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Abstract: Huge energy consumption and running out of fossil fuels has led to the advancement
of renewable sources of power, including solar, wind, and tide. Among them, solar cells have
been well developed with the significant achievement of silicon solar panels, which are popularly
used as windows, rooftops, public lights, etc. In order to advance the application of solar cells,
a flexible type is highly required, such as layered casting solar cells (LCSCs). Organic solar cells
(OSCs), perovskite solar cells (PSCs), or dye-sensitive solar cells (DSSCs) are promising LCSCs for
broadening the application of solar energy to many types of surfaces. LCSCs would be cost-effective,
enable large-scale production, are highly efficient, and stable. Each layer of an LCSC is important for
building the complete structure of a solar cell. Within the cell structure (active material, charge carrier
transport layer, electrodes), hole transport layers (HTLs) play an important role in transporting holes
to the anode. Recently, diverse HTLs from inorganic, organic, and organometallic materials have
emerged to have a great impact on the stability, lifetime, and performance of OSC, PSC, or DSSC
devices. This review summarizes the recent advances in the development of inorganic, organic,
and organometallic HTLs for solar cells. Perspectives and challenges for HTL development and
improvement are also highlighted.

Keywords: polymer solar cells; perovskite solar cell; hole transport layer; inorganic HTL; organic HTL

1. Introduction

Perovskite solar cells (PSCs), dye-sensitive solar cells (DSSCs), and polymer solar cells
(PSCs) are examples of layered casting solar cells (LCSCs). PSCs are a particular kind of
solar cell that use lead- or tin halide-based materials with perovskite structures as their
light-harvesting active layer [1,2]. The power conversion efficiency (PCE) of lab-scale PSCs
has grown from 3.8% in 2009 to 26.1% in 2023 for single-junction structures and 29.8%
for silicon-based tandem structures [1,3–6]. Perovskite solar cells have drawn a lot of
research attention because of their promise for high efficiency, affordable manufacturing,
and compatibility with a variety of device topologies [7,8]. Ongoing research is focused
on addressing challenges related to stability, scalability, and toxicity concerns associated
with lead-based perovskites [7,8]. Organic photovoltaics (OPVs), commonly referred to as
organic solar cells (OSC), are a subclass of LCSCs for which the active layer for converting
sunlight into energy is made of organic components. OSCs offer advantages such as
flexibility, lightweight design, and the potential for low-cost fabrication through solution-
based processes [9–11]. The performance and efficiency of OSCs depend on the choice of
donor and acceptor materials, as well as the morphology of the active layer, which can
be optimized through processing techniques. While they typically have lower efficiency
compared to inorganic solar cells, ongoing research aims to improve their performance
and commercial viability [9–11]. DSSCs consist of a porous semiconductor film (usually
titanium dioxide, TiO2) coated with a light-absorbing dye, an electrolyte solution, and
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a counter electrode. The dye absorbs photons and generates excited electrons, which
are introduced into the semiconductor material. These electrons are then collected at the
electrode, creating an electric current [12,13]. In general, both perovskite and organic solar
cells have their own unique advantages and challenges. Perovskites solar cells have shown
remarkable efficiency improvements but need further development in terms of stability.
Meanwhile, OGCs have advantages in terms of flexibility and lightweight design, but
efficiency and stability improvements are ongoing research goals. DSSCs, while having
lower efficiency compared to other types of solar cells, offer advantages in low light or
under artificial conditions [12,13].

LCSCs have various advantages compared to conventional solar cells. LCSCs can
collect more sunlight by using different materials with different band gaps and absorption
spectra. LCSCs can be more efficient by reducing thermalization losses, increasing open-
circuit voltage, and improving charge separation. By using cheaper or more abundant
materials, such as organic polymers or perovskites, and simpler fabrication methods,
such as solution processing or hot casting, LCSCs have lower fabrication costs [12,14,15].
However, in general, LCSCs still maintain some limitations. LCSCs have poor stability due
to the degradation of materials, interfacial defects, moisture sensitivity, or thermal stress. It
is difficult to optimize LCSCs due to the interplay of different layers, the trade-off between
current and voltage, and the compatibility of different materials. Lastly, the environmental
issue remains due to the application of toxic or scarce materials (lead or indium) and the
generation of waste or emissions during production [12,14,15].

Charge separation in solar cells relies on the generation of electron–hole pairs upon
photo absorption, the creation of an electric field within the semiconductor material, and
the motion of charged carriers to their respective region [12,16]. The separated electrons and
holes travel through an external circuit to power electrical devices or charge a battery [12,16].
In many LCSCs, including perovskite solar cells and organic solar cells, a hole transport
layer (HTL) is utilized to speed up the extraction and transportation of positive charge
carriers (holes) from the active layer to the anode [8,14,17]. The HTL also serves as a barrier
to stop electron leakage to the anode and as a layer of defense to shield the active layer from
oxygen and moisture [8,14,17]. The HTL can be made of inorganic and organic materials,
depending on the compatibility, cost, stability, and performance of the solar cells [14,17]. An
ideal material for the HTL should have high hole mobility, excess holes, a relatively narrow
bandgap, low defect density, good stability, and compatibility with other layers [8,18–20].
In this review, we focus on the recent progress of inorganic and organic HTLs in LCSCs,
their advantages and disadvantages, and discuss the remaining challenges of each type of
HTL that should be overcome in future studies.

2. Solar Cell Factors

A typical OSC is made up of an absorber, an electron transport layer (ETL), a hole
transport layer (HTL), and anode and cathode electrodes [16]. One of the two electrodes
is a substrate-compact transparent conducting oxide (TCO) electrode, which provides
the conductive layer and allows most light to pass through. The TCO generally consists
of indium tin oxide (ITO) or FTO (fluorine-doped tin oxide), the transparency of which
is up to 93% [21]. An absorber is an organic/hybrid/inorganic semiconductor that can
highly absorb light. It is also called an active material. In organic semiconductors, the
lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital
(HOMO) are the energy bands, which are similar to the conduction band (CB) and valence
band (VB) of inorganic semiconductors, relating to electrons and holes as charge carriers,
respectively. When light strikes the solar cell, the active material will absorb photons
and form excitons (electron–hole couples) in the HOMO. The electrons and holes will
immediately be separated to the LUMO and HUMO, respectively. Then, the ETL and HTL
will transport charge carriers to the two electrodes, creating a different voltage potential
for a solar cell. If the TCO is on the anode side, it is a conventional structure, and if it is
on the cathode side, it is an inverted structure, as shown in Figure 1a. Therefore, the hole
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can be collected from the front or back side of the cell, depending on the conventional
or inverted structure, respectively. This structure will be determined by the casting layer
technique or the properties of each layer. When irradiating light to an OSC, photoelectric
conversion occurs, which includes three main processes: (I) light absorption and creation
of excitons, (II) separation of excitons to electrons and holes, and (III) selective collection
of charge carriers. An ideal OSC should have a good absorber, and the ETL and HTL
should provide quick carrier transport to prevent the recombination of electrons and holes.
In energy band expression, the layers of the OSC must follow the band alignment to
optimize the carrier transport process, which is described in Figure 1b. Thus, the HTL
is an electron-blocking material in addition to being a hole transport material. The ETL
transports electrons and blocks holes. Later, more layer structures are established using
separating hole/electron-blocking layers.
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To evaluate a solar cell’s performance, there are some major factors, including the fill
factor (FF), power conversion efficiency (PCE), open-circuit voltage (VOC), and short-circuit
current density (JSC). The PCE is calculated using the following equation:

PCE =
VOC × JSC × FF

PI

where PI is the power density of incident light; VOC is the highest voltage that the cell can
supply; and JSC is the highest current density for the output.

FF is the ratio of maximum power output to maximum obtainable power output
(FF = Pmax/(VOC × JSC)), as shown in Figure 1c. Thus, FF indicates the quality of a solar
cell, which is the obtainability of high current density and high voltage or output power.
To obtain a standard measurement, solar cells are generally irradiated by a solar simulator
light source with a power of 1000 W m−2, and its light spectrum is equivalent to the light
of AM 1.5 spectrum [22]. The PCE indicates how many percentages of incident light can be
converted to an electric signal for output. The PCE depends much on the absorber and the
efficiency of the charge transfer process by the ETL and HTL. A conventional cell with an
ITO/PEDOT:PSS/P3HT:PC61BM/PC61BM/LiF/Al structure can exhibit a PCE of 3.0–4.0%.
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If PC61BM is replaced by PC71BM, the PCE can be 7.0–8.0%, or by PTB7:PC71BM, the PCE
can be 7.0–9.0%, etc. [23]. Therefore, when investigating the electron transport material
(ETM) and hole transport material (HTM) in a solar cell, reference cells with or without
a traditional ETM, such as PCBM, or HTM, such as PEDOT:PSS, should be prepared at
the same time. In this study, the effect of various HTMs on solar cell performance will be
revealed. The energy level, work function design, and surface engineering technique play
important roles in achieving the reproducibility of organic layered solar cells.

