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Abstract: The synthesis of biocompatible and bioresorbable composite materials, such as a “polymer
matrix-mineral constituent,” stimulating the natural growth of living tissues and the restoration
of damaged parts of the body, is one of the challenging problems in regenerative medicine and
materials science. Composite films of bioresorbable polymer of polyvinylpyrrolidone (PVP) and
hydroxyapatite (HA) were obtained. HA was synthesized in situ in the polymer solution. We applied
electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) approaches to study
the composite films’ properties. The application of EPR in two frequency ranges allowed us to
derive spectroscopic parameters of the nitrogen-based light and radiation-induced paramagnetic
centers in HA, PVP and PVP-HA with high accuracy. It was shown that PVP did not significantly
affect the EPR spectral and relaxation parameters of the radiation-induced paramagnetic centers
in HA, while light-induced centers were detected only in PVP. Magic angle spinning (MAS) 1H
NMR showed the presence of two signals at 4.7 ppm and −2.15 ppm, attributed to “free” water and
hydroxyl groups, while the single line was attributed to 31P. NMR relaxation measurements for 1H
and 31P showed that the relaxation decays were multicomponent processes that can be described
by three components of the transverse relaxation times. The obtained results demonstrated that the
applied magnetic resonance methods can be used for the quality control of PVP-HA composites
and, potentially, for the development of analytical tools to follow the processes of sample treatment,
resorption, and degradation.

Keywords: polyvinylpyrrolidone; hydroxyapatite; composites; NMR; EPR

1. Introduction

Calcium phosphates (CaPs) are the main inorganic component of bone and den-
tal tissues [1–5]. Materials based on CaPs—powders, ceramics, cements, coatings, and
composites—are widely used in various applications, especially in medicine for the replace-
ment and restoration of damaged bone tissues. The most widespread representative of
CaPs is hydroxyapatite (HA, Ca10(PO4)6(OH)2, Figure 1), which is present in bone tissues
in the form of nanocrystals. HA is known to be biocompatible, non-toxic, and the most
important mineral that constitutes bones and teeth [6].
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implants. CaP frames printed using a 3D printer for biomedical applications have good 
mechanical strength [11]. In the standard 3D technology for creating such objects, compo-
sites made of a biodegradable polymer and a calcium-containing filler are applied for 
layer-by-layer deposition of the material [12]. Polyvinylpyrrolidone (PVP, Figure 2) is 
widely employed as a synthetic polymer for various biomedical purposes in material en-
gineering due to its diverse properties, including solubility in water and in a broad range 
of liquid media. PVP also has both hydrophilic and hydrophobic functional groups, due 
to which it interacts with various solvents (easily soluble in cold water and also soluble in 
many organic solvents, including alcohols; some chlorinated compounds such as chloro-
form, methylene chloride and ethylene dichloride; nitroparaffins; and amines [13–16]). 
Thanks to its biocompatibility, absence of toxicity and high capacity to form interpolymer 
complexes, PVP is widely used for designing materials for different applications, such as 
biomaterials for medical uses. 

Figure 1. Structure of HA.

