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Abstract: In this paper, the damage initiation/propagation mechanisms and failure modes of open-
hole carbon fiber-reinforced thermoplastic composites and thermosetting composites with tension,
compression, and bearing loads are investigated, respectively, by experiments and finite element
simulations. The experimental evaluations are performed on the specimens using the Combined
Loading Compression (CLC) test method, the tensile test method, and the single-shear test method.
The differences in macroscopic damage initiation, evolution mode, and damage characteristics be-
tween thermoplastic composite materials and thermosetting composite material open-hole structures
are obtained and analyzed under compressive load. Based on scanning electron microscope SEM
images, a comparative analysis is conducted on the micro-failure modes of fibers, matrices, and
fiber/matrix interfaces in the open-hole structures of thermoplastic and thermosetting composites
under compressive load. The differences between thermoplastic and thermosetting composites
were analyzed from the micro-failure mechanism. Finally, based on continuum damage mechanics
(CDM), a damage model is also developed for predicting the initiation and propagation of damage in
thermoplastic composites. The model, which can capture fiber breakage and matrix crack, as well as
the nonlinear response, is used to conduct virtual compression tests, tensile test, and single-shear test,
respectively. Numerical simulation results are compared with the extracted experimental results. The
displacement-load curve and failure modes match the experimental result, which indicates that the
finite element model has good reliability.

Keywords: thermoplastic composites; thermosetting composites; open-hole; macroscopic damage;
micro-failure modes; CDM

1. Introduction

As an ideal lightweight material, thermoplastic composites are widely used in aerospace,
automotive, wind turbine blades, and other fields [1]. To meet the requirements of damage
tolerance, long life, seaworthiness, and environmental protection of aircraft structures, it is
the most effective way to pursue structural effects by using thermoplastic composites with
high damage resistance, fatigue resistance, easy repairability and recyclability [2,3]. High-
performance thermoplastic composites usually refer to high-strength glass fiber, aramid
fiber, and carbon fiber-reinforced thermoplastic resin composites. The high-performance
resins commonly used in aerospace are polyetherimide (PEI), polyphenylene sulfide (PPS),
polyetheretherketone (PEEK), polyetherketoneketone (PEKK), etc. [4].

Due to the requirements of assembly or structural function, there are often holes
or openings in the aviation structure, which makes the open-hole composite component
become a typical structure on the aircraft [5]. Since the fibers around the hole are cut off,
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the stress concentration problem at the hole edge is very prominent. It causes the coupling
of multiple damage modes, which, in turn, leads to catastrophic damage [6,7]. Therefore,
the open-hole composite structure is widely used in the determination of allowable value
and the evaluation of damage tolerance performance.

The tensile, compressive, and bearing properties of open-hole thermoplastic compos-
ites are the basic mechanical characteristics. In recent decades, scholars have conducted
experimental research on the damage modes, failure mechanisms, and failure strength
of open-hole thermoplastic composite structures. However, there are few comparisons
with the open-hole thermosetting composite structure. Saha et al. [8] obtained the strain
distribution and strain concentration coefficient at the hole edge by arranging strain gauges
inside and around the hole. It was found that the stress concentration and delamination
damage appeared first at the hole edge. With the continuous expansion of delamination,
fiber fracture and matrix shear cracking were induced. Boey and Kwon [9] studied the
compression damage process of notched woven fabric composites with different strain
rates. The results show that the bearing capacity of the specimen increases with an increase
in strain rate. During the loading process, the matrix cracking and fiber micro-buckling
first occurred at the hole edge. With the increase in load, the local damage area at the hole
edge continued to expand. Finally, the composite material was damaged instantaneously.
Green et al. [10,11] explored the tensile ultimate strength and failure mode of composite
open-hole plates under quasi-isotropic ply. The effects of different pore sizes and plies
were analyzed. The results show that the matrix crack and local micro-delamination are
first generated at the hole edge. Then, the delamination penetrates the width direction
and thickness direction of the laminate along the matrix crack, resulting in a decrease
in stiffness and delamination failure. Wisnom et al. [12] established the variation law
of laminate failure load by the open-hole tensile test of quasi-isotropic laminates on the
basis of Green’s research. The influence of delamination on the open-hole tensile ultimate
strength and failure mode was analyzed. In addition, the influence of hole size on the
failure mode of the notched area was discussed. O’Higgins et al. [13] used high-strength
glass fiber composites and carbon fiber composites to make open-hole laminate, respec-
tively, and studied the tensile failure process and damage evolution of the two material
laminates. Wang et al. [14] proposed a semicircular bearing strength test method based on
the single-shear bearing strength test of carbon fiber composite laminates. This method
can obtain the mechanism of bearing failure and analyze the relationship between bearing
failure and pre-tightening force, lateral restraint, and stacking sequence. The results show
that lateral restraint can restrain the propagation of shear cracks and change compressive
failure from brittle to progressive failure. Heimbs [15] compared the failure and strain
rate of carbon fiber composite laminates with countersunk bolt connections under static
and dynamic loads (10 m/s). Under high-speed load, the failure mode of a single-shear
connection changes due to its good energy absorption characteristics.

Therefore, the tension, compression, and bearing properties of the open-hole carbon
fiber (CF)-reinforced thermoplastic composite laminate are investigated by experiments
and simulations in this paper. The failure modes and mechanisms are analyzed via the
finite element method. Furthermore, a comparison with open-hole thermosetting com-
posite laminate is made. Some meaningful conclusions are obtained, which are of great
significance to optimizing the structural design and further expanding the application of
thermoplastic composites.