3. Organic Hole Transport Layer (OHTL)

The organic hole transport layer (OHTL) is a layer of organic material that is used
in LCSCs to extract and transport the holes (positive charges) from the active layer to
the electrode [16,17,24]. The performance and stability of solar cells can be increased via
the OHTL. To stop the transfer of electrons (negative charges) to the anode, the OHTL
functions as an energy barrier [17,24]. The OHTL isolates the moisture in the air, which
might deteriorate the active layer, by separating it from the anode [17,24]. OHTLs in-
crease the solar cell’s open-circuit voltage while decreasing charge recombination [16,17].
High charge carrier mobility and conductivity are ideal requirements for OHTLs. The
HOMO and quasi-Fermi levels of OHTLs should be suitable for reliable hole transfer in a
pinhole-free morphology, while OHTLs should also have a high LUMO for efficient electron
shielding, thermal, moisture, UV, and chemical resistance, and good morphological contact
between the perovskite and the HTL. HTLs should also be created using inexpensive
and readily available materials, inexpensive solution-based fabrication techniques that
do not harm other solar cell components, and easily reproducible synthesis [14]. Remark-
able organic materials that are applied as OHTLs are poly(3,4-ethylenedioxythiophene)
(PEDOT), N,N’-bis(3-methylphenyl)-N,N’-diphenylbenzidine (spiro-MeOTAD), poly(3-
hexylthiopene) (P3HT), and poly(triaryl amine) (PTAA) (Figure 2a). The energy levels of
these materials are presented in Figure 2b.
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3.1. Spiro-OMeTAD

The most prevalent HTM in LCSCs is spiro-OMeTAD [14]. Spiro-OMeTAD was used
for the first time in PSCs in 2012, displaying an excellent efficiency of 9.7% and signifi-
cantly better stability than liquid junction PSCs [25]. However, high performance of solar
cells can be achieved when spiro-OMeTAD is combined with p-dopants such as lithium
bis(trifluoromethanesulfonimidate) (Li-TFSI), 4-tert butyloyridine (tBP), and tris[2-(1H-pyrazol-
1-yl)-4-tert-butylpyridine]cobalt(III)tris(bis(tri-fluoromethylsulfonyl)imide)] [26,27]. By dop-
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ing with p-dopants, spiro-OMeTAD is converted to spiro-OMeTAD+ [28]. Additionally,
this is 420 meV deeper in its HOMO, which may result in improved energy alignment at
spiro-OMeTAD/perovskite contact [29]. Spiro-OMeTAD has a high hole mobility (µh) of
2 × 10−4 cm2·V−1·s−1 [26], allowing it to efficiently transport positive charges within the
perovskite layer to the electrode and minimize charge recombination losses, thus enhancing
device performance. Spiro-OMeTAD possesses suitable energy level alignment, allowing
it to selectively transport holes while preventing the transport of electrons. At perovskite
contact, spiro-OMeTAD displays a LUMO of −1.5 eV and a HOMO of −5.0 eV (0.1 eV). A
number of distinct perovskite conduction bands (CB) are more than 2 eV above the LUMO
of spiro-OMeTAD, which suggests strong blocking properties [30]. This guarantees effi-
cient and loss-free extraction of charge carriers from the perovskite layer. Spiro-OMeTAD
has shown good chemical and thermal stability, which is important for maintaining the
long-term performance of perovskite solar cells. Spiro-OMeTAD is compatible with the de-
position techniques commonly used for perovskite fabrication, such as solution processing.
On top of the perovskite material, a smooth and homogeneous layer of spiro-OMeTAD
can be created by using a suitable solvent, such as chloroform [31,32]. The structure of
spiro-OMeTAD allows for efficient hole extraction at the interface between the perovskite
absorber layer and the HTM layer, reducing charge recombination and enhancing device
efficiency [18]. Lastly, spiro-OMeTAD is commercially available and relatively easy to
synthesize, making it accessible for researchers and manufacturers.

Spiro-OMeTAD, despite its popularity as an HTM in PSCs, has several limitations
that researchers are actively working to address. Spiro-OMeTAD is remarkable costly at
a staggering 29.36 USD per milliliter, and the synthesis of spiro-OMeTAD can be quite
intricate, involving multiple steps that necessitate the use of expensive materials, such
as palladium (Pd) catalysts [33,34]. Additionally, its commercial availability can lead to
higher costs compared to other materials, potentially affecting the scalability of perovskite
solar cell manufacturing. Due to exposure to air, moisture, and light, spiro-OMeTAD can
deteriorate over time. This can lead to a decrease in device performance and efficiency,
particularly in long-term outdoor applications. For example, the dopants Li-TFSI and tBP
easily break down spiro-OMeTAD and perovskite films, which makes the PCE less stable
over time. Recently, Liu et al. (2023) introduced 1-dodecanethiol (DDT), an alkylthiol
additive, in spiro-OMeTAD. This integration made the structure of the HTM more resistant
to heat, moisture, and light stress, shortened the time it takes to dope, and reduced the
amount of Li-TFSI2 that builds up at the interfaces. The devices based on spiro-OMeTAD
stabilized with DDT exhibited a PCE of 23.1%. The units could maintain 90% of their peak
performance for 1,000 h of continuous illumination [35]. The moisture resistance of spiro-
OMeTAD-based solar cells can also be enhanced by the replacement of Li-TFSI with more
hydrophobic additives such as Zn-TFSI2, Mg-TFSI2, and Ca-TFSI2 [36,37]. There are also
some efforts to produce spiro-OMeTAD-based PSCs without the use of Li-TFSI. The LiTFSI-
free spiro-OMeTAD by Tan et al. (2019) could achieve a PCE of 19.3% (Figure 3) [38]. While
spiro-OMeTAD has been successful in achieving suitable energy level alignment for hole
transport, it is not a perfect match for all perovskite compositions. Tailoring energy level
alignment to different perovskite materials can be a challenge. At elevated temperatures,
the performance of spiro-OMeTAD-based devices is decreased due to the significantly
lower glass transition temperature of oxidized spiro-OMeTAD+ [39–41]. In addition, weak
contacts at the spiro-OMeTAD/perovskite interface and reinforcement of the film brought
on by a buildup of additives at the interface cause poor adhesion [42]. By including a
polyethyleneimine (PEI) interlayer between spiro-OMeTAD and perovskite, this restriction
can be bypassed [43]. Additionally, under continuous illumination, photodegradation
of the chemical interaction between spiro-OMeTAD and Au at the interface is seen [44].
In addition, spiro-OMeTAD is a poor barrier for Au migration into the perovskite [18].
To prevent electrode diffusion and boost stability, a bilayer Cu-Ag electrode has been
employed [45]. Spiro-OMeTAD contains heavy metals, which can raise environmental and
health concerns. The use of toxic or environmentally unfriendly materials is an ongoing
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challenge for sustainable solar cell technologies. Spiro-OMeTAD itself does not absorb
light in the visible spectrum, which means it does not contribute to light absorption in the
device. This can lead to suboptimal utilization of incident sunlight. In thick perovskite
layers, it can be hard for spiro-OMeTAD to pull out charges that are made deep within the
perovskite layer. This could cause charges to build up and energy to be lost.
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Spiro-OMeTAD comprises a spirobifluorene core bound to four bis(methoxyphenyl)amines.
The derivatives of bis(methoxyphenyl)amines, with methoxy groups in different positions
on the benzene ring (p-OMe, m-OMe, or o-OMe), can significantly alter the physical and
chemical properties of spiro-OMeTAD. Jeon et al. investigated how these derivatives of
spiro-OMeTAD affect the performance of PSCs [46]. m-OMe tended to withdraw electrons,
while p- and o-OMe showed electron-donating behavior; therefore, the PSCs using m-OMe
spiro-OMeTAD showed low performance [46]. The investigation showed that p- and o-
OMe at a ratio of 2:2 in spiro-OMeTAD showed a significant improvement in PSCs with
a PCE of ~16.7% and FF of 77.6%, while only p-OMe spiro-OMeTAD exhibited a PCE of
15% and FF of 71.1%. Other spiro-OMeTAD derivatives could formed by replacing the
spirobifluorene core with cores of pyrene, thiophene, tetraphenylethene, etc., which would
provide a different energy configuration for mobility, HOMO, and LUMO levels [47–52].
Saliba et al. (2016) utilized a fluorene–dithiophene (FDT) core substituted with donor
groups to create a new hole transport material (HTM) with a high adiabatic oxidation
potential of approximately 5.15 eV, surpassing that of spiro-OMeTAD at approximately
4.98 eV. This higher potential indicated increased stability. FDT-based HTM in perovskite
solar cells (PSCs) exhibited improved JSC and VOC when compared to spiro-OMeTAD-
based devices, resulting in an impressive PCE of approximately 20.2% and enhanced long-
term stability [53]. Zhang et al. (2018) employed spiro[fluorene-9,9′-xanthene] (SFX) as a
new core for synthesizing new HTMs, X26 and X36, which exhibited higher conductivity
than spiro-OMeTAD by 2–5 times [54]. The X26-based devices showed a high PCE of
~20.2%. Moreover, under controlled humidity of ~20%, the devices could maintain a PCE
of 18.8% after 5 months, indicating the highly stability of the new HTMs. Jeong et al. (2022)
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successfully fabricated spiro-Naph as an HTM for PSCs, which exhibited an impressive PCE
of 24.43% [55]. Moreover, the devices showed excellent stability and thermal endurance at
an elevated temperature of 60 ◦C after 400 h. The improvement came from a significantly
high hole mobility of ~8 × 103 cm2 V−1 s−1 and the HOMO level of spiro-Naph was closer
to the HOMO of perovskite materials; therefore, the transportation of holes was facilitated.
In general, the use of different cores leads to the tuning of energy level of the HTM, offering
more flexibility in achieving a low energy barrier for efficient hole transport within the
solar cell configuration [56]. In addition, improvement in hole mobility is also enhanced
with the introduction of more benzene rings with functional groups.