It is known that the synthesis of calcium phosphates in the presence of polymers
(collagen, gelatin, starch, chitosan, etc.) leads to the formation of CaP nanocrystals with
controlled size, morphology, and improved mechanical properties [7–10]. Currently, 3D-
printing technologies are rapidly developing in medicine, in particular for printing bone
implants. CaP frames printed using a 3D printer for biomedical applications have good me-
chanical strength [11]. In the standard 3D technology for creating such objects, composites
made of a biodegradable polymer and a calcium-containing filler are applied for layer-
by-layer deposition of the material [12]. Polyvinylpyrrolidone (PVP, Figure 2) is widely
employed as a synthetic polymer for various biomedical purposes in material engineering
due to its diverse properties, including solubility in water and in a broad range of liquid
media. PVP also has both hydrophilic and hydrophobic functional groups, due to which
it interacts with various solvents (easily soluble in cold water and also soluble in many
organic solvents, including alcohols; some chlorinated compounds such as chloroform,
methylene chloride and ethylene dichloride; nitroparaffins; and amines [13–16]). Thanks to
its biocompatibility, absence of toxicity and high capacity to form interpolymer complexes,
PVP is widely used for designing materials for different applications, such as biomaterials
for medical uses.
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Bone cements are often used to fix artificial prostheses to the human skeletal system.
These materials provide immediate fixation of the implant and ensure a better distribution
of body load between the prosthesis and bone. Morejón et al. [17] studied polymer particles
with particle size distribution and molecular weight, allowing them to develop bone
cement according to the international standards. Needle-shaped HA crystals were obtained
in an aqueous solution of PVP via precipitation from solutions of calcium nitrate and
orthophosphoric acid at 60 ◦C. PVP was used to regulate the nucleation and growth of
HA crystals. Based on the results obtained from X-ray diffraction and high-resolution
transmission electron microscopy measurements, it was concluded that the addition of
PVP promotes the growth of HA nanocrystals [18,19]. It was shown that the number of HA
crystals formed on the polymer surface depends on the number of negative charges on this
surface and the pH of the reaction medium. It was established that to obtain a controlled
morphology, the temperature and duration of the reaction are of primary importance [20].

Polymer—CaPs nanocrystal composites can be obtained in situ, without mixing the
components, similar to the process happening in the body during bone remodeling. In
ref. [21], such a composite was obtained via biomimetic deposition of HA on a PVP matrix.
A colorimetric test to assess the metabolic activity of cells (MTT-test) showed that the
composites were biocompatible and could be used to fill bone defects. Guesmi Y. et al. [22]
investigated the material obtained by grafting PVP onto the surface of HA microcrystals,
suitable for bone tissue engineering. Based on the results of the bioactivity study of the
composites, it was concluded that the PVP seeded on their surface cells had a higher
viability compared to those cultivated on the HA crystals.

Obviously, the properties of polymer-CaP composites depend on the chemical in-
teraction of the components. It is supposed that the inorganic particles interact with the
organic component by establishing the inter- and intramolecular hydrogen bonds and
via the ion–dipole forces, formed, for example, between the calcium ions of CaPs and
the functional groups of polymers [23–26]. However, the interaction of PVP with calcium
phosphate microcrystals has not yet been sufficiently studied.

A lot of work has been conducted on the development and application of various
characterization methods that can provide details about calcium phosphate-based bio-
materials at different scales, such as X-ray diffraction, infrared and electron microscopy,
rheological analysis, water content determination, etc. [8]. In the present work, PVP-HA
composites were investigated using electron paramagnetic resonance (EPR) and nuclear
magnetic resonance (NMR) techniques. Both of these analytical methods are non-invasive,
widely applied in material science, polymer research and for biomedical purposes, but very
rarely exploited for polymer-CaPs studies.

Pure HA and PVP are EPR silent. Therefore, due to its inherent high sensitivity, EPR
can be used to check for the presence of various paramagnetic impurities, like metals
and metal complexes, or defects in the polymer chains both in the starting materials for
synthesis and in the resulting products [27–34]. Stable and unstable defects created by
light or ionizing irradiation (X-ray irradiation, for example) can be exploited not only for
detecting the presence and concentration of impurities but also as paramagnetic probes to
study the local environment, material structure and changes in the local lattice [27]. Several
stable radiation-induced anions were detected and investigated using EPR in synthetic
and biogenic CaPs, like carbonates, nitrogen and oxygen-containing species [30,32–34]. It
was shown, for example, that the spectra of nitrogen-containing stable radicals depend
on the type of CaP and, therefore, EPR may be used to follow the processes of calcium
phosphates growth [28,29]. In HA, the mentioned anions can substitute both hydroxyl
(OH) and phosphate (PO4) groups (see Figure 1), as well as occupy interstitial sites. The
localization of anions depends on the nature of biogenic materials, the method used for
the synthesis of artificial compounds, co-doping effects, etc. Advanced EPR techniques,
together with theoretical calculations, often allow one to define the location of these anions
in the HA structure, and to propose the most probable charge compensation schemes, in
the case of non-isovalent substitutions [27,29].
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EPR techniques are used to investigate intentional or non-intentional HA cation doping
with Mn2+, Cu2+, etc. Two distinct sites, Ca(1) and Ca(2), are distinguished in the HA lattice
(Figure 1), and EPR data allow one to confirm or refute assumptions about the introduction
of the dopants into the HA structure, preferential substitution or re-distribution of dopants
between the calcium sites [27]. Even in the case of non-paramagnetic impurities, such as
magnesium and aluminum, for example, it was shown that the EPR of anionic impurities
is sensitive to the lattice distortion caused by these cations [29].