2. Constitutive Model and Experiment
2.1. Material and Samples

The open-hole carbon fiber-reinforced thermoplastic composite specimens are made of
AS4D/PEEK prepreg, which is provided by TenCate company in Almelo, The Netherlands.
The thermoplastic composite laminates are stacked with [45/0/–45/90/45/0/–45/90/
45/0/–45/90/45/0/–45/90]s and manufactured by the hot-pressing process. Firstly, the
temperature is raised to 385 ◦C. Then 0.7 MPa pressure is applied and held for 30 min.
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Finally, the laminates are cooled to room temperature (the cooling rate is 4 ◦C/min). The
prepreg and laminates are shown in Figure 1. As shown in Figure 1, the laminates are cut
by a water-cooled diamond cutter to avoid matrix carbonization. The specimens are cut
and assembled according to standards ASTM D6484 [16], ASTM D5766 [17], and ASTM
D5961 [18] for compression, stretching, and bearing tests. The thermosetting composite
specimens for comparison are manufactured by vacuum hot pressing. The material is car-
bon fiber-reinforced thermosetting composites CCF300/Epoxy. The mechanical properties
of CCF300/Epoxy prepreg are listed in Table 1. The mechanical properties of AS4D/PEEK
prepreg are shown in Table 2, and Table 3 shows the properties of AS4D and CCF300
carbon fibers. It is shown that these two fibers have similar characteristics. Table 4 shows
the properties of the PEEK and CCF300 matrixes. This article mainly studies the ef-
fects of thermoplastic and thermosetting resins on the opening and impact properties of
composite materials.

Polymers 2023, 15, x FOR PEER REVIEW 3 of 25 
 

 

The open-hole carbon fiber-reinforced thermoplastic composite specimens are made 
of AS4D/PEEK prepreg, which is provided by TenCate company in Almelo, The Nether-
lands. The thermoplastic composite laminates are stacked with 
[45/0/−45/90/45/0/−45/90/45/0/−45/90/45/0/−45/90]s and manufactured by the hot-pressing 
process. Firstly, the temperature is raised to 385 °C. Then 0.7 MPa pressure is applied and 
held for 30 min. Finally, the laminates are cooled to room temperature (the cooling rate is 
4 °C/min). The prepreg and laminates are shown in Figure 1. As shown in Figure 1, the 
laminates are cut by a water-cooled diamond cutter to avoid matrix carbonization. The 
specimens are cut and assembled according to standards ASTM D6484 [16], ASTM D5766 
[17], and ASTM D5961 [18] for compression, stretching, and bearing tests. The thermoset-
ting composite specimens for comparison are manufactured by vacuum hot pressing. The 
material is carbon fiber-reinforced thermosetting composites CCF300/Epoxy. The me-
chanical properties of CCF300/Epoxy prepreg are listed in Table 1. The mechanical prop-
erties of AS4D/PEEK prepreg are shown in Table 2, and Table 3 shows the properties of 
AS4D and CCF300 carbon fibers. It is shown that these two fibers have similar character-
istics. Table 4 shows the properties of the PEEK and CCF300 matrixes. This article mainly 
studies the effects of thermoplastic and thermosetting resins on the opening and impact 
properties of composite materials. 

 
Figure 1. Manufacture of test samples. 

Table 1. Typical mechanical properties of carbon fibers. 

 Tension Modulus (GPa) Ultimate Tension Strength (MPa) Elongation (%) Manufacturer 
AS4D 231 4347 1.88 Hexcel 

CCF300 230 4210 1.78 Toray 

Table 2. Mechanical parameters of AS4D/PEEK thermoplastic composites. 

Density 
(MPa) Poisson’s Ratio 

Elastic Modulus 
(GPa) 

Share Modulus 
(GPa) 

Tensile Strength 
(MPa) 

Compression 
Strength 

(MPa) 

Shear 
Strength 

(MPa) 𝝆 v E1 E2 E3 G12 G13 𝑮𝟐𝟑 σt1 σt2 σt3 σc1 σc2 σc3 τ12 τ13 τ23 
1580 0.3 130 9.3 9.3 4.1 3.85 3.85 1673 68 68 1436 257 257 136 86 121 

Table 3. Mechanical parameters of CCF300/Epoxy thermosetting composites. 

Density 
(MPa) Poisson’s Ratio 

Elastic Modulus 
(GPa) 

Share Modulus 
(GPa) 

Tensile Strength 
(MPa) 

Compression 
Strength 

(MPa) 

Shear 
Strength 

(MPa) 

Figure 1. Manufacture of test samples.

Table 1. Typical mechanical properties of carbon fibers.

Tension
Modulus (GPa)

Ultimate Tension
Strength (MPa) Elongation (%) Manufacturer

AS4D 231 4347 1.88 Hexcel
CCF300 230 4210 1.78 Toray

Table 2. Mechanical parameters of AS4D/PEEK thermoplastic composites.

Density
(MPa)

Poisson’s
Ratio

Elastic Modulus
(GPa)

Share Modulus
(GPa)

Tensile Strength
(MPa)

Compression
Strength

(MPa)

Shear
Strength

(MPa)
ρ v E1 E2 E3 G12 G13 G23 σt1 σt2 σt3 σc1 σc2 σc3 τ12 τ13 τ23

1580 0.3 130 9.3 9.3 4.1 3.85 3.85 1673 68 68 1436 257 257 136 86 121

Table 3. Mechanical parameters of CCF300/Epoxy thermosetting composites.

Density
(MPa)

Poisson’s
Ratio

Elastic Modulus
(GPa)

Share Modulus
(GPa)

Tensile Strength
(MPa)

Compression
Strength

(MPa)

Shear
Strength

(MPa)
ρ v E1 E2 E3 G12 G13 G23 σt1 σt2 σt3 σc1 σc2 σc3 τ12 τ13 τ23

1600 0.3 130 9.3 9.3 4.1 3.85 3.85 1673 68 68 1436 257 257 136 86 121
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Table 4. Typical mechanical properties of matrix.

