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Abstract: Novel core–shell magnetic molecularly imprinted polymers (MMIPs) were synthesized us-
ing the sol–gel method for the adsorption of cefixime (CFX). Fe3O4@SiO2 is the core, and molecularly
imprinted polymers (MIPs) are the shell, which can selectively interact with CFX. The preparation
conditions, adsorption kinetics, adsorption isotherms, selective adsorption ability, and reutilization
performance of the MMIPs were investigated. The adsorption capacity of MMIPs for CFX was
111.38 mg/g, which was about 3.5 times that of MNIPs. The adsorption equilibrium time was
180 min. The dynamic adsorption experiments showed that the adsorption process of MMIPs to
CFX conformed to the pseudo-second-order model. Through static adsorption study, the Scatchard
analysis showed that MMIPs had two types of binding sites—the high-affinity binding sites and the
low-affinity binding sites—while the Langmuir model fit the adsorption isotherms well (R2 = 0.9962).
Cefepime and ceftiofur were selected as the structural analogs of CFX for selective adsorption studies;
the adsorption of CFX by MMIPs was higher than that of other structural analogs; and the imprinting
factors of CFX, cefepime, and ceftiofur were 3.5, 1.7, and 1.4, respectively. Furthermore, the MMIPs
also showed excellent reusable performance.

Keywords: magnetic; molecular imprinting polymers; cefixime; core–shell structure; adsorption

1. Introduction

Cefixime (CFX), an important β-lactam ring antibiotic, is mainly used to treat throat
infections, gonorrhea, and pneumonia [1,2]. Advantages such as strong antibacterial ac-
tivity and good efficacy have enabled the wide use of CFX in the treatment of diseases in
humans, poultry, and aquaculture [3,4]. However, its frequent use has raised concerns over
harm to both the environment and human health. In the production process of CFX, the
separation, extraction, purification, and other processes will produce high-concentration
organic wastewater. CFX has been detected in the water and soil of many countries and
regions; for example, high concentrations of CFX were found in hospital wastewater in
Bangladesh [5], which is difficult to treat due to its strong polarity and biological enrich-
ment [6]. At present, the removal technologies of CFX in the environment mainly include
physical separation, biodegradation, chemical oxidation, etc. [7–9]. Vajihe Hasanzadeh
et al. used metal hydroxide to activate jujube fruit residue at high temperature, which
adsorbed CFX based on physical separation [10]. Physical separation is complex, requires
high temperature, and has poor specificity for pollutants. Abotaleb Bay et al. developed
a biofilm reactor for treating CFX in wastewater. The degradation rate could reach 70.9%
at 92 mg/L, but the degradation efficiency was reduced to 34.8% at 122 mg/L [11]. In the
process of biodegradation, there are disadvantages; for example, toxic substances may be
produced, and rigorous temperature conditions are required. The operation cost of chemi-
cal oxidation is high, the operation is complicated, and toxic products may still be produced
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after degradation. For example, Hasani et al. degraded CFX in water via the ultrasonic and
electric Fenton method, but the cost was high, the operation was complicated, and toxic
products might still have been produced after degradation [12]. Therefore, it is necessary
to design a low-cost material, which can identify CFX in complex systems.

MIPs are synthetic materials with a specific selection of target molecules [13], which,
owing to their imprinted site, are complementary to the target molecules in shape and
size [14,15], vividly described as artificially synthesized tailor-made polymers [16,17]. MIPs
benefit from excellent properties, such as prominent selectivity, strong anti-interference
ability, and convenient synthesis [18–20]. They have application opportunities in solid
phase extraction, controlled drug release, sensors, and catalysis [21,22]. However, the
use of traditional MIPs includes obstacles related to their low binding capacity and mass
transfer [23–25]. By designing the molecular recognition sites on the surface of imprinted
materials, the surface molecular imprinting technology improves the mass transfer between
the recognition sites and target molecules, facilitates the elution and recombination of
template molecules, improves the recognition efficiency and binding speed, and avoids the
disadvantages of traditional methods.