3.2. PTAA

Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) has attracted interest as a
potential HTM in a variety of optoelectronic devices, including solar cells. PTAA is a type
of polymer that is often used as a replacement for other hole transport materials, such
as spiro-OMeTAD, due to its favorable electronic properties and ease of processing [57].
PTAA has excellent solubility in a variety of organic solvents and an amorphous, thermally
stable shape. Neither the melting phase nor the glass transition were visible in pure
PTAA up to 300 ◦C [58]. When LiTFSI and tBP were used to dope all HTLs, PTAA
outperformed a variety of other semiconducting polymers, including spiro-OMeTAD, to
achieve an efficiency of 12% in PSCs in 2013 [59,60]. Similar to spiro-OMeTAD, PTAA
only functions well in the presence of supplements and causes instability problems [10].
The performance of PSCs with pristine PTAA could reach a PCE of 18.11% [61], while
the combination of PTAA and dopants such as Li-TFSI could lead to a PSC with a PCE
of 19.7% for 1 cm2 cells [62]. The optimal doping concentrations for PTAA-based PSCs
are, however, roughly four times less than the typical concentrations of tBP and LiTFSI
added to spiro-OMeTAD [63]. PTAA can be synthesized using simpler and more scalable
methods compared to spiro-OMeTAD, potentially leading to lower production costs. Other
hole-conducting polymers did not interact with the perovskite at the interface as strongly
as PTAA, which may have improved hole transport [18]. PTAA is considered to be more
environmentally friendly than spiro-OMeTAD, which contains heavy metal elements.
Although PTAA is still expensive (19.80 USD/mL), its cost is still lower than that of spiro-
OMeTAD [33].

While PTAA has shown promise, its hole mobility and charge extraction efficiency can
still be lower than those of spiro-OMeTAD in some cases [64]. Greater quality and defect
passivation in the perovskite at the interface was partly responsible for PTAA’s lower rates
of recombination compared to other widely used HTMs [65]. Similar to spiro-OMeTAD,
despite the strong thermal durability of pure PTAA, thermal strain does cause perovskite
cracks in doped PTAA-based PSCs, leading to a 60% efficiency reduction [66]. PTAA is also
sensitive to moisture and is not a reliable barrier to ionic diffusion [18]. Another limitation
of PTAA comes from its hydrophobicity, which prevents PTAA film from developing high-
quality perovskite [57,67]. Bagheri et al. (2020) overcame this limitation when applying
PTAA in the inverted PSC (p-i-n) architecture by preparing the PTAA layer with a quick
UV treatment before perovskite was deposited [67]. The PTAA layer’s PCE was 19.17%
for a 0.09 cm2 active area due to improvements in the optical characteristics, grain size,
and the decrease in recombination centers. The device also kept more than 75% of its
initial efficiency after 1400 h of storage under atmospheric conditions with an average
relative humidity (RH) of 50% [67]. In other study, Li et al. (2022) modified the surface
of PTAA with 4,4′,4′′-(1-hexyl-1H-dithieno[3′,2′:3,4:2′′,3′′:5,6]benzo[1,2-d]imidazole-2,5,8-
tryl)tris(N,N-bis(4-methoxyphenyl)aniline) (denoted as M2) [57]. Due to improved PTAA
hydrophobicity, M2’s presence promoted the development of perovskite film. PTAA/M2
also had greater hole conductivity and mobility compared to pristine PTAA. The application
of M2 increased the PCE of inverted PSCs from 18.67% to 20.23% (Figure 4) [57]. Spiro-
OMeTAD is commercially available and widely used in research and industry. PTAA
might have limited commercial availability. Spiro-OMeTAD has been extensively used as a
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benchmark material, and its performance has been well characterized. PTAA is still being
evaluated, and its performance might not be as standardized.
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3.3. PEDOT:PSS

PEDOT:PSS offers high charge carrier mobility, an adequate band gap, optimal spec-
trum alignment, and an inexpensive price [14]. Additionally, PEDOT:PSS offers excellent
formability and strong transparency in the visible region [68]. PEDOT:PSS has been em-
ployed as an HTM in OSCs, facilitating the efficient transport of positive charge carriers
(holes) from the photoactive layer to the electrode. While primarily used as a transparent
conductive electrode in PSCs, PEDOT:PSS has also been explored as an HTL in certain
device architectures. It can effectively transport holes from the perovskite absorber layer to
the electrode, contributing to enhanced charge extraction and overall device performance.

However, PEDOT:PSS still has some limitations. PEDOT:PSS contains a polystyre-
nesulfonate component that is acidic, which can cause the degradation of adjacent layers
and impact device stability. Low VOC (<1 V) is produced as an outcome of the energy gap
between PEDOT:PSS (−5.12 eV) and CH3NH3PbI3 (−5.4 eV) perovskites [68]. Achieving
optimal energy level alignment between PEDOT:PSS and the active layer can be challeng-
ing, affecting charge extraction and recombination dynamics. The existence of the weak
ionic conductor PSS limits and impairs charge transfer in PEDOT:PSS [69]. The PSS in
PEDOT:PSS can be removed using a simple solvent engineering method (ethylene glycol
and methanol). This strategy can increase the PCE of PSC devices to 18.18% [69]. While
PEDOT:PSS is an effective conductor, its interfacial properties can impact electron blocking
and recombination mechanisms [70]. Inside the PEDOT:PSS layer, poor hole migration
can originate from imperfections in the PEDOT:PSS film’s microstructure and the gradient
of electrical conductivity between the surface and the bulk. This causes an imbalance
in carrier charge transfer and the buildup of charge carriers, which finally leads to low
FF and large leakage of current [68]. To increase the Fermi level of PEDOT:PSS by up
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to 500 meV, Chin et al. (2022) dedoped it using NaOH. Enhanced photoluminescence
duration and greater photovoltage of the surface, which resulted in higher VOC, fill factor,
and PCE, were signs that recombination losses were significantly reduced at the dedoped
PEDOT:PSS/perovskite interface [70]. PEDOT:PSS is hygroscopic, meaning it can absorb
moisture from the environment, which might affect device performance and stability. The
moisture sensitivity of PEDOT:PSS can be overcome by the introduction of a crosslinking
agent combined with surface treatment [71]. The PEDOT:PSS’s crosslinking system con-
verted its naturally water-soluble features into a water-resistance characteristic, preventing
water penetration. Additionally, MeOH treatment enhanced PEDOT:PSS’s conductivity
and decreased its surface roughness by eliminating surface traces [71].