Tension
Modulus (MPa)

Tension
Strength (MPa) Elongation (%) Fracture Toughness

(J/mm)

PEEK 3.8 94 50 2000
Epoxy 3.58 105 1.9 420

2.2. Experimental

All of the tests are performed on±100 kN electronic tensile testing machine INSTRON
1195. The ASTM D6484 is referenced to compression tests [16]. The anti-instability devices
are applied to prevent the lateral instability of the specimens. The compression speed is
2 mm/min. The test is stopped when the maximum load drops to 30%. The tensile test is
carried out according to ASTM D5766 [17]. The specimens are continuously loaded with
2 mm/min until they are destroyed.

The compression and tensile strengths are

σ =
Pmax

wt
(1)

where Pmax is the failure load; w is the average width, and t is the average thickness.
Considering the difference in fiber content among specimens, the strength is expressed as

σ0 = σ× t0

t
(2)

where σ0 is the regularization strength; σ is the measured strength, t is the nominal thickness,
and t0 is the measured thickness.

Method B of ASTM D5961 is used for bearing strength tests [18]. Anti-instability
devices are also applied to prevent lateral instability. The loading speed is 2 mm/min. The
tests are stopped until the load no longer increases. The bearing strength is

σbr =
Pmax

kDh
(3)

where σbr is the ultimate bearing strength; Pmax is the maximum load; k is the number of
fasteners; D is the diameter of the hole, and h is the average thickness of the specimens.

2.3. Simulation
2.3.1. Damage Constitutive

The CF/PEEK composite is an orthotropic material. In the local Cartesian coordinate
system, if the fundamental vector corresponds to the warp and weft directions of orthogonal
composite materials, the material is symmetric with 1–3 and 2–3 planes, and it is an
orthogonal anisotropic material with its stress–strain relationship. The three-dimensional
stress–strain relationship of a single-layer plate can be expressed as follows [19]:

σ11
σ22
σ33
τ23
τ31
τ12

 =



C11
0 C12

0 C13
0 0 0 0

C12
0 C22

0 C23
0 0 0 0

C13
0 C23

0 C33
0 0 0 0

0 0 0 C44
0 0 0

0 0 0 0 C55
0 0

0 0 0 0 0 C66
0





ε11
ε22
ε33
γ23
γ31
γ12

 (4)

where σij(i, j = 1, 2, 3) is the stress components in each direction; εij(i, j = 1, 2, 3) is
the strain components in each direction, and Cij

0(i, j = 1, 2, 3, 4, 5, 6
)

is the undamaged
stiffness coefficient. The subscript 1 indicates the direction parallel to the fiber; 2 indicates
the direction perpendicular to the fiber, and 3 indicates the direction of laminate thickness.
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According to the relevant knowledge of composite strength of materials, the engineer-
ing constant expression of the undamaged stiffness matrix C is

C =
1
Ω



E1
0(1− v23v32) E2

0(v12 + v32v13) E3
0(v13 + v12v23) 0 0 0

E1
0(v21 + v31v23) E2

0(1− v13v31) E3
0(v23 + v21v13) 0 0 0

E1
0(v31 + v21v32) E2

0(v32 + v12v31) E3
0(1− v12v21) 0 0 0

0 0 0 ΩG23
0 0 0

0 0 0 0 ΩG31
0 0

0 0 0 0 0 ΩG12
0

 (5)

where Ω = 1 − v12v21 − v23v32 − v31v13 − 2v12v23v31 and E1
0 E2

0 E3
0 are

the σij(i, j = 1, 2, 3), the elastic modulus of undamaged single-layer plate in three di-
rections; vij(i 6= j, i, j = 1, 2, 3) are the Poisson’s ratios, and Gij

0(i, j = 1, 2, 3) are the Shear
modulus. The elastic modulus and Poisson’s ratio meet the following relationship:

Ei
Ej

=
vji

vij
(6)

Under small deformation conditions, the CF/PEEK composite material still meets the
anisotropic condition after being damaged. According to the theory of CDM, when damage
occurs, the stiffness of the laminate is lower than that of the undamaged laminate, and the
stiffness degradation caused by damage can be represented by stiffness reduction, then the
elastic stress–strain relationship with damage is as follows [20,21]:

σ = Cdε
el (7)

Cd = CM (8)

where M is the damage tensor for thermoplastic composites, in which fiber and matrix
damage the parameters. Cd is the damage stiffness matrix; εel is the elastic strain.

M =



1− d11 0 0 0 0 0
0 1− d22 0 0 0 0
0 0 1− d33 0 0 0
0 0 0 1− d23 0 0
0 0 0 0 1− d31 0
0 0 0 0 0 1− d12


d11 = 1−

(
1− dT

11
)(

1− dC
11
)

d22 = 1−
(
1− dT

22
)(

1− dC
22
)

d33 = 1−
(
1− dT

22
)(

1− dC
22
)

d23 = 1−
(
1− dT

11
)(

1− dC
11
)(

1− dT
22
)(

1− dC
22
)

d31 = 1−
(
1− dT

11
)(

1− dC
11
)(

1− dT
22
)(

1− dC
22
)

d12 = 1−
(
1− dT

11
)(

1− dC
11
)(

1− dT
22
)(

1− dC
22
)

(9)

where dij is the damage factor; dT
11, dC

11, dT
22, dC

22 are the damage factors of longitudinal
tension, longitudinal compression, transverse tension, and transverse compression.