The molecular imprinting technique of graft on the surface of a carrier has been
extensively studied. The commonly used carriers include SiO2, TiO2, Al2O3, magnetic
nanomaterials, etc. Shichao Ding et al. designed and synthesized peptide-imprinted
mesoporous silica using a combination of the sol–gel method and molecular imprinting
technology to specifically identify an immunostimulating hexapeptide from human casein;
the adsorption capacity was 60.5 mg/g, and the imprinting factor was 4.51 [26]. In terms of
the application effect, magnetic nanoparticles have received attention due to their good
dispersion, controllability, small size, and excellent superparamagnetism [27,28]. MMIPs
can not only specifically adsorb target molecules in a complex environment, but they can
also be quickly separated by an external magnetic field, thus avoiding steps such as centrifu-
gation, resulting in low cost, mild conditions, reducing material waste, and improving work
efficiency [29,30]. Fatemeh Mirzapour et al. prepared the MMIPs of dextromethorphan
via precipitation polymerization using Fe3O4@SiO2-C=C as the carrier and applied them
to highly selective solid phase extraction; the recovery was 92–97%, and the adsorption
capacity was 114.8 mg/g [31]. Chaoren Yan et al. used Fe3O4@SiO2 as the carrier and
developed a combination of epigallocatechin-3-gallate (EGCG), imprinting technology, and
magnetic nanoparticles to obtain a somewhat promising nanomaterial (MINs@EGCG) for
amyloid inhibition, drug carrier, and facile separation triple functions; the cleansing effi-
ciency was up to 80% [32]. Shikha Bhogal et al. prepared MMIPs for phthalate adsorption
via surface imprinting using Fe3O4@SiO2 as a carrier; the recovery was 88.53–121.57%, with
LOD ranging from 0.01 to 0.03 ng/mL [33]. Ziyang Lu et al. prepared a magnetic imprinted
PEDOT/CdS nanoreactor for the adsorption and degradation of danofloxacin mesylate
through the microwave-assisted surface imprinting technique, with a degradation rate of
84%; the adsorption capacity was 1.41 mg/g [34]. Mir Muhammad Gaho et al. prepared the
MMIPs for norfloxacin adsorption through radical polymerization using oleic-coated Fe3O4
as the carrier, and the maximum adsorption capacity was 42.34 mg/g at 35 ◦C [35]. Ziyang
Li et al. prepared the MMIPs for sulfamethoxazole using Fe-Mn impregnated peanut
shell biochar as a functional monomer by using surface molecular imprinting technology,
with a maximum adsorption capacity of 25.65 mg/g and an imprinting factor of 1.34 [36].
Notably, there are few reports on the adsorption of CFX on MMIPs, which is where our
work was focused.

In this work, the sol–gel method was introduced to imprint molecules into the inor-
ganic network structures to form a rigid structure. Compared with precipitation polymer-
ization, radical polymerization, and other methods, this method is simple in operation,
easy to control, and low cost [31,37–39]. Fe3O4@SiO2 was the core, and MIPs were used as
the shell; silica was used as the intermediate carrier to connect the magnetic particles and
the organic layer. CFX was used as the template, 3-aminopropyltriethoxysilane (APTES) as
a functional monomer, and tetraethoxysilane (TEOS) as a crosslinker to be imprinted on
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the surface of Fe3O4@SiO2 with the sol–gel method. Thus, MMIPs with core–shell were
prepared and showed high selectivity toward CFX.

2. Experimental Section
2.1. Materials

CFX, TEOS, cefepime, ceftiofur, and APTES were purchased from Aladdin Reagent
Co., Ltd. (Shanghai, China). Crystalline sodium acetate, ethylene glycol, and polyethy-
lene glycol 6000 (PEG) were purchased from Tianjin Zhiyuan Chemical Reagent (Tianjin,
China). NH3·H2O (25%), methanol, ethanol, and acetic acid were purchased from Shanghai
Chemical Reagent Co. (Shanghai, China).