3.4. P3HT

Due to its stability, low cost, high hole mobility (0.1 cm2 V−1 s−1), and high efficiency,
the conjugated polymer poly(3-hexylthiophene) (P3HT) has received extensive study and is
utilized as an HTM in organic solar cells (OSCs) [72]. P3HT has a conjugated polymer back-
bone, which makes it possible for long-range electron delocalization to occur. This results
in good charge carrier mobility and efficient charge transport. P3HT can be processed from
solution, enabling its incorporation into scalable and cost-effective manufacturing methods,
such as spin-coating and printing. P3HT exhibits reasonable electrical conductivity, making
it suitable for charge transport within the active layer. Due to its resistance to temperatures
in the range of −80 ◦C to 100 ◦C, low oxygen penetration, and extreme hydrophobicity,
P3HT is more stable than spiro-OMeTAD [73]. Application of P3HT in mesoporous PSCs on
solid substrates produced a PCE of 22.7% when a layer of wide-bandgap halide perovskite
was employed on top of a layer of narrow-bandgap perovskite [33].

While P3HT has relatively good hole mobility compared to some other organic
materials, it still falls short of the hole mobility exhibited by some inorganic materi-
als. P3HT-based solar cells can experience energy losses due to charge recombination
and the formation of non-radiative recombination pathways. Low PCE was caused by
poor interaction and significant recombination at the junction between perovskite and
P3HT [72]. P3HT has a relatively low absorption coefficient, which can limit its ability
to efficiently absorb photons and contributes to photocurrent generation. P3HT-based
solar cells can face challenges related to long-term stability under environmental condi-
tions and operational stress. P3HT-based organic solar cells have demonstrated moderate
efficiency levels compared to some other organic and inorganic solar cell technologies.
A PCE as low as 16% may be attained with pure P3HT as an HTM [74,75]. Different
additives like BTCIC-4Cl, copper(I) thiocyanate (CuSCN), n-hexyl trimethyl ammonium
bromide (HTAB), gallium (III) acetylacetonate (Ga(acac)3), and SMe-TATPyr were used
to fix problems at the interface between P3HT and perovskite [76,77]. Recently, Xu et al.
(2022) used 2-((7-(4-(bis(4-methoxyphenyl)amino)phenyl)-10-(-2-(2-ethoxyethoxy)ethyl)-
10H-phenoxazin-3-yl)methylene)malononitrile (MDM) as a molecular link for stable and
effective PSCs (PCE of 22.87%, VOC of 1.15 ± 0.02, and fill factor (FF) of 75.02 ± 3.09%). The
triphenylamine group of MDM could create π–π stacking with P3HT, creating a charge
transfer pathway, whereas the malononitrile group of MDM could bond the perovskite
surface. Additionally, MDN greatly reduced recombination and passivated flaws. A total
of 92% of the initial PCE of the MDN-P3HT-based PSC device was preserved even after
aging for two months at a RH of 75%. Additionally, the PCE remained constant after 500 h
of operation under a single sun illumination at the maximum power point (MPP, −45 ◦C in
N2) [72].

3.5. Other OHTMs

In addition to the OHTMs mentioned, many novel dopant-free OHTMs have also been
applied as HTLs for LCSCs. For instance, poly(2,7-carbazole) (PCz) has been used as an HTL.
PCz, an aromatic heterocyclic conducting polymer that contains nitrogen, has fast charge
mobility, outstanding morphological stability, and great optoelectronic characteristics [78].
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Its use in PSCs results in a device PCE of 18.04%. Moreover, it has been demonstrated that
PCz functions as a strong barrier and adequately protects the perovskite surface, resulting
in highly stable PSC devices [79]. Recently, Wang et al. (2022) drove the self-assembling of
carbazole through hydrogen bonding. In comparison to hydrogen bonding-free devices, n-i-p
PSC devices based on the hydro-functional HTM showed improved hole extraction reaction,
inhibited interfacial charge recombination, decreased hysteresis effect, and significant raises
in VOC, FF, and overall PCE [80]. Organic compounds that are heterocyclic and have rings
with carbon and sulfur atoms, like benzothiophene, 1,3-bis(4-(2-ethylhexyl)-thiophen-2-yl)-5,7-
bis(2-ethylhexyl)benzo[1,2-c:4,5-c’]-dithiophene-4,8-dione (BDD), dithieno[3’,2’:3,4:2′′,3′′:5,6]
benzo[1,3-c][1,2,5]thidiazole (BTT), random copolymer (RCP) of benzo[1,2-b:4,5:b’]dithiophene
(BDT), and 2,1,3-benzothidiazole (BT), have also been applied as HTLs [19,81–83]. He et al.
(2023) suggested a solvothermal treatment for benzothiophene to obtain benzothiophene
carbon dots (CDs) [81]. The new HOMO value of the obtained material more closely
resembled the perovskite valence band. Consequently, these CD-modified PSCs exhibited
an acceptable power conversion efficiency (13.22%). The presence of benzothiophene CDs
also improved the crystallinity and hydrophobicity of the perovskite film. The increase in
hydrophobicity could be related to the generation of a Pb–S bond at the interface between
perovskite and benzothiophene CDs [81]. Recently, a PCE of 20.9%, VOC of 1.14 V, JSC
of 23.4 mA cm−2, and FF of 78.9% were achieved by n-i-p PSCs based on BTT, while
these values for devices based on BDD were 16.3%, 1.12 V, 23.2 mA cm−2, and 62.8%,
respectively [19]. A similar HOMO level of −4.9 eV and high hole mobility of over
5 × 10−4 cm2 V−1 s−1 were observed for BDD and BTT [19]. Meanwhile, PSCs with RCPs
of BDT and BT as HTMs could reach a PCE of 17.3%. The high mobility and deep HOMO
energy level were responsible for the observed PCE. A hydrophobic polymer layer and the
avoidance of hygroscopic or deliquescent dopants also increased the long-term PCE. At
75% humidity, PSCs with random copolymers continued to function at their initial PCE
for more than 1400 h, but HTM devices with additives had a reduced PCE after 900 h [82].
The remarkable studies that have utilized organic materials as HTMs are summarized in
Table 1.

There are some strategies to improve the performance of LCSCs with organic materials
as HTLs. Dopant-free organic materials should be considered because they can avoid the
use of additives that can increase the instability and toxicity of OHTLs. Some materials have
been introduced in the literature, such as D-A-π-A-D-type DTP-C6Th, 1,10-phenanthroline
(YZ22), DTB-FL, Ni phthalocyanine (NiPc), 2DP-TDB, phenanthrocarbazole 6 (PC6), and
Mesh TABT [84–88]. However, even on a lab scale, none of them can actually take the place
of doped spiro-OMeTAD [72]. In addition, inorganic materials such as carbon materials
(such as carbon nanotubes or graphene), metals (such as aluminum and copper), metal
oxides (such as NiOx and MoOx), or metal compounds (such as CuSCN and CuPc) can be
applied to combine the advantages of both inorganic and organic materials [89–93]. PSC
efficiency and stability have recently been improved by combining tBP- or Li-TFSI-doped
spiro-OMeTAD with fluorinated graphene (FG). The PCE of the PSCs reached 21.92% and
further increased to 23.14% when a 2D interfacial layer was installed. FG increased the
hydrophobicity of the HTL and enhanced lithium ion reduction in the perovskite layer, in
addition to increasing the hole mobility of spiro-OMeTAD. During a 2400 h test in ambient
circumstances with 25% RH, the FG-incorporated cell exhibited higher stability, keeping
90% of its initial PCE [93]. However, the introduction of inorganic materials could lead
to several negatives, such as high price, low transparency, and possible corrosion [94]. In
addition, most inorganic materials are difficult to deposit on top of perovskite [18]. There
are also some unique strategies to improve the performance of PSCs using OHTMs as HTLs.
For example, Zhang et al. (2023) intertwined single-walled carbon nanotube (SWCNT)
electrodes with dopant-free PTAA and applied them in dual roles as the HTL and electrode
in PSCs [95]. The PSCs with these dual-role electrodes achieved a better PCE and stability
compared to PSCs using LiTFSI-doped spiro-OMeTAD [95].
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Table 1. Summarization of organic hole transport materials.