2.3.2. Damage Initiation Criteria

The failure mechanism of composite materials is complex, and the Hashin failure
criterion is the most commonly used in failure judgment [22]. The failure of materials is
represented by the failure factor FI, and the corresponding failure criteria are shown as
follows:

Fiber tensile damage ε11 ≥ 0

φ1+ =

(
ε11

εT
11

)2

+
1

ε2
12

(
ε2

12 + ε2
13

)
(10)
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Fiber compression damage ε11 < 0

φ1− =

(
ε11

εc
11

)2
(11)

Matrix tensile damage ε22 + ε33 ≥ 0

φ2+ =

(
ε22 + ε33

εT
22

)2

+
1

ε2
23

(
ε2

23 − ε22ε33

)
+

1
ε2

12

(
ε2

12 + ε2
13

)
(12)

Matrix compression damage ε22 + ε33 < 0

φ2− =
(

ε22+ε33
2ε23

S

)2
+

(
ε22+ε33

εC
22

)[(
εc

22
2ε23

S

)2
− 1
]
+

1
ε2

23

(
ε2

23 − ε22ε33
)
+ 1

ε2
12

(
ε2

12 + ε2
13
) (13)

where φα(α = 1±, 2±) is the tension/compressive failure factors in fiber and matrix direc-
tions, and φα > 1 indicates the occurrence of initial damage. ε11, ε22, ε12 is the longitudinal
and transverse tensile/compressive and shear strains. εT

i,1, εC
i,1, εT

i,2, εC
i,2 are the initial dam-

age strains of longitudinal tension, longitudinal compression, transverse tension, and
transverse compression. εi,12, εi,23 are the shear initial failure strains. εT

11 = XT/E1
0,

εC
11 = XC/E1

0, εT
22 = YT/E2

0, εC
22 = YC/E2

0, ε12 = S12/
(
2G12

0), ε13 = S13/
(
2G13

0),
ε23 = S23/

(
2G23

0).
2.3.3. Damage Propagation

After the material meets the above strain-based 3D Hashin failure criterion at a certain
integral point, the initial failure occurs, the stiffness does not immediately decrease to 0,
and the mechanical properties of the material need to be degraded. The damaged evolution
of composites is a process of energy release. In the process of strain energy release, the
materials in the damage area will appear to be a “softening” phenomenon, which is
manifested in the matrix micro-cracks, and the separations of fibers and matrix occur at the
interface, fiber fracture, etc. Macroscopic manifestations include the degradation of stiffness
and the decline in the macro ultimate strength value [23]. Progressive failure analysis of
composite materials is usually expressed by the stiffness degradation of materials. This
analysis uses the method in reference to exponential decay attenuating the damage variable
dα of tensile/compression failure of materials based on the fracture toughness of materials
(α = ±1,±2) [24–28].

dα = 1− 1
rα

exp

[
−

2gα
0 Lc

Gα
f − gα

0 Lc
(rα − 1)

]
(14)

where dα is the damage variable. rα is the damage threshold, which is initially uniformly set, and
after the onset of damage, (φi+ = 1orφi− = 1). ri+(t) = maxτ≤tφi+(τ), ri−(t) = maxτ≤tφi−(τ).
The damage threshold rα is monotonically increasing

.
rα(t) > 0 (α = ±1,±2). Gα

f is the unit
area fracture energy of materials under uniaxial tension and compression in directions 1 and
2. Lc is the element characteristic length, used for the dependence of the continuum damage
mechanics model on element size. gα

0 is the unit volume fracture energy density (elastic
energy density) at the initiation point of tensile and compressive damage in materials’
directions 1 and 2.

gα
0 =

(
Xα

i
)

2Eα
i

, (α = ±1,±2) (15)

where Ea
i is the uniaxial tensile and compressive modulus of materials in direction 1 and

direction 2.



Polymers 2023, 15, 4468 7 of 24

2.3.4. Elastic–Plastic Shear Failure Criterion

The elastic damage model is suitable for fiber-dominated failure modes. For in-plane
shear, the deformation is controlled by the behavior of the matrix. What is more, the
nonlinear behavior of the shear stress–strain curve (shown in Figure 2) is obvious under
the shear load [28].
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Considering shear nonlinear deformation and according to the small strain assumption,
ε

pl
11 = ε

pl
22 = 0, ε

pl
12 6= 0, so the total shear strain is

ε12 = εel
12 + ε

pl
12 (16)

After the initial shear damage occurs, the equivalent shear stress and equivalent shear
plastic strain are

τ̃12 =
τ12

1− d12
= 2G12ε12

el = 2G12

(
ε12 − ε12

pl
)

(17)

ε̃12
p =

ε12
pl

1− d12
(18)

where ε12 is the total shear strain; εel
12 is the elastic shear strain, and ε

pl
12 is the plastic

shear strain.
In the plane stress model, it is assumed that there is only plastic strain in the shear

strain, and the yield function is shown as follows:

F = τ̃12 − C
(

ε12
pl
)P
− τ̃y0 (19)

where τ̃y0 is the initial threshold of plastic strain, and C and P are the parameters in the
hardening function.

The initial shear damage in the model is judged by the maximum stress criterion,
which is expressed as follows:

φ12 =
τ̃12

S
(20)

where φ12 is the shear failure factor; τ̃12 is the equivalent shear stress, and S is the initial
shear damage stress.

The material shear damage variable adopts a decay method based on experimental
data fitting. By comparing experimental data, the logarithm of effective shear stress shows
a linear relationship with the shear damage variable, where the initial shear damage stress
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S can be calculated from the damage variable and shear stress, while d12 can be obtained
from shear cyclic loading tests [28].