Due to the chemical complexity of polymer-CaPs composites, hyperfine EPR and NMR
can be engaged, taking into account that different nuclei, such as 31P (with the nuclear spin
of I = 1/2), 1H (I = 1/2), 13C (I = 1/2), 14N (I = 1) and even 43Ca, can act as nuclear spec-
troscopic probes. Since HA is practically insoluble in liquid media, magic angle spinning
(MAS) NMR techniques are used to investigate materials containing hydroxyapatite [35–42].
Thanks to the advancements in instrumentation, pulse sequence development and data
interpretation (through combined experimental–computational approaches) made by the
NMR community since the beginning of 2000s, materials scientists have been able to extend
the limits of NMR research in order to obtain a deeper knowledge of CaPs biomaterials [36].
NMR studies of native bone and dental tissues have allowed us to measure the size of the
amorphous calcium phosphate layer at the surface of apatite bone crystallites, to detect
minor organic species (like nucleic acids) and to measure the distance and binding geom-
etry of small molecular ions at the surface of mineral particles, like citrate. Furthermore,
significant information about inorganic and organic components, as well as the exclusion
of previously suggested models regarding the bone structure and its formation, has been
obtained by comparing the NMR signatures of natural materials with those of synthetically
derived models, including in vitro-cultured tissues [36]. The achievements in this field give
hope that in the near future, novel approaches can be implemented into clinical magnetic
resonance imaging (MRI) for the evaluation of skeleton quality, 3D and 4D synthetic tissue
constructs and the diagnosis of bone diseases in order to provide additional biomarkers for
the assessment of bone microarchitecture, etc. [37].

The effect of PVP on the morphology and size of nanocomposites was studied using
NMR in refs. [17,40]. In several papers from our group, we demonstrated the feasibility of
combined EPR/NMR studies to investigate PVP-HA-sodium alginate composites, includ-
ing the influence of divalent metals on the cross-linking of the polymer and HA [35,41].
However, to the best of our knowledge, no comprehensive analysis of synthesized in situ
PVP-HA composites using the EPR and NMR techniques is present in literature.

2. Materials and Methods
2.1. Synthesis of Composite Materials Based on Polyvinylpyrrolidone with Hydroxyapatite

Solutions of Ca(NO3)2 × 4H2O (chemical grade, PanReacAppliChem, Barcelona,
Spain), (NH4)2HPO4 (chemical grade, Chimmed, Moscow, Russia) and (PVP) Mw = 12 kDa
(Boai NKY Pharmaceuticals Ltd., Tianjin, China) were used for the in situ synthesis of HA
powders in the PVP solution. Precipitation of calcium phosphates was performed at room
temperature (20–25 ◦C) at pH of ~11.5, in accordance with Equation (1) [41]:

10Ca2+ + 6HPO4
2− + 8NH3 H2O→ Ca10(PO4)6(OH)2 + 8NH4

+ + 6H2O (1)

The in situ synthesis of PVP-HA composites was carried out according to the procedure
described in ref. [40]. Briefly, an aqueous PVP solution was prepared by dissolving 14.35 g
of PVP in 200 mL of distilled water via stirring, in order to obtain 5.52 wt% concentration.
After the formation of a homogeneous water–polymer mixture, 20 mL of 0.1 mol/L calcium
nitrate solution was added. To regulate the reaction acidity, 20 mL of 25% NH4OH aqueous
solution was added as well. Then, 20 mL of 0.06 mol/L diammonium phosphate solution
was added drop by drop while stirring at 500 rpm. To remove the by-products of the HA
formation (reaction (1)) (i.e., nitrate ions) from the composite, it was washed using dialysis.