HTMs ABSORBER VOC JSC FF PCE Ref.

Spiro-OMeTAD

Pristine Spiro-OMeTAD CH3NH3PbI3 1.0 18.30 73.64 13.48 [43]

Mg-TFSI2-doped
Spiro-OMeTAD Triple-cation perovskite

(Cs0.06FA0.79MA0.15PbI2.55Br0.75)

1.091 22.62 76.70 18.93
[36]

Ca-TFSI2-doped
Spiro-OMeTAD 1.074 22.54 76.50 18.69

Zn-TFSI2-doped
Spiro-OMeTAD Triple-cation perovskite 1.162 23.78 78.80 22.00 [37]

Spiro-OMeTAD(TFSI)2 Rb0.05Cs0.05FA0.8MA0.07PbBr0.4I2.57 1.08 23.9 75.00 19.30 [38]

PTAA

Pristine PTAA CH3NH3PbI3 1.08 22.44 71.00 18.11 [61]

UV-Treated dopant-free PTAA Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 1.08 22.74 78.00 19.17 [67]

PTAA-MA Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 1.13 22.86 78.16 20.23 [57]

PEDOT:PSS

Solvent-treated PEDOT:PSS
(ethylene glycol + methanol) MAPbI3 1.04 22.21 79.00 18.18 [69]

PEDOT:PSS + PCDSA
(MeOH treatment)

MAPbI3 0.90 18.88 72.00 13.01
[71]PTB7-Th:PC70BM 0.72 17.40 59.00 7.71

P3HT:PC60BM 0.56 9.07 61.00 3.18

P3HT

Pristine P3HT (FAPbI3)0.95(MAPbBr3)0.05 +
wide-bandgap halide perovskite (WBH) 1.144 24.92 79.50 22.70 [33]

P3HT-MDN Cs0.05FA0.85MA0.10Pb(Br0.03I0.97)3 1.15 24.58 75.02 22.87 [72]

Other OHTMs

PCz1 Cs0.08FA0.80MA0.12Pb(I0.88Br0.12)3 1.04 22.41 77.55 18.04 [79]

Hydrogen bonding PCz Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 1.03 22.6 64.7 15.1 [80]

Benzothiophene CDs MAPbI3 1.04 19.57 64.79 13.22 [81]

RCP of BDT and BT CH3NH3PbI3 1.08 21.9 75 17.3 [82]

BTT
MA0.7 FA0.3PbI3

1.14 23.4 78.9 20.9 [19]

BDD 1.23 23.2 62.8 16.3

4. Inorganic Hole Transport Layer (IHTL)
4.1. Graphene Oxide and Carbon Derivatives

Graphene oxide (GO) and reduced GO (rGO) have unique optical and electrical prop-
erties such as high transparency (94%), high conductivity (0.45 S/cm), easy processing, and
an atomic-scale thin layer [96]. GOs have the structure of graphene and contain mixed sp2
and sp3 hybridizations of carbon and carbon–oxygen (C–O, C=O, C–OH) covalent bonds,
which not only provide a stable structure but also allow tunability of the band gap and
work function [97,98]. As reported in the literature, the work functions of GO and rGO
are around 4.0–5.0 eV depending on the type of dopant, which is adjustable to fit with
the requirements of HTLs in OSCs [99–101]. Li et al. (2010) proposed a solution process
to use GO as an HTL in OSCs with P3HT/PCBM as the active material [101]. Using the
spin-coating method, very thin layers were obtained with various thicknesses ranging from
2 to 10 nm and a smooth surface with a low roughness of under 1.4 nm, as illustrated in
Figure 5a. The method indicated easy processing for a high-quality, thin GO-based HTL.
Figure 5b shows the well-matched band gap alignment of GO in the structure of OSCs.
Moreover, GO-based HTLs in OSCs showed comparable performance with traditional cells,
which promises to be a potential HTM, as shown in Figure 5c. However, GO was pointed
out to have low ohmic contact with other layers, which reduces the efficiency of the hole
transport process. Thus, GO was reduced to rGO or mixed/doped with other materials to
overcome this drawback [102]. Yu et al. (2014) demonstrated the use of GO with PEDOT:PSS
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composite, which could enhance the properties of OSCs, and achieved a high PCE of 8.21%
in comparison with 7.04% for bare PEDOT:PSS [103]. Meanwhile, Liu et al. (2012) sulfated
the GO surface (S-GO) by fuming with sulfuric acid and employed S-GO as an HTL to
replace PEDOT:PSS. The S-GO-based devices had a comparable PCE to PEDOT:PSS of
~4.4% [104]. Stratakis et al. (2014) used a laser method to form chlorine-doped GO with
a work function of 5.23 eV as an HTL in OSCs, significantly outperforming the reference
PEDOT:PSS [105]. Jeon et al. (2014) used a spraying method with a heating process to form
a coated GO film on the substrate, resulting in moderately thermally treated rGO as the
HTL [106]. Metal/halogen, N dopant, or composite routes for GO/rGO were also investi-
gated to find the best combination of this HTL in OSCs and PSCs, such as Cu, Cl, F, and
polyaniline [107–111]. rGO was also used as an HTL in PSCs, which even showed better
performance compared to PEDOT:PSS, where the PCE reached ~10.8% [112]. Lou et al.
(2017) employed a GO-modified PEDOT:PSS surface, which improved the wettability of
the HTL layer; therefore, the PSC performance was improved with a PCE of 15.3% [113].
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from ref. [101] Copyright 2010, American Chemical Society. (d) Structure; (e) energy band alignment;
and (f) J–V curves of flexible GQDs and graphene-based MAPbI3 PSCs. Reprinted with permission
from ref. [114] Copyright 2019, American Chemical Society.

In addition, carbon derivatives with a graphene-core structure was also promising to
exhibit similar behavior to GO/rGO [114–116]. Graphene quantum dots (GQDs) or carbon
dots are well known in optical applications, owing to their fluorescence and electrical proper-
ties, which are widely used as biomarkers and light emission materials [117–119]. GQDs are
easily fabricated via hydrothermal, microwave-assisted, or solvothermal methods [119–121].
Li et al. (2013) used a one-step acid treatment method to synthesize GQDs from carbon
fibers, which were then employed as HTLs in OSCs [122]. The GQD-based devices showed
a significant improvement in producibility and lifetime stability, while the PCE was com-
parable to that of PEDOT:PSS-based devices. Shin et al. (2019) reported employing GQD
HTLs in PSCs with Au nanoparticles (NPs), which achieved a PCE of ~15.5% and excellent
bending stability of flexible PSCs (retaining 70% PCE after 3000 bending cycles), as shown
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in Figure 5d,e [114]. Ali et al. (2023) fabricated vertically aligned CNT thin film as an HTL
to protect against direct contact of PEDOT:PSS with the current collector [123]. The CNTs
in composition with PEDOT:PSS could improve the stability and increase the conductivity
of the HTL. Owing to their high physicochemical properties, low dimensional GO/rGO
and carbon derivatives could provide a high mobility, smooth surface with a roughness of
a few nm and a huge improvement in stability. However, the low wettability limits their
application; therefore, surface modification and functionalization are useful for resolving
these issues.