The material shear damage variable d12 adopts an attenuation method based on
experimental data fitting. By comparing the experimental data, the logarithm of the
effective shear stress ln(τ̃12) shows a linear relationship with the shear damage variable d12
(shown in Figure 3) [29,30].

d12 = min(α12 ln(r12), dmax
12 ) (21)

where α12 is the slope of the relationship curve between the logarithm and shear damage
variable d12 (α12 > 0); dmax

12 is the maximum shear damage (dmax
12 ≤ 1), and r12 is the shear

damage threshold (r12 = maxτ6tφ12(τ)).
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2.3.5. Delamination Failure Criteria

Considering the damage mode of the adhesive layer is caused by elastic brittle failure,
the bilinear cohesive interface element damage constitutive model is selected for the
adhesive layer. It is linear elastic before the initial damage occurs. After the adhesive layer
element is damaged, the stress–strain of the material is [31,32]

σn
σs
σt

 = (1− D)


Knn

Kss
Ktt




δn
δs
δt

 (22)

where σn is the normal traction stress, and σs and σt are the shear stresses. Kii is the elastic
stiffness coefficient; δi is the stress of each direction, and D is the damage state variable.

The quadratic nominal stress criterion is adopted to judge the initiation damage [31,32]:(
σn

Nmax

)2
+

(
σs

Smax

)2
+

(
σt

Tmax

)2
= 1 (23)

where Nmax, Smax, and Tmax are the strengths of the initial damage in each direction.
The damage propagation behavior of the adhesive layer is described by the Benzeggagh–

Kenane (B–K) fracture criterion model [31,32]:

GIC + (GI IC − GIC)

(
GShear

GT

)η

= GC (24)

GT = GI + GShear (25)
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GShear = GI I + GI I I (26)

where GIC and GIIC are the fracture toughnesses of types I and II; GI, GII, and GIII are
the strain energy release rates; GShear is the shear strain energy release rate, and η is the
material constant.

2.3.6. Reliability Verification

Refer to the open-hole compression test data of thermoplastic composite materials to
verify the effectiveness of the CF/PEEK composite material damage model in this part. The
carbon fiber-reinforced thermoplastic composite material is an AS4D/PEEK prepreg. The
mechanical performance indicators are shown in Table 5; the basic mechanical properties
in the table are shown in the Refs. [21,33,34]; the fracture performance parameters are
shown in the Refs. [21,35], and the parameters related to shear nonlinearity and damage
definition are shown in the Ref. [35]. The various fitting parameters were calculated using
the Iosipescu in-plane shear cyclic loading and unloading tests.

Table 5. Fracture performance parameters and shear nonlinearity parameters of AS4D/PEEK ther-
moplastic composites.

Density
(kg/m3)

Poisson’s
Ratio

Elastic Modulus
(GPa)

Share Modulus
(GPa)

Tensile Strength
(MPa)

ρ v E1 E2 E3 G12 G13 G23 σt1 σt2 σt3
1580 0.3 130 9.7 9.7 5.2 3.94 3.94 2280 69 69

Compression
Strength (MPa)

Shear
Strength (MPa)

Longitudinal Fracture
Toughness (KJ/m2)

Transverse Fracture
Toughness (KJ/m2)

σc1 σc2 σc3 τ12 τ13 τ23 G+1
f G−1

f G+2
f G−2

f

1300 208 208 152 94 94 90 82 0.52 1.61

Shear Damage
Coefficient Shear Damage Factor Initial Yield Stress Plastic Hardening

Coefficient Coefficient

α12 dmax
12 τy0 C p

176 0.67 25.2 182.52 0.2553

Based on the geometric dimensions of the perforated compression test specimen in Sec-
tion 2, a compression calculation model for the laminated, perforated structure was established
for numerical calculation using the Abaqus Standard/Explicit model (DS SIMULIA, Providence,
RI, USA). The stacking sequence is [45/0/–45/90/45/0/–45/90/45/0/–45/90/45/0/–45/90]s.
The finite element model and boundary conditions of the laminated plate are shown in
Figure 4. The calculation model includes 32 laminate layers and 31 interface cohesion layers.
The interface cohesion layer is inserted between two layers, which is described using the
cohesive zone model (CZM). The element type of laminate layers is C3D8R (an eight-node
linear brick, reduced integration, hourglass control). The element type COH3D8 (an eight-
node, three-dimensional cohesive element) is used to simulate the interface cohesion layer.
Generally, when conducting numerical calculations, the smaller the unit size, the higher
the accuracy, but the higher the calculation cost. Three models are established with the
hole-edge mesh sizes of 0.15 mm, 0.25 mm, and 0.5 mm, respectively (shown in Figure 4),
to verify the impact of mesh size on the analysis results. The properties of cohesion used in
the calculation model are referred to in Refs. [31,32] (shown in Table 6).

Figure 5 shows the interlaminar stress distribution along the hole edge at the interface
+45/0 interface, obtained from the different grid sizes under compressive load. The stress
distribution forms along the circumferential direction of the hole edge for the three grid
sizes are basically consistent. From Figure 5a,b, it can be seen that the larger values of
interlaminar shear stress S13 are located around 120◦ and 300◦, and the larger values of S23
are located around 60◦, 100◦, 150◦, 240◦, and 290◦, where shear failure is prone to occur.
From Figure 5c, it can be seen that there is a significant interlaminar compressive stress S33
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at the 60◦ and 240◦ attachments, which is prone to adhesive layer detachment failure. The
analysis results have good consistency with the analysis results in Refs. [21,36].
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Table 6. Mechanical parameters of cohesive.

Elastic Modulus (N/mm) Fracture Toughness (N/mm) Strength (MPa)

Knn Kss Ktt GIC GI IC GI I IC σn σs σt

2.207 × 1010 9.047 × 109 9.047 × 109 0.37 0.82 0.82 33 54 54
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Figure 5. The interlaminar stress distribution along the hole edge at the interface +45/0 interface under
compressive load. (a) Interlaminar shear stress S13. (b) Interlaminar shear stress S23. (c) Stress S33.