The product of reaction (1) was examined with X-ray diffraction (XRD) and Fourier
transform infrared spectroscopy (FTIR). The XRD analysis was carried out by using the
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DRONE 3M diffractometer (S.-Petersburg, Russia) with Cu Kα radiation (λ = 0.154 nm). The
FTIR spectra were obtained with the NicoletAvatar-330 (ThermoScientific, Waltham, MA,
USA) spectrometer in the range of 400–4000 cm−1 on the samples mixed with potassium
bromide. The annealing of samples before XRD and FTIR was performed for 1 h at 400 and
900 ◦C. The details of the samples characterization were reported in ref. [41].

From XRD, it was found that the resulting composites are X-ray amorphous. As a
result of heat treatment at 400 ◦C, an apatite structure was formed, and after heat treatment
at 900 ◦C, only crystallized HA without admixtures of other phases was detected.

FTIR measurements showed that in the sample without heat treatment, despite a
partial overlap of PVP and phosphate group bands, it is still possible to distinguish the
bands related to PVP. After the comparison of FTIR spectra with the data reported in
ref. [41], it was found that the most intense bands at 1660 cm−1 correspond to the valence
vibrations of the carbonyl group (C=O). In the spectra related to HA, the oscillations for the
PO4

3− group were pronounced (triplets of valence oscillations at 1090, 1053 and 965 cm−1

and at 632, 572 and 472 cm−1). The intense oscillation band of the OH-group at 3570 cm−1,
which is present even in the sample without heat treatment, may indicate the beginning
of the formation of the HA structure. With an increase in the annealing temperature, the
intensity of this band significantly increased, allowing it to be associated with the crystalline
hydroxyapatite formation. The intensity and resolution of the bands corresponding to the
PO4

3− group also increased. It should be noted that the PVP bands practically disappear
after heat treatment at 400 ◦C, and completely disappear after annealing at 900 ◦C.

Scanning electron microscopy (SEM) measurements were performed using a Tescan
VEGA3 (Kohoutovice, Czech Republic). Samples were coated with a thin layer of gold for
the SEM examinations. The SEM images were acquired using secondary electron (SE) and
backscattered electron (BSE) imaging modalities. The results of SEM investigations are
presented in Section 3.1.

2.2. EPR

The EPR measurements were performed in two microwave ranges, X-band (with
the microwave frequency νMW = 9 GHz) and W-band (νMW = 94 GHz), by exploiting the
Bruker Elexsys E580/E680 spectrometer (Karlsruhe, Germany) in conventional (cw) and
pulsed modes. Pulse methods are able to provide much more information compared to
that obtained using conventional EPR [43]. In the pulsed mode, the Hahn sequence was
applied to detect electron spin echo (ESE): π/2–τ–π–τ–; here, the duration of π/2 was
equal to 64 ns and τ = 250 ns. Registration of the EPR spectra was performed by detecting
the ESE integral intensity depending on the magnetic field value B0. The choice of the
W-band was justified by the need to achieve a higher spectroscopic resolution (that allows
identifying distinct EPR signals with close g-factors) and high sensitivity (to register weak
EPR signals). The spectra were recorded both at room temperature (T = 297 K) and at lower
temperature (T = 200 K). Stable paramagnetic centers were formed under X-ray irradiation
of the synthesized powders using the URS-55 source (G = 55 kV, I = 16 mA, W-anticathode)
at room temperature for 30 min with an estimated dose of 5 kGy and by illuminating the
samples in the EPR cavity via laser sources with different wavelengths (λ) from 266 nm up
to 355 nm.

The most abundant metal impurities in CaP detected with the EPR method are related
to manganese, chromium, iron and copper. Low-temperature measurements and the use
of high-frequency methods allowed us to increase the sensitivity of EPR. Details of the
EPR measurements, including electronic relaxation times for HA, are given in ref. [43].
Simulations of the EPR spectra were performed by means of the EasySpin package [44].