4.2. Metal Oxides

Metal oxide (MO) materials are promising to overcome the challenges of organic HTMs
due to their inherent physical/chemical stability and charge conductivity [124]. Especially,
transition metal oxide materials have special properties due to their electron structure, which is
formed by partially filled in d orbitals and the outer shell of valence electrons [125,126]. Nickel
oxide (NiOx) is a p-type direct band gap semiconductor (Eg ~ 2.7 eV) [127]. The valance
band of NiOx is well aligned with the HOMO level of many conjugated polymers, and the
conduction band is high over the LUMO of the active material [128,129]. Therefore, the
band structure of NiOx matches not only the HTL but also the electron-blocking layer (EBL).
Due to its high stability, NiOx can be prepared by a variety of methods, such as sol-gel,
electrodeposition, oxidation, and spray [128,130–134]. Parthiban et al. (2017) produced
NiOx by a solution process, with a valance band of 5.3 eV, which could improve the
stability of OSCs and exhibited a comparable PCE to PEDOT:PSS-based devices [135]. Kim
fabricated a compact NiO film on an FTO electrode, which could improve the PCE from
5.68% to 6.91%, and the use of both NiO and PEDOT:PSS could boost the PCE to 7.93%, as
shown in Figure 6a–d [136]. In addition, NiOx is commonly used as an HTL in PSCs due
to its own properties, low electrode polarization, and suitable surface for growth of the
perovskite layer [137]. Liu et al. (2018) employed NiOx as an HTL in methylammonium
(MA)-mixed formamidinium (FA) halide (I, Br, Cl) perovskite solar cells, which increased
the PCE to 20% [138]. The role of NiOx is not only to be a simple HTL layer but also to
enhance the open voltage of PSCs [139]. NiOx has been modified by various techniques,
such as metal doping (Cu, Li, Mg, Cs, and Zn), surface modification, and the UV-ozone
technique, to obtain suitable band alignment with OSC structures [140–146].
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Molybdenum oxide (MoOx) and tungsten oxide (WOx) are also commonly used in
OSCs. MoOx and WOx are n-type semiconductors with a wide band gap of ~3.0 eV, a
suitable work function of ~5.0 eV, and high surface energy, which would be a potential
HTL in OSCs and PSCs [147,148]. A wide band gap allows light to easily pass through.
Also, it is easy to make thin films of MoOx and WOx using physical or chemical methods.
This means that MoOx and WOx can be used in both normal and inverted structures of
OSCs and PSCs. Jasieniak et al. (2012) proposed a solution process to create MoOx thin
film using the electrospray ionization method as an HTL in OSCs [149]. The presence of
Mo(V) in MoOx revealed that increasing the ratio of Mo5+/Mo6+ (from 0.02 to 0.25%) by
annealing treatment could improve the performance of OSCs from low to comparable with
PEDOT:PSS-based cells. Yang et al. (2018) prepared an n-doped MoOx thin film with a
conductivity as high as up to 11 S/cm by introducing a part of Mo(V) to Mo(IV) [150]. The
OSC devices with a 10 nm thin film of n-doped MoOx as an HTL showed a high PCE of
11.4%. Modification by the dopant effect introduced a work function of ~4.9 eV, which
reduced the energy barrier for the extraction of holes from the active material to the current
collector and enhanced the performance and stability of OSCs. Liu et al. (2023) reported
that the use of MoOx as an HTL could boost the PCE of OSCs to 16.8% and provided
excellent air stability over 600 h compared to the PCE of ~16.4% and the lifetime of 70 h
of PEDOT:PSS-based devices at 85 ◦C [147]. Han et al. (2009) employed WO3 thin film as
an HTL, which enhanced the performance of OSCs [151]. The WO3 amorphous film could
reduce the roughness of the thin film to ~0.88 nm. Further, the low surface energy of WO3
led to the uniform growth of P3HT; therefore, the recombination of charge carriers was
reduced. In a similar approach, amorphous WOx was widely used as an HTL in OSC or
PSC devices [152–154]. Stubhan reported a low-temperature process to fabricate WO3 as an
HTL without various treatments, such as oxygen-plasma or annealing treatment. Moreover,
Liu et al. (2018) also used the combination of WO3 with PEDOT:PSS to reduce the hole
transport barrier to the ITO collector [155]. Owing to the high band gap and tunable work
function via the dopant or oxygen vacancy, WOx could also be used as an ETL in PCSs or
OSCs [156,157].

Besides NiOx, WOx, and MoOx, metal oxides of Cu, Cr, Co, Ti, and Ir were also used as
HTLs, such as CuOx, Cu2O, and Co3O4, or binary metal oxides such as NiCo2O4, CuCrO2,
ZnCo2O4, and TiO2-IrOx [158–168]. Yu et al. (2016) demonstrated a solution process of CuOx
film for OSCs [164]. The work function of CuOx was tunable via oxidation treatment with
H2O2 or UV-ozone treatment, which increased from 5.06 to 5.45 eV. The CuOx could boost the
PCE of OSCs up to 8.68% (10% higher than PEDOT:PSS-based devices). Zhang et al. (2019)
used the Mg metal as a dopant in CuCrO2 nanoparticles as an HTL in OSCs and PSCs [169].
The presence of Mg not only contributed to decreasing the size of CuCrO2, but also tuned
the work function of this material; therefore, the performance of OSCs and PSCs was
improved, especially the stability of PSCs (lifetime over 80 h). Liu et al. (2019) used Cu2O
quantum dots by the simple modification method, which could be placed on top of the
perovskite layer for inverted PSCs [158]. In general, perovskite material is quite sensitive
and can be destroyed by moisture or ionic factors. In this case, Cu2O quantum dots were
not only compact to the perovskite layer but also protected it, achieving a high PCE of
18.9%. Papadas et al. (2018) demonstrated the use of spinel NiCo2O4 HTM in PSCs [162].
Metal oxides are highly stable materials, benefiting the long-term stability of materials.
However, they have drawbacks such as high processing temperatures and low electronic
mobility [170]. Therefore, a low processing technique combined with a doping material to
increase the electronic mobility is required to employ metal oxides as HTLs.

4.3. Transition Metal Sulfides

Transition metal oxides (TMOs) and transition metal sulfides (TMSs) are also attractive
to researchers due to their intrinsic properties. Owing to the higher electron affinity of the
S atom compared to the O atom, most TMSs have higher conductivity than TMOs, and the
band gap of TMSs is also complex and has a variety of energy band structures [171,172].
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Among TMSs, layered structures such as MoS2, WS2, TiS2, and TaS2 (transition metal
dichalcogenides, TMDs) are widely applied in optical/electrical devices due to their su-
perior properties [173–175]. TMDs have a layered structure, with each layer consisting
of a transition metal layer (Mo, W, Ti, and Ta) sandwiched between chalcogenide layers
(S) and stacked by weak Van der Waals forces to form the bulk structure [176,177]. There-
fore, they can easily be fabricated by physical or chemical methods [178,179]. Especially,
the energy band structure strongly depends on the number of layers. In the bulk struc-
ture, TMDs have a low indirect band gap of ~1.2 eV. When they become single layers,
the band gap can be opened to ~2.0 eV as a direct band gap, which not only tunes the
band structure but also improves the optical/electrical properties. Moreover, the different
stacking of layers leads to different phases, where the 2H phase (hexagonal structure) is
semiconductive and the 1T phase (trigonal structure) is metallic [180–183]. Due to the low
band gap, TMDs could partially hinder light from passing through; therefore, the use of
a very thin layer (increasing transparency) is important [184]. Liang et al. demonstrated
MoS2 nanoflakes as an HTL buffer layer of PSCs (glass/FTO/compact-TiO2/mesoporous-
TiO2/FA85MA15PbI85Br15/2D MoS2/Spiro-OMeTAD/Au), which exhibited better stability
under continuously illumination, as shown in Figure 7a–c [185]. Wang et al. (2018) com-
bined MoS2 with PEDOT:PSS as a hybrid HTL for PSCs [186]. The MoS2 nanoflakes
improved contact between the composite HTL and the ITO electrode, enhanced the stability
of devices up to 28 days, and retained 95% of the initial PCE (18.5%). The pure MoS2 and
WS2 had work functions that were quite high at ~4.6 eV; therefore, intrinsic TMDs may not
effectively transport charge carriers [187–190]. Le et al. (2014) used UV-ozone treatment to
partially oxidize MoS2/WS2 to MoS2•MoOx and WS2•WOx, reducing the work function
to ~5.1 eV, which was compatible with the HOMO level of P3HT:PCBM materials, as
shown in Figure 7d,e [188]. The UVO-treated TMDs as HTL devices showed a comparable
PCE with PEDOT:PSS-based devices. Xing et al. reported the use of MoS2 quantum dots
with UV-ozone treatment as an HTL in OSCs [191]. The quantum dots provided a low
roughness of ~1–2 nm, which benefited the coating process of other layers and reduced
the resistance of the contact surface. Additionally, the UV-ozone-treated MoS2 quantum
dots had a work function of ~4.9 eV, which was more suitable to transporting holes from
P3HT:PCBM. Adilbekova et al. (2020) employed MoS2 and WS2 nanosheets as HTLs in
OSCs, which showed a similar PCE to devices based on PEDOT:PSS [192]. The UV-ozone
treatment was also performed on WS2, TiS2, and TaS2 materials, especially TaS2, which
had high conducting properties and was also employed as an ETL layer [187–189]. MoSx
and WSx nanodots, or the amorphous structure of MoSx•MoOx and WSx•WOx, were also
used to make the smooth surface of an HTL by simple solvothermal synthesis [193,194].
This behavior was derived from the partial oxidation of the TMD surface, which not only
induced the charge carrier from binding with oxygen but also formed a thin layer of TMD,
benefiting the conductivity and stability of the HTL.