2.2. Characterization

Infrared spectra were analyzed using Fourier transform infrared spectroscopy (FTIR;
Tensor 27, Bruker, Billerica, MA, USA). The crystalline structures of the MMIPs were
characterized via X-ray diffraction (XRD; D8, Bruker, Salbuluken, Germany). The mag-
netic properties were characterized through vibrating sample magnetometry (VSM; 7404,
Lake Shore Company, Columbus, OH, USA). Morphological analysis was characterized
through scanning electron microscopy (SEM; Sigma300, Zeiss, Berlin, Germany). Finally,
the morphology of the MMIPs was characterized via transmission electron microscopy
(TEM; JSM-7610FPlus, JEOL, Tokyo, Japan).

2.3. Preparation of MMIPs and Magnetic Non-Molecularly Imprinted Polymers (MNIPs)
2.3.1. Preparation and Modification of Fe3O4

Fe3O4 was synthesized using the solvent-thermal method [40]. First, 2.025 g FeCl3·6H2O
was dissolved in 60 mL ethylene glycol; then, 5.50 g NaAc and 1.50 g PEG were added,
and the mixture was stirred magnetically. Finally, the mixture was sealed in the reactor
at 190 ◦C for 8 h. The unreacted material was washed alternately with ultrapure water
and ethanol and dried under a vacuum. The Fe3O4 nanoparticles were modified with SiO2
based on the hydrolysis of TEOS, according to the literature [41]. Subsequently, 0.2 g Fe3O4
was dispersed in a 125 mL solution of ethanol and ultrapure water (4:1, v/v), after which
1.8 mL NH3·H2O and 0.6 mL TEOS were added; the material was dried at 60 ◦C for 10 h in
a vacuum to obtain Fe3O4@SiO2.

2.3.2. Synthesis of MMIPs and MNIPs

Amounts of 0.135 g CFX, 0.420 mL APTES, and 30 mL methanol were mixed and
stirred; then, amounts of 2.67 mL TEOS, 0.20 g Fe3O4@SiO2, and 1 mL acetic acid (1 mol/L)
were added, and the mixture was stirred for 10 h. The mixture was then separated with
magnets, washed repeatedly, and dried. A mixture of methanol/acetic acid (9:1, v/v) was
used to elute CFX from the MMIPs until there was no UV-Vis adsorption at 288 nm. Then,
the MMIPs were vacuum-dried at 60 ◦C for 10 h. The MNIPs were prepared without CFX
but using the same protocol.

2.4. Binding Experiments
2.4.1. Static Adsorption

An amount of 5 mg of MMIPs or MNIPs was added to a 10 mL CFX–methanol solution
of 10–200 mg/L, which was shaken for 180 min; magnets were used for separation, and
the absorbance of the supernatant was measured at 288 nm with UV-Vis. The adsorption
capacity Q (mg/g) was calculated according to the following formula:

Q = (C0 − Ce)V/m (1)

where C0 (mg/L) is the initial concentration of the CFX solution; Ce (mg/L) is the equilib-
rium concentration of CFX; V (L) is the total volume; and m (g) is the weight of the MMIPs
or MNIPs.
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2.4.2. Adsorption Kinetics

MMIPs or MNIPs (5 mg) were added to a 10 mL CFX–methanol solution of 200 mg/L
and shaken at 25 ◦C for different times (30–240 min), and magnets were used for separation.
The absorbance of CFX was measured using UV-Vis.

2.5. Selectivity

The selectivity of MMIPs was assessed using cefepime and ceftiofur as the structural
analogs of CFX. MMIPs or MNIPs (5 mg) were added to 200 mg/L of methanol solution
containing each compound. We used the imprinted factor (IF) to assess the selectivity of
MMIPs, which is defined as

IF = QMMIPs/QMNIPs (2)

where QMMIPs and QMNIPs are the binding capacities of MMIPs and MNIPs, respectively.

