Sonochemical Synthesis of Magnetite/Poly(lactic acid) Nanocomposites
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Polymer Synthesis
2.2. Sonochemical Synthesis of MNP-Fe3O4/PLA Nanocomposites and MNP-Fe3O4
2.3. Characterization Methods
2.3.1. Thermogravimetric Analysis (TG)
2.3.2. Fourier-Transform Infrared Spectroscopy (FT-IR)
2.3.3. Raman Spectroscopy
2.3.4. Powder X-ray Diffraction (XRD)
2.3.5. Microscopy Analyses
2.3.6. Proton Nuclear Magnetic Resonance (1H NMR)
2.3.7. Gel Permeation Chromatography
3. Results and Discussion
3.1. Analyses of PLA Polymer and MNP-Fe3O4
3.2. Thermal Analysis
3.3. Fourier-Transform Infrared Spectroscopy (FT-IR)
3.4. Raman Spectroscopy
3.5. X-ray Diffraction (XRD)
3.6. Scanning Electron Microscopy (SEM)
3.7. Transmission Electron Microscopy (TEM)
3.8. Elemental Analysis by Energy-Dispersive X-ray Spectroscopy (EDX)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, B.; Wang, M. Preparation and properties of poly (lactic acido)/magnetic Fe3O4 composites and nonwovens. RSC Adv. 2017, 7, 41929–41935. [Google Scholar] [CrossRef]
- Alinezhad, H.; Zabihi, M.; Kahfroushan, D. Journal of Physics and Chemistry of Solids Design and fabrication the novel polymeric magnetic boehmite nanocomposite (boehmite @ Fe3O4 @ PLA @ SiO2) for the remarkable competitive adsorption of methylene blue and mercury ions. J. Phys. Chem. Solids 2020, 144, 109515. [Google Scholar] [CrossRef]
- Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021. [Google Scholar] [CrossRef]
- Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W.-S. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 2015, 16, 023501. [Google Scholar] [CrossRef]
- De França, J.O.C.; da Silva Valadares, D.; Paiva, M.F.; Dias, S.C.L.; Dias, J.A. Polymers Based on PLA from Synthesis Using D,L-Lactic Acid (or Racemic Lactide) and Some Biomedical Applications: A Short Review. Polymers 2022, 14, 2317. [Google Scholar] [CrossRef]
- Gómez-Lopera, S.A.; Arias, J.L.; Gallardo, V.; Delgado, Á.V. Colloidal Stability of Magnetite/Poly(lactic acid) Core/Shell Nanoparticles. Langmuir 2006, 22, 2816–2821. [Google Scholar] [CrossRef]
- Hamoudeh, M.; Al Faraj, A.; Canet-Soulas, E.; Bessueille, F.; Léonard, D.; Fessi, H. Elaboration of PLLA-based superparamagnetic nanoparticles: Characterization, magnetic behaviour study and in vitro relaxivity evaluation. Int. J. Pharm. 2007, 338, 248–257. [Google Scholar] [CrossRef]
- Wassel, R.A.; Grady, B.; Kopke, R.D.; Dormer, K.J. Dispersion of super paramagnetic iron oxide nanoparticles in poly(d,l-lactide-co-glycolide) microparticles. Colloids Surf. A Physicochem. Eng. Asp. 2007, 292, 125–130. [Google Scholar] [CrossRef]
- Zhao, H.; Saatchi, K.; Häfeli, U.O. Preparation of biodegradable magnetic microspheres with poly(lactic acid)-coated magnetite. J. Magn. Magn. Mater. 2009, 321, 1356–1363. [Google Scholar] [CrossRef]