The load-displacement curves of three sizes under compressive load are shown in
Figure 6. From this Figure, it can be seen that the load-displacement curves and stress
distribution along the axial direction of the hole edge are basically consistent for units with
sizes of 0.15 mm, 0.25 mm, and 0.5 mm. The stress levels of 0.1 mm and 0.25 mm are similar,
with an error of 1.53%. The stress levels of units with sizes of 0.5 mm are relatively large,
with an error of 8.95%. Therefore, in the subsequent numerical calculations, a 0.25 mm
element was used for this analysis.
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3. Results and Discussion

Firstly, from a macro perspective, compare the differences in failure modes between
thermoplastic composite materials and thermosetting composite materials in the open-hole
tension, open-hole compression, and single-nail shear tests. To further understand the
differences in micro-damage modes between thermosetting composite materials and ther-
moplastic composite materials, a comparative analysis was conducted on the micro-damage
forms of fibers, matrices, and fiber/matrix interfaces between thermoplastic composite
materials and thermosetting composite materials under compressive load based on Apeo-
scanning electron microscope SEM images. Finally, the previous nonlinear damage predic-
tion model with shear load was used to numerically simulate the opening performance
of thermoplastic composite materials, revealing the impact of the damage initiation layer,
damage initiation position, and stress distribution on the damage in the opening area of
thermoplastic composite laminates under compressive load.

3.1. Compressive Behavior
3.1.1. Experimental Results Comparison

Figure 7 shows the typical macroscopic failure images of thermoplastic composite
material TP and thermosetting composite material TS under an open-hole compression.
From the front face of the test piece, it can be seen that the fiber extrusion damage first
appeared at the hole edge perpendicular to the load direction in the open-hole compression
specimens. As the compression load increased, the fiber extrusion at the hole edge contin-
ued to increase and continued to expand laterally toward both sides of the test piece. From
the side face of the test piece, it can be seen that both the thermoplastic composite material
specimens and the thermosetting composite material specimens exhibit fiber extrusion
and interlayer delamination, and the broken fibers are inserted into the opposite layered
gap during the application of the compressive load, thereby promoting the continuous
expansion of the delamination along the load direction and perpendicular to the load direc-
tion. In contrast, the delamination area of thermosetting composite materials is relatively
concentrated, while the delamination distribution of thermoplastic composite materials is
more uniform along the thickness direction.

To further understand the microscopic damage forms of fibers and matrix in ther-
mosetting and thermoplastic composites under an open-hole compression load, Figure 8
shows the damage electron microscopy scanning SEM images of the fiber/matrix interface
in thermosetting composite material TS and thermoplastic composite material TP under
an open-hole compression load. From this Figure, it can be seen that the fiber–matrix
interface connection of thermoplastic composite material TP is stronger than that of the
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thermosetting composite material TS, and there is relatively little detachment of the fiber–
resin interface. After compression failure, most of the fibers and matrix of thermoplastic
composite material TP are still tightly connected.
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Figure 8. Electron microscopic scanning SEM images of fiber–resin interface damage under open-
hole compression load. (a) Thermosetting composite material TS. (b) Thermoplastic composite
material TP.

Figure 9 shows the characteristics of matrix damage in thermoplastic composite ma-
terial TP and thermosetting composite material TS. From this Figure, it can be seen that
the TP matrix exhibits ductile fracture characteristics, with obvious plastic deformation
forming microfluidics in the matrix, while the TS matrix exhibits obvious brittle fracture
characteristics, with most of the fracture areas of the matrix showing clear edge flake-like
fractures.
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Figure 9. Electron microscopic scanning SEM images of thermosetting and thermoplastic resin dam-
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composite material TP.

3.1.2. Failure Modes and Mechanisms

The failure mode of composite materials is one of the important research objects. In this
section, the failure mode and mechanisms are studied through finite element simulation.
Figure 10 shows the delamination damage process. The delamination first occurs between
45◦ and 90◦ plies when the load reaches nearly 40% of the maximum load. Because the
shear stress between 45◦ and 90◦ plies is the largest, delamination can easily occur. There
is no delamination damage before the fiber extrusion fracture occurs. With the increase
in the compression load, the damage to the matrix gradually increases. The delamination
begins to occur from the hole edge. Then, it expands laterally and longitudinally. The
delamination in the transverse region expands rapidly. Finally, the laminate fails completely
in the transverse region caused by delamination.
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Figure 10. Evolution of adhesive layers damage in compression test.

Figure 11a shows the load-displacement curve of the compression test. The compres-
sion process of the specimens is divided into three stages. The first stage is elastic, where
the curve is a straight line. The second stage is damage extension after the early damage.
The third stage is the failure stage, in which the fiber fracture extends to both sides, and the
specimens are fractured. Figure 11b shows the comparison of test and simulation curves,
which also proves the reliability of the simulation model.
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Figure 11. Compressive displacement-load curves. (a) Test results. (b) Comparison of test and
simulation.

Figure 12 shows a comparison between experimental and simulation results of local
failure of thermoplastic composite materials under open-hole compression. It can be seen
from this Figure that the simulation and experiment have good consistency. Especially
from the damage photos, it can be seen that under compressive load, fiber bundles break
and extrude perpendicular to the load direction, and matrix cracking and interlayer de-
lamination occur at the hole edge. Moreover, the delamination gradually expands along
the loading direction and horizontally under the continuous compression of the fractured
fibers, and ultimately, the fiber fracture and delamination damage extend to the short edge
boundary, leading to the final fracture of the specimen.
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Figure 12. Experimental and simulation comparison of local failure under open-hole compression.
(a) The front face of the test piece. (b) The side face of the test piece.