2.3. Nuclear Magnetic Resonance

For all the samples, the MAS-NMR spectra, the times of spin–lattice and spin–spin
relaxation on phosphorus (31P) nuclei and hydrogen (1H) protons were measured. For
measurements, an AVANCE400WB NMR spectrometer (Karlsruhe, Germany) with a MAS



Polymers 2023, 15, 4445 6 of 15

4BL CP BB DVT sensor was employed. The resonant frequency on protons was about
400.27 MHz, and on 31P nuclei, it was 162.034 MHz. The duration of a π/2 pulse on protons
was 2.5 µs (output power of 94 W), and on 31P nuclei, it was 3.4 µs at a power of 50 W. The
standard pulse programs, such as onepulseq, hpdec, cp, inversion-recovery and cpmg, were
used to obtain NMR spectra and relaxation on 1H, 31P and 13C. The spectrum width for all
measurements was 100 kHz. Powder samples were densely packed in a 4 mm zirconium
oxide rotor and spun up to a rotation frequency of 7 kHz. The measurements were carried
out at 295 K. The chemical phenomena related to the NMR signals were calibrated by
measuring the signal of water (δ = 4.67 ppm) for protons and 85% phosphoric acid for
phosphorus (δ = 0 ppm).

3. Results
3.1. SEM

As it follows from the SEM experiments (Figure 3), the microstructure of the PVP-HA
composite is represented by rod-shaped particles about 30 µm long, coated with polymer.
It resembles the results reported in ref. [18]. The polymer facilitates the formation of the
needle-like HA aggregates, whereas, in the absence of PVP, it is difficult to obtain a rod-like
structure. This can be attributed to the Ostwald ripening process occurring in the solution
and leading to a typical oriented attachment process, especially in the presence of PVP.
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Figure 3. SEM image of the PVP-HA composite.

3.2. EPR

For HA, PVP and PVP-HA, the EPR signal was not observed due to the absence of
paramagnetic centers in the structure of the materials. It additionally proved the purity of
the initial materials and the reaction product. After the X-ray irradiation of HA powders
in the X-band, the EPR spectrum containing three lines was registered (Figure 4). The
spectroscopic parameters of the EPR spectrum allowed us to refer the detected signal to
the well-studied NO3

2 stable species in HA [45–47] (see Table 1), due to the hyperfine
interaction (A) with the 14N nuclei (I = 1). The PVP samples were also studied after X-ray
irradiation (Figure 5, red lines) and photo-induced EPR at low temperatures (Figure 5),
since it is known that exposure to the visible light does not lead to the formation of stable
radicals in HA [43], while it does in PVP polymer chains [48]. In the W-band, due to the
higher spectral resolution, a three-line pattern of PVP was observed (Figure 6). It accounted
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for the localization of an unpaired electron on the PVP nitrogen atom (Figure 2) with a
constant A|| = 106 ± 10 MHz. In the X-band, the three-line pattern for PVP is not resolved.

As can be seen from Figure 5 (blue lines), the EPR spectrum of the PVP-HA contains
only the NO3

2 radicals from HA, and the component from PVP was not observed. It can
be supposed that in the PVP-HA mixture, the radiation-induced centers in PVP have a
competitive electron trap channel, which is possible only in the presence of a chemical
bond between the components. In ref. [49], we also showed that for the PVP-HA samples
obtained ex situ, the values of the A-components and their distribution for the electron-14N
interaction grew with the increase in the amount of PVP. A change in the crystal structure
of HA in the reaction with PVP is unlikely. Therefore, we can assume that during the
formation of chemical bonds, the PVP molecules create a positively charged layer around
the HA particles, which increases the electron density in the near-surface layer of the
HA particle.

Electronic spin–lattice relaxation measurements did not reveal an influence of PVP
on the relaxation parameters of the radiation-induced NO3

2− radicals from HA, as is
demonstrated in Table 2 for the X-band experiments. This correlates with the tiny influence
of PVP on the EPR spectra of HA, as described above.
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Table 1. Spectroscopic parameters of the observed EPR spectra obtained from their simulations in the
X- and W-bands.