- Xu, B.; Dou, H.; Tao, K.; Sun, K.; Ding, J.; Shi, W.; Guo, X.; Li, J.; Zhang, D.; Sun, K. “Two-in-One” Fabrication of Fe3O4 /MePEG-PLA Composite Nanocapsules as a Potential Ultrasonic/MRI Dual Contrast Agent. Langmuir 2011, 27, 12134–12142. [Google Scholar] [CrossRef]
- Shubhra, Q.T.H.; Macková, H.; Horák, D.; Fodor-Kardos, A.; Tóth, J.; Gyenis, J.; Feczkó, T. Encapsulation of human serum albumin in submicrometer magnetic poly(lactide-co-glycolide) particles as a model system for targeted drug delivery. e-Polymers 2014, 13, 29. [Google Scholar] [CrossRef]
- Gu, S.-Y.; Jin, S.-P.; Gao, X.-F.; Mu, J. Polylactide-based polyurethane shape memory nanocomposites (Fe3O4 /PLAUs) with fast magnetic responsiveness. Smart Mater. Struct. 2016, 25, 055036. [Google Scholar] [CrossRef]
- Icart, L.P.; Dos Santos, E.R.F.; Pereira, E.D.; Ferreira, S.R.; Saez, V.; Ramon, J.A.; Nele, M.; Pinto, J.C.S.; Toledo, R.D.; Silva, D.Z.; et al. PLA-b-PEG/magnetite hyperthermic agent prepared by Ugi four component condensation. Express Polym. Lett. 2016, 10, 188–203. [Google Scholar] [CrossRef]
- Yang, W.; Zhong, Y.; Feng, P.; Gao, C.; Peng, S.; Zhao, Z.; Shuai, C. Disperse magnetic sources constructed with functionalized Fe3O4 nanoparticles in poly-l-lactic acid scaffolds. Polym. Test. 2019, 76, 33–42. [Google Scholar] [CrossRef]
- Nan, A.; Turcu, R.; Liebscher, J. Magnetite-polylactic acid core-shell nanoparticles by ring-opening polymerization under microwave irradiation. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 1485–1490. [Google Scholar] [CrossRef]
- Li, H.Y.; Chang, C.M.; Hsu, K.Y.; Liu, Y.L. Poly(lactide)-functionalized and Fe3O4 nanoparticle-decorated multiwalled carbon nanotubes for preparation of electrically-conductive and magnetic poly(lactide) films and electrospun nanofibers. J. Mater. Chem. 2012, 22, 4855–4860. [Google Scholar] [CrossRef]
- Murariu, M.; Galluzzi, A.; Paint, Y.; Murariu, O.; Raquez, J.M.; Polichetti, M.; Dubois, P. Pathways to green perspectives: Production and characterization of polylactide (PLA) nanocomposites filled with superparamagnetic magnetite nanoparticles. Materials 2021, 14, 5154. [Google Scholar] [CrossRef]
- Zhao, W.; Huang, Z.; Liu, L.; Wang, W.; Leng, J.; Liu, Y. Porous bone tissue scaffold concept based on shape memory PLA/Fe3O4. Compos. Sci. Technol. 2021, 203, 108563. [Google Scholar] [CrossRef]
- Rincón-Iglesias, M.; Salado, M.; Lanceros-Mendez, S.; Lizundia, E. Magnetically active nanocomposites based on biodegradable polylactide, polycaprolactone, polybutylene succinate and polybutylene adipate terephthalate. Polymer 2022, 249, 124804. [Google Scholar] [CrossRef]
- Shabanian, M.; Khoobi, M.; Hemati, F.; Khonakdar, H.A.; Ebrahimi, S.; Esmaeil, S.; Wagenknecht, U.; Shafiee, A. New PLA/PEI-functionalized Fe3O4 nanocomposite: Preparation and characterization. J. Ind. Eng. Chem. 2015, 24, 211–218. [Google Scholar] [CrossRef]
- Yao, L.; Wang, Y.; Li, Y.; Jiang, Z.; Qiu, D. Controlled preparation of Fe3O4/PLA composites and their properties. Chem. Pap. 2021, 75, 6399–6406. [Google Scholar] [CrossRef]