3.2. Tensile Performance
3.2.1. Experimental Results Comparison

Figure 13 shows typical macroscopic failure images of thermoplastic composite ma-
terial TP and thermosetting composite material TS under open-hole tension in the front
plane and side planes. From the front face of the test piece in Figure 13a,b, it can be seen
that the two materials’ open-hole tensile specimens first showed the fiber pull-out damage
at the hole edge perpendicular to the load direction due to the fact that the tensile load of
the 90◦ ply is mainly borne by the matrix, which has poor tensile capacity and separation
between fiber bundles under tensile load. Subsequently, the shear load between the fiber



Polymers 2023, 15, 4468 15 of 24

bundles in the 45◦ ply also continued to increase, and there was a separation between the
fiber bundles in the 45◦ ply. As the tensile load increased, the fibers in the 45◦ and 0◦ ply
began to break and pull out and continued to expand laterally toward both sides of the
test piece.
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thermosetting composite material TS for tensile test. (a) Thermosetting composite material TS.
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To further understand the microscopic damage forms of fibers and matrix in ther-
mosetting and thermoplastic composites under open-hole tensile load, Figure 14 presents
SEM images of the damage at the interface between fibers and matrix in thermosetting
composite material TS and thermoplastic composite material TP under open-hole tensile
load. From this Figure, it can be seen that the interface connection between the fibers and
the matrix of thermoplastic composite material TP is stronger than that between the matrix
and fibers of thermosetting composite material TS, and there is relatively little detachment
of the fiber–resin interface. After tensile failure, most of the fibers and matrix of TP are still
tightly connected. Figure 15 shows the characteristics of matrix damage in thermoplastic
composite material TP and thermosetting composite material TS. From this Figure, it can
be seen that the TP matrix exhibits ductile fracture characteristics, with obvious plastic
deformation forming microfluidics in the matrix, while the TS matrix exhibits obvious
brittle fracture characteristics, with most of the fracture areas of the matrix showing clear
edge flake-like fractures.
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Figure 15. Electron microscopic scanning SEM images of thermosetting and thermoplastic resin
damage under tensile load. (a) Thermosetting composite material TS; (b) Thermoplastic composite
material TP.

3.2.2. Failure Modes and Mechanisms

Figure 16 shows the damaging process of delamination. Different from the deformation
process under compressive load, delamination damage occurs before the fiber bundle is
damaged. With the increase in tensile load, the interfacial delamination between fiber and
matrix intensifies. The matrix microcracks expand and pass through the single layer while
the fiber bundles are pulled out and fractured. The laminate is completely delaminated in
the transverse region and fails.
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Figure 16. Damage process of adhesive layers under tensile load.

Figure 17 shows the typical failure modes of open-hole thermoplastic composite
specimens with tensile load. The deformation process is observed. Firstly, the hole causes
the stress concentration, which separates the interface between fiber and matrix. Then, it
forms microcracks, which are manifested in fiber pull-out. Subsequently, the number of
fibers pulled out near the hole increases. What is more, the fiber fracture increases and
expands to both sides of the specimen. Finally, matrix cracks appear and expand, which
form a visible delamination region.
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Figure 17. Tensile performances of the open-hole thermoplastic composites. (a) Damage details of
the front view. (b) Damage details of the side view.

Figure 18 shows the displacement-load curves of the open-hole thermoplastic com-
posite specimens under tensile load. It can be seen in Figure 18a that the tensile process is
divided into three stages. The first stage is the elastic stage, where the load-displacement
curve is a straight line. The second stage is the damage extension stage after early damage
appears. In the third stage, the fiber fractures and is pulled out. The cracks extend to both
sides laterally, so the laminate fractures. The comparison of the experimental and simulated
curves is shown in Figure 18b. They match each other well, which proves the reliability of
the simulation results.
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Figure 18. Tensile displacement-load curves of open-hole thermoplastic composites. (a) Experimental
curves. (b) Results of test and simulation.

3.3. Bearing Property
3.3.1. Deformation Processes

Figure 19 shows typical macroscopic failure images of thermoplastic composite mate-
rial TP and thermosetting composite material TS under a single-shear compression load.
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From the plane specimens, which are shown in Figure 19a,b, it can be seen that the single-
shear compression specimens of both materials exhibit compression failure in the direction
of the end of the test piece. Thermoplastic composite materials mainly exhibit plastic flow
in the matrix near the hole in contact with the bolt rod, and the fibers bend and break
with numerical plastic deformation. However, thermosetting composite materials undergo
greater deformation along the load direction, with more failure forms such as fiber and
matrix separation, interlayer delamination, and matrix crushing appearing at the hole
edge in contact with the bolt rod. In addition, thermoplastic composite materials and
thermosetting composite materials exhibit small bracket-shaped matrix extrusion fractures
and cracks in the contact area between the bolt cap and the hole edge in the load direction.
As the extrusion load increases, the fracture area of the hole edge matrix increases, resulting
in the microbending of fibers and interlayer delamination. When the damage continues to
accumulate to a certain extent, local shear failure occurs in the test piece.
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Figure 19. The typical macroscopic failure images of thermoplastic composite material TP and
thermosetting composite material TS for bearing test. (a) Thermosetting composite material TS.
(b) Thermoplastic composite material TP.

Figure 20 shows the damage electron microscope scanning SEM images of the fibers
and interfaces at the hole edge where the thermosetting composite material TS and ther-
moplastic composite material TP come into contact with the bolt rod under single-shear
compression load. From this Figure, it can be seen that the interface connection between the
fibers and the matrix of thermoplastic composite material TP is stronger than that between
the matrix and fibers of thermosetting composite material TS, and there is relatively little
detachment of the fiber–resin interface. After tensile failure, most of the fibers and matrix
of TP are still tightly connected. Figure 21 shows the characteristics of matrix damage
in the connection area between thermoplastic composite material TP and thermosetting
composite material TS and the bolt rod. From this Figure, it can be seen that the TP matrix
exhibits ductile fracture characteristics, with obvious plastic deformation formed by mi-
croflow and less obvious separation between the matrix and fibers. On the other hand, the
TS matrix exhibits obvious brittle fracture characteristics, with both the matrix and fibers
being arranged and crushed, and most of the fracture areas of the matrix are in the form of
clear-edge flakes.

