.1. Single gas separation analysis

Gas permeability measurements of pure gases were evaluated using a
vacuum-applied time-lag instrument based on a constant-volume/variable-
pressure method. All of the experiments were carried out at a feed pressure of
1 bar and a temperature of 30 °C. To remove all residual gases, before the
measurement, both upstream and downstream were evacuated thoroughly to
below 10° Torr (1.33x10® bar) until the readout appeared to be zero. The
downstream volume was found to be 57 cm? by calibration using a Kapton
membrane. A Baraton transducer (MKS; Model No. 626B02TBE) with full
scales of 10,000 and 2 Torr was used to measure the upstream and
downstream pressures respectively. The permeate side pressure was recorded
as a function of time using a transducer. The permeability coefficient was
obtained from the linear slope of the downstream pressure versus a time plot

(dp/dt) according to the following equation:

273KVl dp
= X X — (1)
76cmHg ATp, dt

Where P is the permeability expressed in barrer (1 Barrer = 10-10 [cm3 (STP)
cm cm-2 s -1 cm Hg-1 ], V (cm3 ) is the downstream volume, 1 (cm) is the

membrane thickness, A (cm2 ) is the effective area of the membrane, T (K) is
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the measurement temperature, po (Torr) is the pressure of the feed gas in the
upstream chamber, and dp/dt is the rate of the pressure change under a
steady state. The permeation tests were repeated at least three times for each
gas and the standard deviation from the mean values of the permeabilities
was within ca. 3%. The sample-to-sample reproducibility was high and within
3%. The effective membrane areas were 1.13 cm? The ideal perm-selectivity,
aA/B, of the membrane for a pair of gases (A and B) is defined as the ratio of

the individual gas permeability coefficients:
s T TR (2)
B

The diffusivity and solubility were obtained from the time-lag (0) value

according to the following equations:

(4)

Where, D (cm2 s -1) is the diffusivity coefficient, 1 is the membrane thickness
(cm), and O is the time lag (s), as obtained from the intercept of the linear
steady-state part of the downstream pressure versus a time plot. The
solubility, S, was calculated from Equation (4) with the permeability and

diffusivity obtained from Equation (3) and (4).
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Figure S1. 'H NMR spectra of (a) UiO-66-NH:, (b) PEGDE and (c) 6FDA-

durene
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Figure S2. EDX elemental mapping images of (a) MMM-3, (b) MMM-5, (c)

MMM-10, and (d) MMM-15
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Figure S3. Thermal characteristics with respect to the PEG-MOF content (a)
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Table S1. BET surface area and pore volume of MOF and modified MOF

Name Surface area Pore volume
m?/g
UiO-66-NH> 1041.80 0.458
PEG-MOF 317.47 0.179
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Table S2. Gas separation properties of various gas separation membranes

Loading  Measurement CO:/CH: CO2/N:
Fill Pol P Ref.
rier olymet (wt %) conditions S bane) selectivity selectivity €
PI membranes
- 6FDA-MDA -—- 15.8 44.9 24.7 [1]
- PLBAFL-6GFDA - 25 "Cat - S— 29 2]
76 cmHg.
- 6FDA-DAM-PI - 15 psi and 35 °C 1100 20.9 19.1 [3]
Commercial Polymers
- polyurethane -—- 4 bar 38.4 -- 39.2 [4]
-- Pebax - 6 bar; 298 K 299 8.8 27.2 [5]
. Cellulose . 6.3 30 30
acetate 6
--- Polysulfone = 5.6 22.4 22.4 [6]
--- Polycarbonate --- 4.23 32.5 23.5
MMDMs
ZIE-8 DMPBI-Bul 30 35 0oC, 20 bar 53.9 15.7 11.3 [7]
UiO-66-
NH2 6FDA-ODA 25 10 bar, 35 °C 13.7 44.7 --- [8]
UiO-66-
NH?2 6FDA-Durene 20 1 bar, 35 °C 1470 16.4 - [8]
. 9 bar; 308 K;
U11\(13H626— Matrimid 9725 30 equimolar CO2 37.9 47.7 - [5]
and CH4
ZIE-8 PU 30 4 bar 14.2 13.7 -—- [5]
Pol ine-
zip.g olydopamine 7 1 bar; 308 K 380 25 19 5]
polyimide
ZIE-8 Pebax 10 6 bar; 298 K 433 8.5 30.9 [5]
ZIF-8 6FDA-durene 333wt% 35°Cand3.5atm 1552.9 11.07 11.3 [9]
UiO-66 Matrimid 10 4 bar, 37 °C 7.8 - 29.4
AZ(’:;IO' Matrimid 10 4 bar, 37 °C 10 37 L10]
0 973.9 14.7 12.7
PEG- 3 1572.13 22.6 19.4
UiO-66- 6FDA-Durene 5 1 bar, 30 °C 1600 22.2 19.1 This work
NH: 10 1671 23.4 19.0
15 1789.5 18.1 14.0
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