- Furlan, M.; Kluge, J.; Mazzotti, M.; Lattuada, M. Preparation of biocompatible magnetite-PLGA composite nanoparticles using supercritical fluid extraction of emulsions. J. Supercrit. Fluids 2010, 54, 348–356. [Google Scholar] [CrossRef]
- Wiecheć, A.; Nowicka, K.; Błażewicz, M.; Kwiatek, W.M. Effect of Magnetite Composite on the Amount of Double Strand Breaks Induced with X-rays. Acta Phys. Pol. A 2016, 129, 174–175. [Google Scholar] [CrossRef]
- Ansari, H.; Shabanian, M.; Khonakdar, H.A. Using a β-Cyclodextrin-functional Fe3O4 as a Reinforcement of PLA: Synthesis, Thermal, and Combustion Properties. Polym. Plast. Technol. Eng. 2017, 56, 1366–1373. [Google Scholar] [CrossRef]
- Gherasim, O.; Popescu, R.C.; Grumezescu, V.; Mogoșanu, G.D.; Mogoantă, L.; Iordache, F.; Holban, A.M.; Vasile, B.Ș.; Bîrcă, A.C.; Oprea, O.C.; et al. MAPLE coatings embedded with essential oil-conjugated magnetite for anti-biofilm applications. Materials 2021, 14, 1612. [Google Scholar] [CrossRef]
- Daher Pereira, E.; Thomas, S.; Gomes de Souza Junior, F.; da Silva Cardoso, J.; Thode Filho, S.; Corrêa da Costa, V.; da Silveira Maranhão, F.; Ricardo Barbosa de Lima, N.; Veloso de Carvalho, F.; Galal Aboelkheir, M. Study of controlled release of ibuprofen magnetic nanocomposites. J. Mol. Struct. 2021, 1232, 130067. [Google Scholar] [CrossRef]
- Pigareva, V.A.; Alekhina, Y.A.; Grozdova, I.D.; Zhu, X.; Spiridonov, V.V.; Sybachin, A.V. Magneto-sensitive and enzymatic hydrolysis-resistant systems for the targeted delivery of paclitaxel based on polylactide micelles with an external polyethylene oxide corona. Polym. Int. 2022, 71, 456–463. [Google Scholar] [CrossRef]
- Balachandramohan, J.; Anandan, S.; Sivasankar, T. A simple approach for the sonochemical synthesis of Fe3O4-guargum nanocomposite and its catalytic reduction of p-nitroaniline. Ultrason. Sonochem. 2018, 40, 1–10. [Google Scholar] [CrossRef]
- Ghanbari, D.; Salavati-Niasari, M.; Ghasemi-Kooch, M. A sonochemical method for synthesis of Fe3O4 nanoparticles and thermal stable PVA-based magnetic nanocomposite. J. Ind. Eng. Chem. 2014, 20, 3970–3974. [Google Scholar] [CrossRef]
- Low, L.E.; Tey, B.T.; Ong, B.H.; Tang, S.Y. A facile and rapid sonochemical synthesis of monodispersed Fe3O4 @cellulose nanocrystal nanocomposites without inert gas protection. Asia-Pac. J. Chem. Eng. 2018, 13, e2209. [Google Scholar] [CrossRef]
- Poddar, M.K.; Arjmand, M.; Sundararaj, U.; Moholkar, V.S. Ultrasound-assisted synthesis and characterization of magnetite nanoparticles and poly(methyl methacrylate)/magnetite nanocomposites. Ultrason. Sonochem. 2018, 43, 38–51. [Google Scholar] [CrossRef]
- Teo, B.M.; Chen, F.; Hatton, T.A.; Grieser, F.; Ashokkumar, M. Novel One-Pot Synthesis of Magnetite Latex Nanoparticles by Ultrasound Irradiation. Langmuir 2009, 25, 2593–2595. [Google Scholar] [CrossRef]