Figure 22 shows the local details of the rivet holes in the single-shear extrusion of
thermosetting composite materials. From this Figure, it can be seen that the main damage
modes in the middle part of the contact with the bolt rod are local fiber fracture, matrix
crushing, matrix cracks, and interlayer delamination. The main damage modes in the edge
part of the contact with the bolt rod are fiber–matrix interface separation, fiber fracture,
interlayer delamination, and other damage modes. Figure 23 shows the local damage
form at the connection between the nail hole and the bolt rod in thermoplastic composite
laminates. From this Figure, it can be seen that there is a large range of fiber–matrix
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interface analysis, interlayer cracks, and local crushing of the matrix/fiber in the area near
the nail hole to the surface of the laminates, but there is less damage in the upper and lower
surface areas far away from the laminates.
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Figure 23. Local damage images of the contact area between the bolt rod and the nail hole in the
single-shear extrusion of thermoplastic composite materials.

Figure 24 shows the bearing load-displacement curves of the open-hole thermoplastic
composite specimens. The curves can be divided into three stages in the process of bearing.
The first stage is the elastic stage. In the second stage, the microcrack of the matrix caused
by the compressive stress appears near the hole, which leads to the matrix crushing and
cracking. The sound of the matrix cracking can be heard in the test, and the slope of the
curve decreases slightly. Matrix damage accumulates to the maximum during the third
stage. The interface between matrix and fiber is separated, which promotes the instability
buckling and the fracture damage of fiber. A loud noise occurs during the test. The damage
around the extrusion hole expands continuously until permanent oblong damage occurs.
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Figure 24. Bearing displacement-load curves of open-hole thermoplastic composites.

3.3.2. Failure Modes and Mechanisms

Figure 25 shows the delamination damage process. It first occurs between the 45◦ and
0◦ plies where the bolt head and bolt cap contact. The delamination damage occurs when
the bearing load is nearly 40% of the maximum load. With the increase in the load, the
delamination extends to the end area in 0◦, 45◦, and −45◦ directions.

Figure 26 shows the Mises stress and experimental failure diagram at the bolt hole of
single-shear extrusion. Figure 27 shows the comparison of the load-displacement curves
between the experimental and simulated results under the bearing load. Figure 26a shows
that there is a serious stress concentration phenomenon near the end hole wall on the contact
side of the left and right composite laminates. The extrusion zone near the end hole wall first
exhibits small bracket-shaped matrix compression fractures and cracks in the contact area
between the bolt and the hole edge in the load direction. As the extrusion load increases, the
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matrix compression fracture area near the hole edge increases, resulting in microbending of
fibers and interlayer delamination. When the damage continues to accumulate to a certain
extent, the test piece undergoes local fragmented shear failure. At the contact surface
between the plate and the bolt head in Figure 26b, the stress concentration is relatively
weak, and there is a small compression failure in the outer area of the bolt head. The failure
modes of the experiment and analysis have a good consistency.
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Figure 27. Comparison of simulation experiments on load-displacement curve of single-shear extrusion.

4. Conclusions

(a) From a macro perspective, both thermoplastic composite material TP and thermoset-
ting composite material TS exhibit fiber extrusion and interlayer delamination, and
the broken fibers interpenetrate into the opposite layered gap, thereby promoting the
continuous expansion of delamination along and perpendicular to the load direction.
Compared to thermosetting composite materials, the delamination area is relatively
concentrated, while TP delamination in thermoplastic composite materials is more
evenly distributed along the thickness direction;

(b) From a macro perspective, both thermoplastic composite material specimens and
thermosetting composite material specimens exhibit damage phenomena such as
fiber bundle separation, fracture, pull-out, and interlayer delamination during the
application of tensile load. The delamination area of thermosetting composite material
is relatively concentrated, while the distribution of thermoplastic composite material
delamination along the thickness direction is relatively uniform;

(c) The single-shear compression specimens of both materials showed compression fail-
ure in the direction of the end of the test piece. Thermoplastic composite materials
mainly exhibit plastic flow in the matrix near the hole in contact with the bolt rod, and
the fibers bend and break with numerical plastic deformation. However, thermoset-
ting composite materials undergo greater deformation along the load direction, with
more failure forms such as fiber and matrix separation, interlayer delamination, and
matrix crushing appearing at the hole edge in contact with the bolt rod. In addition,
thermoplastic composite materials and thermosetting composite materials exhibit
small bracket-shaped matrix extrusion fractures and cracks in the contact area between
the bolt cap and the hole edge in the load direction. As the extrusion load increases,
the fracture area of the hole edge matrix increases, resulting in the microbending of
fibers and interlayer delamination. When the damage continues to accumulate to a
certain extent, local shear failure occurs in the test piece;

(d) From a microscopic perspective, the fiber–matrix interface connection of thermoplastic
composite material TP is stronger than that of thermosetting composite material TS,
and there is relatively little detachment of the fiber–resin interface. After compression
failure, most of the fibers and matrix of thermoplastic composite material TP are still
tightly connected. The thermoplastic matrix TP exhibits ductile fracture characteristics,
with obvious plastic deformation forming microfluidics, while the thermosetting
matrix TS exhibits obvious brittle fracture characteristics, with most of the fracture
areas of the matrix showing clear edge sheet-like fractures.
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