Sample g⊥ g|| A (MHz) A||
(MHz)

∆A
(MHz)

∆A||
(MHz)

PVP 2.0022 2.0026 38 ± 8 106 ± 10 - -
HA 2.0011 2.0052 92.4 ± 0.5 186 ± 1 7 ± 1 12 ± 1
PVP-HA 2.0011 2.0051 93.5 ± 0.5 190 ± 2 13 ± 1 18 ± 1
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Table 2. Spin–lattice (T1e) and spin–spin (T2e) relaxation times of NO3
2− radicals measured in the

X-band (v = 9.6 GHz) at the central peak (transition) of the hyperfine structure of the nitrogen radical
at B0 = 341.2 mT (corresponds to g⊥).

T1e (µs) T2 (µs)

HA 28.5 3
PVP-HA 27.6 3.2

3.3. NMR

The 1H NMR spectra for PVP and PVP-HA are shown in Figure 7. The 1H MAS-NMR
spectrum of the PVP consists of one unresolved NMR signal at 2.4 ppm, associated with
the CH2 groups of the pyridine ring (Figure 2) and the polymer chain. The CH groups of
the polymer chain contribute to the signal at about 5 ppm, while the CH3 end groups give
a small contribution to the region of 0.5–1.5 ppm. On the 1H NMR spectrum in Figure 7,
the contributions of these chemical groups are seen as small shoulders to the right and left
of the main NMR signal.
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The 1H NMR spectrum of a PVP-HA sample consists of two 1H NMR signals at
4.7 ppm and −2.15 ppm [50,51]. The integrated intensity of the NMR signal at 4.7 ppm is
significantly higher compared to the intensity of the NMR signal at −2.15 ppm. The 1H
NMR signal at 4.7 ppm for the PVP-HA is associated with «free» water adsorbed on the
surface of HA, while the 1H NMR signal at−2.15 ppm is associated with hydroxyls present
in the HA structure. The shape of the NMR signal at 4.7 ppm is asymmetric due to the
superposition of the proton signals of water and polymer.

The 13C{1H} MAS-NMR spectra of the PVP on 13C during proton decoupling, obtained
using the pulse program cp (red) and hpdec (blue), respectively, are shown in Figure 8.
The MAS-NMR 13C{1H} spectrum of PVP-HA has the same form as in Figure 7, only the
signal-to-noise ratio is several times lower. The NMR signals of the aliphatic region for
cross-polarization have lower resolution than those present the 13C NMR spectrum with
proton suppression.
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The data obtained for the spin–lattice relaxation rates on protons for the two samples
(PVP and PVP-HA) are shown in Table 3. The table lists the chemical shifts of the signals
for which the spin–lattice relaxation rates were measured.

Table 3. The values of 1H spin–lattice relaxation rates for PVP and PVP-HA.

Sample 2.4 ppm 4.7 ppm −2.15 ppm

PVP 0.67 ± 0.02 s−1 - -
PVP-HA - 0.49 ± 0.02 s−1 0.55 ± 0.02 s−1

The relaxation decays obtained via the Carr–Purcell–Meiboom–Gill (cpmg) sequence
for the NMR signals of the chemical shift regions, according to Table 3, are presented in
Figure 9. As can be observed, the proton relaxation decays for the NMR signals from the
PVP and PVP-HA differ from each other and can be described by exponent approximation.
The decay curves of the transverse magnetization of protons in the PVP and PVP-HA
samples were approximated by the following formula:

A(t) = A(0) ·∑n
i=1 pi · exp

(
− t

T2(i)

)
, (2)

where A(0) is the initial amplitude of the NMR signal and T2(i) is the spin–spin relaxation
times of components with populations pi. The values of the spin–spin relaxation times and
their populations calculated from the relaxation decays are given in Table 4.