TMSs that are not layered materials, such as NiS or CuS, also possess unique properties.
CuS and NiS are both p-type semiconductors with work functions ranging from 4.9 to
5.1 eV, which are promising for transporting holes to current collectors [195]. Rao et al.
(2016) demonstrated a simple solution process to obtain CuS NPs, which could be a highly
stable HTL in PSCs [195]. The CuS thin layer was uniformly coated on the ITO/glass
substrate and did not affect the transparency of this substrate. Moreover, the CuS surface
was also compact for growth of the active material, lessening the barrier to carrier injection
at the interface and improving the performance of PSCs. Li et al. (2020) described the
procedure for a room-temperature solution to make p-type CuSx thin film as a stable
HTL [196]. Tirado et al. (2019) revealed that p-type CuS had a metallic character in the
valence band under light irradiation, benefiting the transport of holes and effectively
blocking electrons. Thus, it could be used to replace an expensive ETL layer such as spiro-
OMeTAD [197]. CuS could also be combined with GO or modified in various compositions,
such as CuSCN, Cu2CdSnS4, and Cu2SnS3, to improve the hole transport characteristics,
surface engineering, and compactness of other kinds of active materials [198–201]. While
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CuS has a low band gap of ~1.5 eV, NiS possesses a wide range of band gaps from 1.9
to 2.4 eV, depending on the synthesis conditions and capping agents [202,203]. Recently,
Hilal et al. (2019) reported the use of NiS nanoflowers as an HTL for OSCs [204]. NiS
nanoflowers possess a work function of 5.04 eV, which is reasonable for an HTL layer.
Pitchaiya et al. (2018) used NiS-carbon composites as an HTL in PSCs and showed a PCE
of 5.2% [205]. However, the transparency of NiS (~70%) is still an obstacle to this HTL [204].
The benefits of metal sulfide materials are their high charge carrier properties, and the S
atom is compactable with both inorganic and organic active materials; therefore, they are
widely applied in OSCs and PSCs. Owing to their high electronic conductivity and low
band gap energy, TMDs are used in inverted structures. However, adjusting the material
thickness and UV-ozone treatment could modify their surface and work function to match
designated structures in conventional cells. The 1T phase of TMDs is a promising HTL;
however, it can gradually transfer back to the 2H phase while suffering a high working
temperature. Non-layered TMSs are more stable and can be used as HTLs; however, due to
their low transparency, they are generally used as a doping material or thin support layer
with another HTL [206].

Polymers 2023, 15, x FOR PEER REVIEW 16 of 31 
 

 

of layers. In the bulk structure, TMDs have a low indirect band gap of ~1.2 eV. When they 
become single layers, the band gap can be opened to ~2.0 eV as a direct band gap, which 
not only tunes the band structure but also improves the optical/electrical properties. 
Moreover, the different stacking of layers leads to different phases, where the 2H phase 
(hexagonal structure) is semiconductive and the 1T phase (trigonal structure) is metallic 
[180–183]. Due to the low band gap, TMDs could partially hinder light from passing 
through; therefore, the use of a very thin layer (increasing transparency) is important 
[184]. Liang et al. demonstrated MoS2 nanoflakes as an HTL buffer layer of PSCs 
(glass/FTO/compact-TiO2/mesoporous-TiO2/FA85MA15PbI85Br15/ 2D MoS2/Spiro-
OMeTAD/Au), which exhibited better stability under continuously illumination, as shown 
in Figure 7a–c [185]. Wang et al. (2018) combined MoS2 with PEDOT:PSS as a hybrid HTL 
for PSCs [186]. The MoS2 nanoflakes improved contact between the composite HTL and 
the ITO electrode, enhanced the stability of devices up to 28 days, and retained 95% of the 
initial PCE (18.5%). The pure MoS2 and WS2 had work functions that were quite high at 
~4.6 eV; therefore, intrinsic TMDs may not effectively transport charge carriers [187–190]. 
Le et al. (2014) used UV-ozone treatment to partially oxidize MoS2/WS2 to MoS2•MoOx and 
WS2•WOx, reducing the work function to ~5.1 eV, which was compatible with the HOMO 
level of P3HT:PCBM materials, as shown in Figure 7d,e [188]. The UVO-treated TMDs as 
HTL devices showed a comparable PCE with PEDOT:PSS-based devices. Xing et al. 
reported the use of MoS2 quantum dots with UV-ozone treatment as an HTL in OSCs 
[191]. The quantum dots provided a low roughness of ~1–2 nm, which benefited the 
coating process of other layers and reduced the resistance of the contact surface. 
Additionally, the UV-ozone-treated MoS2 quantum dots had a work function of ~4.9 eV, 
which was more suitable to transporting holes from P3HT:PCBM. Adilbekova et al. (2020) 
employed MoS2 and WS2 nanosheets as HTLs in OSCs, which showed a similar PCE to 
devices based on PEDOT:PSS [192]. The UV-ozone treatment was also performed on WS2, 
TiS2, and TaS2 materials, especially TaS2, which had high conducting properties and was 
also employed as an ETL layer [187–189]. MoSx and WSx nanodots, or the amorphous 
structure of MoSx•MoOx and WSx•WOx, were also used to make the smooth surface of an 
HTL by simple solvothermal synthesis [193,194]. This behavior was derived from the 
partial oxidation of the TMD surface, which not only induced the charge carrier from 
binding with oxygen but also formed a thin layer of TMD, benefiting the conductivity and 
stability of the HTL. 

 
Figure 7. (a) Scheme of PSCs based on 2D MoS2; (b) energy band alignment of different layers in 
PSC; (c) J–V curves of devices with different treatments P1, P2, and P3, corresponding with MoS2 on 
Figure 7. (a) Scheme of PSCs based on 2D MoS2; (b) energy band alignment of different layers in
PSC; (c) J–V curves of devices with different treatments P1, P2, and P3, corresponding with MoS2 on
perovskite without annealing, annealing MoS2 on pre-annealed perovskite, and annealing MoS2 on
perovskite without annealing, respectively. Reproduced with permission from ref. [185] Copyright
2020, Springers Nature. (d) Energy band alignment work function of WS2 with/without UV treatment
and PEDOT:PSS in OSCs; and (e) J–V curves of devices based on WS2-UVO and PEDOT:PSS as HTLs.
Reprinted with permission from ref. [188] Copyright 2014, Wiley-CH.

4.4. Organometallic Materials

Recent research on organometallic materials (OMs) has shown the interestingness of
organic and metallic properties in a composition. OMs are believed to solve the drawbacks
of organic materials, such as low-charge carriers and poor stability, and the drawbacks
of inorganic materials, achieving compatibility through surface engineering [34,94,207].
Recently, metal phthalocyanines (MPcs) have received significant attention as OMs for
HTLs of PSCs [208]. MPcs have a novel structure with a centered metal atom, which can
be easily obtained by a simple reaction of a phthanonitrile-based material with metal salts
such as a metal chloride or acetate. MPcs have unique properties, such as a low band gap,
high physical/chemical stability, and high carrier mobility [208–211]. Guo et al. (2017)
synthesized ZnPc and CuPc and proposed their use as HTMs in PSCs [208]. ZnPc-based
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devices achieved high stability after over one month with a comparable open voltage of
~1.071 V to Spiro-OMeTAD at 1.107 V. The PCE of devices based on MPc was ~14.4%,
which was still lower than that of Spiro-OMeTAD-based devices (18.9%), but significant
improvements in stability and cost-effectiveness would lead this material to becoming
a potential HTL, which is also an EBL in PSCs. Using a similar approach, Ni, Zn, and
Co metals were also synthesized as MPc materials. Cheng et al. (2017) proposed the use
of NiPc and V2O5 as a comparative HTL to spiro-OMeTAD, achieving a PCE of up to
17.6% compared to 18.2%, respectively [212]. In addition, metal porphyrins of Cu and
Zn are also promising HTMs, as shown in Figure 8 [213]. CuP and ZnP showed suitable
band alignment. Especially, ZnP-based PSCs exhibited a high PCE of 17.78%, which
was comparable to that of bare spiro-OMeTAD-based PSCs (18.59%). Cao et al. (2018)
investigated Co(II) and Co(III) porphyrin (CoP) compounds that could boost the PCE of
PSCs to 19.6% [214]. Owing to their intrinsic high hole mobility, OMs are generally used as
non-doped HTLs [207]. However, their strong absorption limits their use in conventional
structures [94]. The use of organometallic materials and inorganic materials as HTLs
provides a huge source for building solar cells that effectively convert light into electricity.
However, there is still a gap from the experimental to the practical for which detailed
factors should be optimized, such as the thickness, surface engineering, structure, cover of
the cell, etc. Figure 9 shows some common HTL materials used in PSCs, including MO,
MS, and MPc materials. Table 2 also provides a summary of the performance of solar cells
employing inorganic and organometallic materials as HTLs, corresponding with the active
materials used.
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Table 2. Summarization of inorganic and organometallic hole transport materials.