- Heidary, F.; Ghanbari, D. Sono-chemical synthesis of Fe3O4 nanostructures and its application in acrylonitrile-butadiene-styrene polymeric nanocomposite. Nanochem. Res. 2021, 6, 117–121. [Google Scholar] [CrossRef]
- Hamdy, A.; Ismail, S.H.; Ebnalwaled, A.A.; Mohamed, G.G. Characterization of Superparamagnetic/Monodisperse PEG-Coated Magnetite Nanoparticles Sonochemically Prepared from the Hematite Ore for Cd(II) Removal from Aqueous Solutions. J. Inorg. Organomet. Polym. Mater. 2021, 31, 397–414. [Google Scholar] [CrossRef]
- Ebrahimi, R.; Rezanejade Bardajee, G. Sonochemical synthesis and swelling behavior of Fe3O4 nanocomposite based on poly(acrylamide-co-acrylic acid) hydrogel for drug delivery application. J. Polym. Res. 2021, 28, 35. [Google Scholar] [CrossRef]
- Serdiuk, V.; Shevchuk, O.; Bukartyk, N.; Kovalenko, T.; Borysiuk, A.; Tokarev, V. Synthesis and properties of magnetite nanoparticles with peroxide-containing polymer shell and nanocomposites based on them. J. Appl. Polym. Sci. 2021, 138, 50928. [Google Scholar] [CrossRef]
- Balachandramohan, J.; Kumar, M.; Sivasankar, T.; Sivakumar, M. Natural Polymer-Based Iron Oxide (Fe3O4) Synthesis, Characterization and Its Application for 1-Amino-Nitrobenzene Degradation in Assistance with Oxidants. Catalysts 2022, 12, 1161. [Google Scholar] [CrossRef]
- Chafran, L.S.; Campos, J.M.C.; Santos, J.S.; Sales, M.J.A.; Dias, S.C.L.; Dias, J.A. Synthesis of poly(lactic acid) by heterogeneous acid catalysis from d,l-lactic acid. J. Polym. Res. 2016, 23, 107. [Google Scholar] [CrossRef]
- Chafran, L.S.; Paiva, M.F.; França, J.O.C.; Sales, M.J.A.; Dias, S.C.L.; Dias, J.A. Preparation of PLA blends by polycondensation of D,L-lactic acid using supported 12-tungstophosphoric acid as a heterogeneous catalyst. Heliyon 2019, 5, e01810. [Google Scholar] [CrossRef]
- Rhoden, C.R.B.; da Silva Bruckmann, F.; Salles, T.; Kaufmann Junior, C.G.; Mortari, S.R. Study from the influence of magnetite onto removal of hydrochlorothiazide from aqueous solutions applying magnetic graphene oxide. J. Water Process Eng. 2021, 43, 102262. [Google Scholar] [CrossRef]
- Ikada, Y.; Jamshidi, K.; Tsuji, H.; Hyon, S.H. Stereocomplex Formation between Enantiomeric Poly(lactides). Macromolecules 1987, 20, 904–906. [Google Scholar] [CrossRef]
- Sarasua, J.R.; Prud’homme, R.E.; Wisniewski, M.; Le Borgne, A.; Spassky, N. Crystallization and melting behavior of polylactides. Macromolecules 1998, 31, 3895–3905. [Google Scholar] [CrossRef]
- Fukushima, K.; Hirata, M.; Kimura, Y. Synthesis and Characterization of Stereoblock Poly(lactic acid)s with Nonequivalent D/L Sequence Ratios. Macromolecules 2007, 40, 3049–3055. [Google Scholar] [CrossRef]
- De França, J.O.C. Síntese de Polímeros de Ácido Lático Utilizando Catalisadores Suportados em Silica, Alumina e Sílica-Alumina, Universidade de Brasília. 2020. Available online: https://repositorio.unb.br/handle/10482/38696 (accessed on 12 September 2023).