2.6. Reusability

To evaluate the repetitive utilization rate, 5 mg of MMIPs was added to a 10 mL
CFX–methanol solution of 200 mg/L and oscillated for 180 min, followed by magnetic
field separation. The CFX in the MMIPs was washed with methanol/acetic acid (9:1, v/v),
dried in a vacuum, and prepared for the next adsorption of CFX. The process was repeated
five times.

3. Results and Discussion
3.1. Preparation of MMIPs and MNIPs

Fe3O4 nanoparticles exhibit a strong aggregation tendency and are easily oxidized
in air [42,43]; therefore, we used Fe3O4 with silica modification. The synthesis process of
MMIPs was as follows: (1) silica shell deposition on the surface of Fe3O4, (2) MIPs layer im-
printing on Fe3O4@SiO2, and (3) removal of template molecules. The MIPs were imprinted
on Fe3O4@SiO2 through the interaction of CFX, APTES, and TEOS. The carboxyl group
of CFX interacts with the amino group of APTES to form a hydrogen bond; after eluting,
the specific recognition sites for CFX are formed, ensuring that MMIPs can specifically
recognize CFX. A schematic of the synthesis of CFX–MMIPs is shown in Figure 1.
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Figure 1. Schematic of the synthesis of CFX–MMIPs.

3.2. Optimization of the Synthesis Conditions
3.2.1. The Ratio of the Reactants

The ratio of the template molecule and crosslinker affects the property of MMIPs [44],
including the stability of the recognized site and the mechanical strength of the polymer.
The crosslinker binds the template molecule to the functional monomer, and an appropriate
amount of crosslinker facilitates the formation of a rigid cavity for the adsorption of
the target molecule. The amount of crosslinker is important; too little will render the
synthesized polymer too soft to form stable affinity sites, while too much will cause an
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excessively high degree of crosslinking [45]. The excessive crosslinker will cover the
recognition cavity and make it difficult for the elution of the template molecule, causing
mass transfer resistance and adversely affecting the adsorption [46]. Therefore, to obtain
better selective MMIPs, the ratio of the reactants should be carefully considered.

As shown in Figure 2a, the adsorption capacity first increased and then decreased with
an increase in the TEOS ratio. When the ratio was 1:6:40, the adsorption capacity reached a
maximum; when the ratio exceeded 1:6:40, the adsorption capacity was reduced, which
could have resulted from excessive TEOS hindering the elution of the template molecule
and blocking CFX from the recognition site. When the ratio was less than 1:6:40, the MMIPs
exhibited poor performance in the adsorption capacity. Thus, for the rigid construction of
MMIPs with a high binding capacity, the optimal molar ratio of CFX, APTES, and TEOS
was 1:6:40.
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3.2.2. Influence of Polymerization Time

The polymerization time of the MMIPs significantly affected the adsorption capacity
of CFX, and polymerization times of 6, 8, 10, 12, and 14 h were selected for investigation
(Figure 2b). A polymerization time of less than 10 h resulted in a low adsorption capacity,
possibly due to fewer imprinting sites. At a polymerization time of 10 h, the adsorption
capacity reached its maximum. However, a polymerization time longer than 10 h resulted
in a decreased adsorption capacity, possibly due to CFX having difficulty reaching the
imprinted sites. Therefore, the optimum polymerization time was 10 h.

