
1

Supplementary Materials

Polyelectrolytes: From Seminal Works to the Influence of the 
Charge Sequence
Nam-Kyung Lee 1, Min-Kyung Chae 2, Youngkyun Jung 3, Albert Johner 4,* and Jean-Francois Joanny 5

1 Department of Physics and Astronomy, Sejong University, Seoul 05006, Republic of Korea; lee@sejong.ac.kr
2 National Institute for Mathematical Sciences, Daejeon 34047, Republic of Korea; mkc@nims.re.kr
3 Supercomputing Center, Korea Institute of Science and Technology Information,

Daejeon 34141, Republic of Korea; yjung@kisti.re.kr
4 Institut Charles Sadron CNRS-Unistra, 6 rue Boussingault, 67083 Strasbourg, France
5 Institut Curie, Physique des cellules et Cancer, Collège de France Soft Matter and Biophysics Chair, 11 ,

PSL University, Place Marcelin-Berthelot, 75231 Paris, France; jean-francois.joanny@college-de-france.fr

* Correspondence: albert.johner@ics-cnrs.unistra.fr



Molecular dynamics simulation description

We consider single PE and single PA chains with quenched random charge sequences in

weakly poor solvent condition. The electroneutrality is imposed by counterions compensating

the net charge on the PE and PA backbones with no added salt.

Each chain is modeled as a bead-spring chain consisting of N = 202 beads with diameter

σ where all end monomers and every third monomer can carry a charge. There are Ns = 68

sites which can bear charges. For PE, Ns = 68 sites can be either neutral with 0 charge or

carry a positive unit (elementary) charge +1. All charge sequences are generated by unbiased

Markovian processes. In uncorrelated PE, each charge site can either be charged (+1) or

remain neutral (0) with equal probability, satisfying a global average of 〈Q〉 = Ns/2. We

sampled 50 independent sequences satisfying the net charge condition of Q = 22, 28, and 34.

We also considered charge sequences with charge-charge correlations along the chain.

In general, Markovian statistics can be represented by a 2 × 2 transfer matrix M whose

elements Mij are the conditional probabilities pi,j that a site in state j is followed by a site

in state i, the indices i, j being 0 for a neutral site and + for a charged site. The transfer

matrix M propagates the state {〈q〉, 1 − 〈q〉} where 〈q〉 represents the average charge per

site along the chain. The transfer matrix can be expressed with two parameters 〈q〉 and λ

which characterizes the correlation along the chain.

M =

〈q〉+ λ(1− 〈q〉) 〈q〉(1− λ)

(1− 〈q〉)(1− λ) 〈1− q〉+ λ〈q〉

 . (S1)

The average length (in number of sites) of charged (neutral) blocks increase with λ as 〈m+〉 =

1
(1−〈q〉)(1−λ) ( 〈m0〉 = 1

〈q〉(1−λ)).

In the simple case where there is no correlation along the sequence, λ = 0, the average
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block size is 2, and the transfer matrix is:

Muncorr =

1
2

1
2

1
2

1
2

 .
For blocky sequences we consider here, λ = 1/2, the average block length 4, and the transfer

matrix is:

Mblocky =

3
4

1
4

1
4

3
4

 .
For PA, we considered random uncorrelated sequences. Specifically, Ns = 68 sites are

assigned either a positively charge (+1) or a negative charge(−1) with equal probability.

The ensemble of sequences satisfy a global average of 〈Q〉 = 0 but each sequence can have

net charges. The difference between the number of positive and negative charges determines

net charge of each sequence. We select 40−45 independent sequences that satisfy net charge

condition Q = 16, 20, and 24 for investigations.

All simulations are performed with periodic boundary conditions at concentration c =

2.02 ×10−4 σ−3.

In simulations for both PA and PE, the non-electrostatic interaction between two parti-

cles (e.g., monomer-monomer, monomer-counterion, counterion-counterion) are modelled by

a truncated-shifted Lennard-Jones(LJ) potential: ULJ(r) = 4 εLJ[(σ/r)
12−(σ/r)6−(σ/rc)

12+

(σ/rc)
6] for r < rc and 0 elsewhere. Here εLJ and σ represent the strength and range of the

LJ potential, respectively; r denotes the center-to-center distance between two interact-

ing particles. The cutoff distance rc is set to 2.5 σ for monomer–monomer, and 21/6σ for

monomer–counterion and counterion–counterion interactions. In simulations of random PE,

the value of the interaction parameter is set to εLJ = 0.7 kBT . In simulations of PA, it is set

to εLJ = 0.6 kBT so that polymers are in moderately poor solvent condition. The chain con-

nectivity is ensured by the finite extension nonlinear elastic (FENE) potential between two

consecutive beads, UFENE(r) = −0.5kr20 ln[1 − (r/r0)
2], where the spring constant is taken
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as k = 30 kBT/σ
2 and the maximum bond length as r0 = 1.5 σ. A pair of charged particles

i and j, located at ~ri and ~rj, interact via the Coulomb potential UC(rij) = kBT lB/rij. The

strength of the electrostatic interactions is determined by the Bjerrum length lB. In both

simulations it is set to lB = 3σ. The long-range electrostatic interactions are calculated

by the particle-particle-particle-mesh (PPPM) method implemented in LAMMPS software

package.1

In order to explore the phase space, we integrated Newton’s equations of motion using the

velocity Verlet algorithm with an integration time step δt = 0.01 τ , where τ = σ(m/kBT )1/2

is the characteristic time scale with bead mass m = 1. A Langevin thermostat with the

damping constant 1.0 τ−1 was used to keep the system at the fixed temperature kBT = 1.0.