- Kister, G.; Cassanas, G.; Vert, M. Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer 1998, 39, 267–273. [Google Scholar] [CrossRef]
- Pavia, D.L.; Lampman, G.M. Espectroscopia no infravermelho. Introdução Espectroscopia 2010, 35, 15–56. [Google Scholar] [CrossRef]
- Zou, H.; Yi, C.; Wang, L. Thermal degradation of poly (lactic acid) measured by thermogravimetry coupled to Fourier transform infrared spectroscopy. J. Therm. Anal. Calorim. 2009, 97, 929–935. [Google Scholar] [CrossRef]
- Kumar Singh, S.; Anthony, P.; Chowdhury, A. High Molecular Weight Poly(lactic acid) Synthesized with Apposite Catalytic Combination and Longer time. Orient. J. Chem. 2018, 34, 1984–1990. [Google Scholar] [CrossRef]
- Singla, P.; Mehta, R.; Berek, D.; Upadhyay, S.N. Microwave Assisted Synthesis of Poly (lactic acid) and its Characterization using Size Exclusion Chromatography. J. Macromol. Sci. Part A Pure Appl. Chem. 2012, 49, 963–970. [Google Scholar] [CrossRef]
- Pérez, J.M.; Ruiz, C.; Fernández, I. Synthesis of a Biodegradable PLA: NMR Signal Deconvolution and End-Group Analysis. J. Chem. Educ. 2022, 99, 1000–1007. [Google Scholar] [CrossRef]
- Boua-In, K.; Chaiyut, N.; Ksapabutr, B. Preparation of polylactide by ring-opening polymerisation of lactide. Optoelectron. Adv. Mater. Rapid Commun. 2010, 4, 1404–1407. [Google Scholar]
- Rade, P.P.; Garnaik, B. Synthesis and characterization of biocompatible poly (L-lactide) using zinc (II) salen complex. Int. J. Polym. Anal. Charact. 2020, 25, 283–299. [Google Scholar] [CrossRef]
- Thomas, T.; Kanoth, B.P.; Nijas, C.M.; Joy, P.A.; Joseph, J.M.; Kuthirummal, N.; Thachil, E.T. Preparation and characterization of flexible ferromagnetic nanocomposites for microwave applications. Mater. Sci. Eng. B 2015, 200, 40–49. [Google Scholar] [CrossRef]
- De Mendonça, E.S.D.T.; de Faria, A.C.B.; Dias, S.C.L.; Aragón, F.F.H.; Mantilla, J.C.; Coaquira, J.A.H.; Dias, J.A. Effects of silica coating on the magnetic properties of magnetite nanoparticles. Surf. Interfaces 2019, 14, 34–43. [Google Scholar] [CrossRef]
- Gong, X.; Cheng, C.; Tang, C.Y.; Law, W.-C.; Lin, X.; Chen, Y.; Chen, L.; Tsui, G.C.P.; Rao, N. Crystallization behavior of polylactide matrix under the influence of nano-magnetite. Polym. Eng. Sci. 2019, 59, 608–615. [Google Scholar] [CrossRef]
- Tudorachi, N.; Chiriac, A.P.; Nita, L.E.; Mustata, F.; Diaconu, A.; Balan, V.; Rusu, A.; Lisa, G. Studies on the nanocomposites based on carboxymethyl starch-g-lactic acid-co-glycolic acid copolymer and magnetite. J. Therm. Anal. Calorim. 2018, 131, 1867–1880. [Google Scholar] [CrossRef]
- Roca, A.G.; Marco, J.F.; del Puerto Morales, M.; Serna, C.J. Effect of Nature and Particle Size on Properties of Uniform Magnetite and Maghemite Nanoparticles. J. Phys. Chem. C 2007, 111, 18577–18584. [Google Scholar] [CrossRef]
- Tudorachi, N.; Chiriac, A.P.; Mustata, F. New nanocomposite based on poly(lactic-co-glycolic acid) copolymer and magnetite. Synthesis and characterization. Compos. Part B Eng. 2015, 72, 150–159. [Google Scholar] [CrossRef]