3.3. Characteristics of MMIPs and MNIPs

The FTIR spectra of Fe3O4, Fe3O4@SiO2, MMIPs, and MNIPs (Figure 3) show a peak at
577 cm−1, which is the typical band of Fe3O4 [47] (Figure 3a). The new peak at 1082 cm−1

in the spectrum of Fe3O4@SiO2 is attributed to Si–O–Si, and the peaks at 954 cm−1 and
800 cm−1 represent the vibration absorption of the Si–O bond in Si–OH and the bending
vibration absorption peak of Si–O–Si, indicating the successful synthesis of Fe3O4@SiO2
(Figure 3b). Meanwhile, the characteristic peaks of the N–H bond at 1543 cm−1, Si–O–Si
and Si–O–H bonds at 1082 cm−1, and C–H stretching at 2930 cm−1 are the results of
the imprinted layer being successfully bonded to the surface of Fe3O4@SiO2 by reacting
with CFX, APTES, and TEOS [48]. Peaks at 1720 cm−1 (C=O) and 3226 cm−1 (O-H) were
observed, indicating the presence of carboxyl groups in the MMIPs [49]. The characteristic
absorption peaks of the MMIPs and MNIPs were not significantly different (Figure 3c,d),
indicating that the addition of template molecules did not change the main functional
groups of the polymer.
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Figure 4 depicts the XRD pattern of Fe3O4, Fe3O4@SiO2, and MMIPs. The characteristic
XRD absorption peaks of Fe3O4 appeared at 2θ = 30.38◦, 35.58◦, 43.14◦, 53.48◦, 57.08◦, and
62.66◦, corresponding to the stereoscopic crystal planes (220), (311), (400), (422), (511),
and (440) of Fe3O4, respectively. This is consistent with the JCPDS-International Centre
(JCPDSCard: 19-629) and proves that the prepared product was Fe3O4. When 2θ = 22◦,
there is a wider diffraction peak corresponding to the amorphous SiO2 in Fe3O4@SiO2
(Figure 4b). The weakening of the peak at 2θ = 22◦ was due to an imprinting layer on
the Fe3O4@SiO2 surface (Figure 4c). The distinguishable characteristic diffraction peaks
of Fe3O4 were observed for the three samples, indicating that the crystal structure of
Fe3O4 remained unchanged during the imprinting process and was incorporated into all
the samples.
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The magnetic properties of synthetic materials were analyzed using VSM. As illus-
trated (Figure 5), the synthetic materials crossed the zero point, showing superparamagnetic
properties with almost no coercivity or remanence, indicating that the particles could be
dispersed in a short time and exhibited a strong response to the magnetic field. The sat-
uration magnetization (Ms) values of Fe3O4, Fe3O4@SiO2, and MMIPs were 87.2 emu/g,
61.0 emu/g, and 32.2 emu/g, respectively. The Ms of MMIPs showed a slight decrease
compared to Fe3O4, which was attributed to the shielding effect of the Fe3O4 surface parcel
Si coating and the molecularly imprinted layer. However, the MMIPs were still magnetic
enough to meet the requirements of an effective magnetic carrier and could be separated
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by external magnets. As shown in the inset of Figure 5, the MMIPs were attracted to the
bottle wall within 20 s, and the dispersed liquid became transparent, further verifying the
successful synthesis and excellent magnetic properties of MMIPs.
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depicts MMIPs dispersed in solution (left) and collected by an external magnet (right).

The synthetic materials were characterized by TEM, and the image of Fe3O4 (Figure 6a)
shows a uniform size distribution with good dispersion and no obvious agglomeration. Af-
ter silanization, the particle size changed significantly, corresponding to the approximately
50 nm layer of silica evenly coating the surface of Fe3O4 (Figure 6b), providing evidence
that Fe3O4 was completely and uniformly coated by silica. After imprinting CFX as the
template, the imprinting layer was observed to be approximately 60 nm (Figure 6c), which
may have been caused by the combined reaction of organic compounds on the particle
surface. These observations initially confirmed that the MMIPs were prepared.
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Figure 6. TEM of Fe3O4 (a), Fe3O4@SiO2 (b), and MMIPs (c).