In simulations of PE, we first performed 4× 106 integration steps (which is equivalent to

4×106δt = 4×106×0.01τ = 4×104τ) in order for the mean square radius of gyration of the

chain to relax to their equilibrium values. After equilibration, we ran additional 1.2 × 107

(= 1.2 × 105τ) integration steps and collected data every 5 × 103 (= 50τ) time steps. In

simulations in PA, after 6× 104τ equilibration times, we simulated for 4× 105τ and collect

data every 10τ .

To identify pearl-necklace structures, we first identify monomers that belong to a globular

pearl or to a string. We used the algorithm suggested by Liao et al2 as in our previous

studies.3–5 First, we make lists of monomers belonging to globules such that the number of

neighboring monomers within the sphere of cutoff radius Rcut = 2.0σ is larger than Ncut =

10 in simulations of PE (while, in PA simulations, we used Rcut = 2.3σ and Ncut = 8). This

choice of Rcut is justified by the pair correlation function discussed in our previous studies.3–5

Other monomers are considered as parts of strings. In second step, we eliminate loops that

begin and end at the same globule. These procedures are repeated until the lists no longer

change.
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Rule for constructing Simplexes

We consider a state of n = nl+ns pearls comprising of nl large pearls and ns small pearls. The

set of asymmetry parameters for the mass distribution {xi} are defined by mi/M = 1/n+xi

for pearls with mass distribution of {mi} with M being total mass in pearls. We rank the

pearls by decreasing mass (by decreasing xi), which also avoids multiple counting of states.

An n-pearl state can be represented by (n−1) mass asymmetry values xi, i = 1, 2, ...n−1 with

constraint Σi=n
i=1xi = 0. The interior of the simplex is defined by the following n inequalities.

• xi ≥ xi+1 for 1 ≤ i ≤ n− 2,

• xn−1 ≥ xn = −
∑n−1

i=1 xi,

• xn = −
∑n−1

i=1 xi ≥ −1/n.

The first n− 1 conditions pertain to ranking conditions of pearl mass and the last condition

ensures that the smallest n-th pearl has a positive mass. For two pearls, the points are

bound to the segment (1-simplex). In the case of three pearls, the representative points are

bound to a triangle (2-simplex) and in the case of four beads to a tetrahedron (3-simplex).

There are n vertices Vn,0, Vn−1,1, Vn−2,2, ..., V1,n−1 in (n− 1)-simplex. In notation Vnl,ns ,

the first index in the subscript refers to the number of large pearls (nl) and the second index

to the number of small pearls (ns). Explicitly, the coordinates of vertices can be obtained

as { ns

nln
, ...,− 1

n
, ...}, where the first value repeats nl times and the second ns times with (one

of) the smallest value(s) omited. Table S1 provides a summary of the vertex locations for

(n− 1) simplex.

Table S1: The positions of the vertices of n− 1 simplex for n = 2, 3, and 4.

Vn,0 Vn−1,1 Vn−2,2 Vn−3,3

n = 2 0 1/2 - -
n = 3 (0, 0) (1/6, 1/6) (2/3, -1/3) -
n = 4 (0, 0, 0) (1/12, 1/12, 1/12) (1/4, 1/4, -1/4) (3/4, -1/4, -1/4)
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The position of energy extrema Enl,ns (En,0, En−1,1, En−2,2, ..., E1,n−1) in the (n − 1)

simplex can be written as {xl, ..., xs, ...}, where the first value repeats nl times and the second

ns times. With given nl and ns, the nl (ns) large (small) pearls have mass asymmetry value

of xl (xs). Only xl is a independent variable and xs = − nl

ns
xl. The mass asymmetry values

xl of large pearls are expressed using the parameter u:

xl =
1

nl + ns

1− u3
nl

ns
+ u3

, (S2)

and reduce to a polynomial equation in u with a trivial solution u =1 corresponding to the

symmetric ~0 state (i.e. evenly sized pearls). Other extrema satisfy the quartic equation:

0 =
χns
2
u4 + (

χ

2
− ns)nsu3 − 2nlnsu

2 + (
χ

2
− nl)nlu+

χ

2
nl. (S3)

For χ < n, there are two real solutions. A solution corresponding to a positive value of xl

characterizes a large pearl. A negative value characterizes the small pearl of the state with

nl small pearls and ns large pearls. Table S2 show the location xl = x1 for energy extrema

Enl,ns evaluated for χ = 1.5 using Eqs. S1 and S2. Note that in the limit of vanishing χ,

Enl,ns merge to Vnl,ns . In the opposite limit where χ approaches to n, the energy of extrema

become closer. See, for example, n = 2 case in Table S2.

Table S2: The energy values at energy extrema Enl,ns and their coordinates in (n − 1)
simplexes. The energy and mass asymmetry values are obtained for χ = 1.5. The lowest
energy state is denoted by the color red.

En,0 En−1,1 En−2,2 En−3,3

n = 2 -0.295 -0.306 - -
(0) (0.3467) - -

n = 3 -0.337 -0.372 -0.415 -
(0,0) (0.154, 0.154) (0.573, -0.286) -

n = 4 -0.317 -0.366 -0.418 -0.484
(0,0,0) (0.081, 0.081, 0.081) (0.237, 0.237, -0.237) (0.679,-0.226,-0.226)
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