It is known that multicomponent relaxation can manifest itself as a result of different
types of molecular motion or different surroundings of the nuclei. We assume that the
presence of three transverse relaxation components for protons is due to the different
positions of the OH groups in the PVP-HA composite. So, hydroxyls, included in the
structure of HA (δ = −2.15 ppm), should be characterized by the longest time of transverse
(spin–spin) magnetization. In the environment of the HA crystal defects, hydroxyls should
be described by high rates of nuclear spin–spin relaxation. The same approach applies to
water localized on the HA surface.
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Table 4. The values of 1H spin–spin (transverse) relaxation times of components with populations pi,
according to Equation (2).

Chemical Shifts of NMR Signals
(ppm) p1

T2(1),
ms p2

T2(2),
ms p3

T2(3),
ms

PVP

2.4 0.0015 29.6 ± 0.5 0.0067 3.6 ± 0.1 0.992 0.59 ± 0.02

PVP-HA

4.7 0.04 5.42 ± 0.2 0.18 1.67 ± 0.05 0.78 0.58 ± 0.02
−2.15 0.346 29.2 ± 0.5 0.33 6.02 ± 0.05 0.334 0.46 ± 0.03

The 31P NMR spectrum of the PVP-HA sample is shown in Figure 10. It is a single
line with a width of about 290 Hz with an isotropic chemical shift of 3 ppm. The shape
of the spectrum indicates that all the phosphorus nuclei in HA are in the same chemical
environment. It should be noted that the stationary 31P NMR spectrum of the PVP-HA
sample (without rotation) has the same chemical shift and a linewidth of 3000 Hz.

The spin–lattice relaxation time for 31P was measured as T1 = 238± 21 s. The relaxation
decay of the 31P NMR signal for the PVP-HA and the fitting curve based on the relaxation
decay decomposition parameters, according to Equation (2), are shown in Figure 11.

The values of spin–spin relaxation times and their populations obtained from the
relaxation decay for the line in the 31P NMR spectrum of the PVP-HA are listed in Table 5.
The presence of three transverse relaxation components both for phosphorus atoms and
protons is probably due to the presence of crystal lattice defects in the HA.
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Table 5. The values of 31P spin–spin (transverse) relaxation times of components with populations pi,
according to Equation (2).

Chemical Shifts of NMR Signals
(ppm) p1

T2(1),
ms p2

T2(2),
ms p3

T2(3),
ms

PVP-HA

3 0.244 55.5 ± 0.5 0.189 4.2 ± 0.3 0.567 0.85 ± 0.05
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4. Conclusions

1. Using two microwave frequencies, the EPR parameters for the light- and radiation-
induced paramagnetic centers in the PVP, HA and PVP-HA (such as components
of g-factors and hyperfine constants A between electrons and 14N nuclei) were de-
fined with high accuracy (Table 1). This shows the possibility of using EPR for the
qualitative (synthesis, presence of impurities) and quantitative (concentration of im-
purities and defects) control of the initial materials (PVP, HA) and the final composite
PVP-HA product.

2. In the PVP-HA composite, the EPR spectra and electronic relaxation times of the
radiation-induced paramagnetic centers were very close to those in HA. In the PVP-
HA, the distribution of A components for the electron–14N interaction for NO3

2−

radicals was larger than for the pure HA (Table 1). The PVP-HA composites did
not contain light-induced radicals characteristic of PVP. This can be ascribed to the
re-distribution of the electrical charges between PVP and HA. These results can be
used for the control of the quality and success of the in situ synthesis of PVP-HA
composites using the EPR techniques.

3. In the 1H MAS NMR spectrum of the PVP-HA, the presence of two signals at 4.7 ppm
and −2.15 ppm were attributed to “free” water and hydroxyl groups, and a single
line attributed to 31P was registered.

4. The NMR relaxation measurements for 1H and 31P showed that the relaxation decays
are multicomponent processes that can be described by three components of the
transverse relaxation times. Multicomponent relaxation decay can be ascribed to the
presence of defects in the HA lattice. The obtained data can serve as a basis for future
NMR applications in clinical MRI for the evaluation of skeleton quality.

5. The obtained results demonstrate that the applied magnetic resonance techniques can
be used for the quality control of synthesis products and, potentially, to follow the
processes of the samples’ treatment, resorption and degradation [36,37].
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