We used SEM to intuitively observe the surface morphology characteristics, and
Figure 7 shows the morphological structures of MMIPs and MNIPs. The imprinted polymer
surface became rough and uneven, indicating tiny “cavities” in the polymer surface and
illustrating the deposition of the polymers over the surface of Fe3O4@SiO2. The rough
surface of the polymer, which improves the adsorption capacity and recognition ability of
the template, resulted from the remaining imprinted cavities after template elution. The
MMIPs and MNIPs exhibited surface differences, where the latter had a relatively smooth
and flat surface. This further elucidated the differences in adsorption effects, as the MMIPs
had cavities, which could specifically recognize CFX, and thus, better adsorption.
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3.4. Adsorption Properties of MMIPs and MNIPs
3.4.1. Dynamic Adsorption

The adsorption kinetics of MMIPs and MNIPs were determined (Figure 8a), reveal-
ing that MMIPs could rapidly adsorb CFX in less than 150 min, after which the rate of
adsorption capacity growth gradually decreased, finally reaching saturation after 180 min.
Since there were imprinted sites on the surface of MMIPs at the initial stage of adsorption,
CFX was rapidly adsorbed. After 180 min, an increasing number of binding sites were
occupied, and the mass transfer of CFX in solution to the internal pores was subject to
resistance. The adsorption capacity of MMIPs was approximately 3.52 times higher than
MNIPs because CFX was not involved in the preparation of MNIPs; as such, there were no
specific recognition holes or imprinting sites. The adsorption of CFX by MNIPs was mainly
caused by non-specific adsorption of van der Waals force and other forces.
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To study the mass transfer mechanism of polymer-adsorbed CFX, the equilibrium data
were fitted using the two models of pseudo-first-order and pseudo-second-order binding
as follows [50]:

ln(Qe − Qt) = lnQe − k1t (3)

t
Qt

=
t

Qe
+

1
k2Q2

e
(4)
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where Qe is the adsorption equilibrium capacity of MMIPs or MNIPs, and Qt is the adsorption
capacity at time t; t (min) is the adsorption time; and k1 (min−1) and k2 (mg g−1 min−1) are
the pseudo-first-order and pseudo-second-order rate constants of adsorption, respectively.

The fitted data are shown in Table 1; the pseudo-second-order model (Figure 8c) was
better than the pseudo-first-order model (Figure 8b). The adsorption process by MMIPs
conformed to the pseudo-second-order model, and the adsorption process was controlled
by chemisorption.

Table 1. Adsorption kinetic constants of pseudo-first-order and pseudo-second-order models for
MMIPs and MNIPs.

Materials Qe,exp (mg g−1) Pseudo-First-Order Model Pseudo-Second-Order Model
Qe,cal (mg g−1) K1 (min−1) R2 Qe,cal (mg g−1) K2 (mg g−1 min−1) R2

MMIPs 111.38 196.25 0.0230 0.9687 164.47 0.0063 0.9903
MNIPs 36.15 27.52 0.0070 0.9948 64.10 0.0010 0.9927

3.4.2. Static Adsorption

The adsorption isotherms (at 25 ◦C) are shown in Figure 9a. At the same concentration,
the adsorption capacity of MMIPs was higher than that of MNIPs, and the maximum
adsorption capacity of MMIPs was 111.38 mg/g, which indicated that MMIPs had specific
adsorption sites for CFX compared with MNIPs.
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To study the specific binding properties between MMIPs and CFX, Scatchard analysis
was used to analyze the binding data. The results of the Scatchard analysis are shown in
Table 2, and the Scatchard equation is as follows:

Qe
Ce

=
Qm
Kd

− Qe
Kd

(5)
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where Qe (mg/g) is the adsorption capacity of the MMIPs at equilibrium; Qm (mg/g) is
the maximum adsorption capacity; Ce (mg/L) is the concentration of the supernatant at
equilibrium; and Kd (mg/L) is the equilibrium dissociation constant.

Table 2. Results of the Scatchard analysis.