HTM ABSORBER VOC JSC FF PCE Ref.

GO- and carbon derivative-based HTLs

GO P3HT:PC61BM 0.57 11.40 54.30 3.50 [101]

PEDOT:PSS/GO PTB7:PC71BM 0.76 16.42 65.80 8.21 [103]

PEDOT:PSS/GO PCDTBT:PC71BM 0.82 10.44 50.00 4.28 [102]

S-GO P3HT:PC61BM 0.61 10.15 71.00 4.37 [104]

CL-GO PCDTBT:PC71BM 0.88 13.65 54.70 6.56 [105]

rGO P3HT:PC61BM 0.58 9.87 65.00 3.71 [106]

N-GO/SnO2
Rb-doped-FA-MA-Br-mixed

perovskite 1.17 18.87 74.93 16.54 [108]

Cu@RGO MAPbI3 0.97 19.20 69.80 13.23 [109]

F5-GO/PEDOT:PSS PTB7:PC71BM 0.78 15.31 63.00 7.52 [110]

F-rGO PTB7:Th:PC71BM 0.78 16.89 64.80 8.6 [111]

GQDs Dr3TBDT:PC71BM 0.92 11.36 65.20 6.82 [122]

CNT/PEDOT:PSS P3HT:PC61BM 0.55 11.58 58.00 3.69 [123]

O-MWCNTs Cs-FA-MAPbIBr 0.99 21.96 41.09 8.99 [215]

Metal oxide HTLs

NiO PDTG-TPD:PC71BM 0.82 13.90 68.40 7.82 [128]

NiO MAPbI 0.98 21.10 78.00 16.1 [130]

NiO CsFA-MA-Pb-I-Br 1.02 21.00 85.00 16.7 [131]

Cu doped NiO MAPbI 1.10 21.73 75.30 18.02 [132]

NiMgOx MAPbI 1.07 21.30 79.00 18.20 [133]

NiOx FA-MA-Pb-I-Cl 1.12 23.70 76.00 20.20 [138]
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Table 2. Cont.

HTM ABSORBER VOC JSC FF PCE Ref.

Metal oxide HTLs

NiO AVA-MAPI 0.83 20.90 65.50 10.91 [134]

S-NiOx RP(BDT-PDBT):PC71BM 0.71 9.85 63.00 4.45 [135]

MoOx PM6:Y6:PC71BM 0.84 26.71 74.22 17.21 [147]

MoOx PB3T2:IT-M 0.96 16.20 68.00 10.50 [150]

s-MoOx P3HT:PC61BM 0.59 9.50 68.00 3.80 [149]

WO3 P3HT:PC71BM 0.61 12.80 60.40 4.80 [216]

WOx-PEDOT:PSS MAPbICl 0.97 20.76 70.90 14.30 [155]

Ti3C2Tx/WO3/PEDOT:PSS MAPbI3 0.90 22.47 60.02 12.26 [153]

O-CuOx PTB7:PC71BM 0.74 16.44 71.00 8.52 [164]

Metal sulfide HTLs

MoS2 MAPbI3 0.95 20.70 72.30 14.2 [186]

O-MoS2 QDs
PTB7:Th:PC71BM

0.79 16.90 65.00 8.66
[191]

MoS2 Ns 0.63 12.50 53.20 4.18

MoS2
PBDB-T-2F:Y6:PC71BM

0.81 25.30 71.00 14.9
[192]

WS2 0.83 26.00 72.00 15.6

CuS MAPbI3 1.02 22.30 71.20 16.2 [195]

CuxS-GO TiO2/CuInS2 0.60 16.06 62.90 6.07 [198]

Cu2SnS3 FAPbI3 1.04 24.14 64.92 16.33 [201]
Organometallic HTLs

Cop CsFAMAPbIBr 1.13 23.62 76.66 20.47 [214]

Ni-Pc
FAPbI3@MAPbBr3

0.895 18.50 63.80 10.6
[212]

Ni-Pc/V2O5 1.08 23.10 73.40 18.3

Zn-Pc MAPbIBr 1.02 22.36 71.43 16.23 [211]

CuPc
FAPbI3@MAPbBr3

1.07 20.52 66.30 16.36
[213]

ZnPc ~1.10 21.75 71.30 17.78

5. Conclusions and Outlook

In summary, LCSCs such as OSCs, PSCs, and DSSCs have been roughly developed
and have reached significant improvements, achieving a PCE of over 24% or even higher
with a tandem structure (a combination of 2–3 cells with different ranges of active light into
a cell) or light concentrator facilities [217–221]. In order to obtain highly stable devices, the
HTL layer has been fabulously investigated with a tremendous variety of materials, from
inorganic to organic to organometallic compounds. In general, in comparison with IHTMs,
OHTMs have better compatibility with organic active layer materials, which can decrease
interfacial errors and increase charge transfer performance [14,17]. OHTMs also have lower
costs and easier processability, which can enable large-scale fabrication of solar cells using
methods such as printing or coating [14,17,81]. OHTMs have higher transparency and
flexibility, which can enable the development of transparent and flexible solar cells for
various applications [14,17,81]. In contrast, IHTMs still have higher stability under envi-
ronmental conditions, such as heat, humidity, or oxygen. IHTMs have higher conductivity
and lower resistance than OHTMS, which can improve the charge transport efficiency and
decrease the series resistance of solar cells. IHTMs have a wider band gap than organic
materials, which can improve the light-harvesting ability of solar cells. Lastly, IHTMs can
be produced with simple methods, while OHTMs need multi-step synthesis [14]. The com-
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bination of these materials with organic materials balances their properties, in which the
high performance of the OHTL and the stability of inorganic materials can be established
from their compositions, such as GO/PEDOT:PSS, NiOx/PEDOT:PSS, or NiPc-doped spiro-
OMeTAD [113,136,212]. Sulfur-based or organometallic materials show a low polarization
surface that is easily compacted with the growth of perovskite, improving the performance
of PSCs [196,214]. Even though many achievements have been recorded, practical appli-
cation of these materials is still not well established due to the cost-effectiveness of the
processing method, and optimizations need to be investigated. The variable wettability
of different HTLs affects the morphology, contact angle, and stability [222]. The rough
surfaces and surfaces with pinholes act as defects that trap charge carriers, thereby reduc-
ing the PCE. Some materials have high wettability and low contact angles, such as PTAA,
spiro-OMeTAD, and PEDOT:PSS; however, surface treatment is also needed to obtain a
high-quality surface. Meanwhile, P3HT wettability depends on its formulation and surface
treatment. Intrinsic rGO or TMS exhibit high hydrophobicity and functionalization can
help reduce the contact angle with another surface, reducing traps and improving the
efficiency of the charge transfer process. Meanwhile the wettability of MO depends much
on its structure. In general, UV-O treatment greatly helps the surface of inorganic HTLs. In
addition, some techniques can be applied to inorganic HTLs, such as modifying thin casting
films using the spray method, static/dynamic spin-coating method, using ionic liquids, or
incorporating organic molecules as additives [223–226]. Recently, organometallic materials
have become promising to replace traditional HTLs with lower costs and high performance.
Therefore, there is still a lot of room for studying new materials or optimizing/combining
the layer-by-layer structure. Hence, tandem cells are also promising to overcome the light
absorption efficiency issues; therefore, the selection of different HTLs for each top/bottom
cell needs to be performed. We believe this overview of HTLs could contribute to having a
full, bright picture of flexible solar cells in the future.
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