Materials Binding Site Linear Equation kd (mg/L) Qmax (mg/g)

MMIPs Higher affinity site Q/Ce= −0.0307 Q + 2.815 (R2 = 0.9914) 32.542 91.604
Q/Ce= −0.0103 Q + 1.689 (R2 = 0.9972) 96.618 163.217

MNIPs Lower affinity site Q/Ce= −0.0071 Q + 0.546 (R2 = 0.9960) 39.860 76.443

As shown in Figure 9b, there were two distinct linear sections, indicating that two
types of binding sites with different binding properties existed on the surface of the MMIPs.
This is because a variety of complexes with different stabilities can be formed between CFX
and APTES, and different types of complexes form binding sites with different adsorption
properties during polymerization. Kd1 and Qmax1 for the linear section on the left were
calculated to be 32.542 mg/L and 91.6043 mg/g, respectively, and those for the linear
section on the right were calculated to be 96.618 mg/L and 163.217 mg/g, respectively.
Because Kd1 < Kd2, the equation on the left corresponds to the high-affinity binding sites
of MMIPs, while the equation on the right corresponds to the low-affinity binding sites
of MMIPs. In contrast, the Scatchard fitted curve of the MNIPs (Figure 9c) shows only
one straight line, which indicates that there was only one non-specific recognition site in
the MNIPs.

The binding data were analyzed using the Langmuir and Freundlich isotherm mod-
els to assess the maximum adsorption capacities of MMIPs and MNIPs. The Langmuir
isotherm model describes a monolayer adsorption process and assumes that adsorption
occurs at specific and uniform adsorption points within the adsorbent [51].

The Freundlich model is suitable for multilayer adsorption [52]. The Freundlich and
Langmuir equations are, respectively, expressed as follows [22]:

Qe = KFC1/n
e (6)

Qe =
QmKLCe

1+KLCe
(7)

where Qe and Qm are the equilibrium and maximum adsorption amounts of MMIPs (mg/g),
respectively; Ce is the equilibrium concentration of CFX (mg/L); KL is the Langmuir model
constant; and KF and n are the Freundlich model constants (mg/L).

The correlation constants were calculated using the Freundlich and Langmuir models.
The Langmuir isotherm was well fitted and could better describe the binding process
(Figure 8d). It could therefore be inferred that the adsorption of CFX on MMIPs was
monolayer adsorption.

3.5. Specificity

The adsorption selectivity of MMIPs for CFX was studied. Cefepime and ceftiofur were
selected as the structural analogs of CFX (Figure 10). As shown in Figure 11, the adsorption
of CFX by MMIPs was higher than that of the other structural analogs, indicating a high
selectivity of MMIPs for CFX. For MNIPs, however, the adsorption of CFX and the other
analogs was not significantly different. The IF values of CFX, cefepime, and ceftiofur were
3.5, 1.7, and 1.4, respectively.
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3.6. Reusability

The reusability of MMIPs is important for economical, reliable, and sustainable applica-
tions. Thus, five adsorption–desorption cycles were investigated (Figure 12). The adsorption
capacity of MMIPs decreased by 9.7% with repeated use. The decrease may have been due
to the destruction of imprinting recognition sites through multiple adsorption–desorption
cycles, showing that the adsorption capacity remained high after multiple applications and
indicating that the MMIPs had outstanding regeneration. Therefore, the MMIPs exhibited
strong potential for practical applications.
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4. Conclusions

Using CFX as a template molecule, APTES as a functional monomer, and TEOS as a
crosslinker, a surface-molecule-imprinted polymer with specific adsorption of CFX was
synthesized on the surface of Fe3O4@SiO2 via surface imprinting technology, which could
achieve rapid separation under the external magnetic field. The adsorption performance of
MMIPs was evaluated through adsorption kinetics, adsorption isotherm, and reusability.
The results showed that MMIPs could reach the adsorption equilibrium within 180 min,
with a good imprinting effect and selectivity (imprinting factor 3.5), high adsorption
capacity (111.38 mg/g), and excellent reuse performance (after five cycles of utilization,
the adsorption capacity of cefixime could still be maintained at 90.3%). The synthesized
molecularly imprinted polymer can be used as a new adsorption material, with high
selectivity and high adsorption capacity for cefixime.
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