- Han, C.; Cai, N.; Chan, V.; Liu, M.; Feng, X.; Yu, F. Enhanced drug delivery, mechanical properties and antimicrobial activities in poly(lactic acid) nanofiber with mesoporous Fe3O4-COOH nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2018, 559, 104–114. [Google Scholar] [CrossRef]
- Zheng, X.; Zhou, S.; Xiao, Y.; Yu, X.; Li, X.; Wu, P. Shape memory effect of poly(d,l-lactide)/Fe3O4 nanocomposites by inductive heating of magnetite particles. Colloids Surf. B Biointerfaces 2009, 71, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Pandele, A.M.; Constantinescu, A.; Radu, I.C.; Miculescu, F.; Ioan Voicu, S.; Ciocan, L.T. Synthesis and Characterization of PLA-Micro-structured Hydroxyapatite Composite Films. Materials 2020, 13, 274. [Google Scholar] [CrossRef]
- Lin, Z.; Guo, X.; He, Z.; Liang, X.; Wang, M.; Jin, G. Thermal degradation kinetics study of molten polylactide based on Raman spectroscopy. Polym. Eng. Sci. 2021, 61, 201–210. [Google Scholar] [CrossRef]
- Bolskis, E.; Adomavičiūtė, E.; Griškonis, E. Formation and Investigation of Mechanical, Thermal, Optical and Wetting Properties of Melt-Spun Multifilament Poly(lactic acid) Yarns with Added Rosins. Polymers 2022, 14, 379. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-S.; Church, J.S.; Woodhead, A.L. Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications. J. Magn. Magn. Mater. 2012, 324, 1543–1550. [Google Scholar] [CrossRef]
- Letti, C.J.; Paterno, L.G.; Pereira-da-Silva, M.A.; Morais, P.C.; Soler, M.A.G. The role of polymer films on the oxidation of magnetite nanoparticles. J. Solid State Chem. 2017, 246, 57–64. [Google Scholar] [CrossRef]
- Schwaminger, S.P.; Fraga-García, P.; Selbach, F.; Hein, F.G.; Fuß, E.C.; Surya, R.; Roth, H.-C.; Blank-Shim, S.A.; Wagner, F.E.; Heissler, S.; et al. Bio-nano interactions: Cellulase on iron oxide nanoparticle surfaces. Adsorption 2017, 23, 281–292. [Google Scholar] [CrossRef]
- Girardet, T.; Diliberto, S.; Carteret, C.; Cleymand, F.; Fleutot, S. Determination of the percentage of magnetite in iron oxide nanoparticles: A comparison between mössbauer spectroscopy and Raman spectroscopy. Solid State Sci. 2023, 143, 107258. [Google Scholar] [CrossRef]
- Mubasher, M.; Mumtaz, M.; Hassaan, M.; Ali Khan, Q.H.; Nadeem, M.; Ul Haq, M.I.; Sarfraz, Z. Influence of tetraethyl orthosilicate coating on dielectric, impedance, and modulus properties of barium hexaferrite nanoparticles prepared by a modified sol–gel method. AIP Adv. 2023, 13, 115313. [Google Scholar] [CrossRef]
- Peternele, W.S.; Monge Fuentes, V.; Fascineli, M.L.; Rodrigues da Silva, J.; Silva, R.C.; Lucci, C.M.; Bentes de Azevedo, R. Experimental Investigation of the Coprecipitation Method: An Approach to Obtain Magnetite and Maghemite Nanoparticles with Improved Properties. J. Nanomater. 2014, 2014, 682985. [Google Scholar] [CrossRef]
- Ferreira, A.F.; Campello, S.L.; de Araújo, A.C.V.; Rodrigues, A.R.; Pereira, G.A.L.; Azevedo, W.M. One-pot ultrasound synthesis of water dispersible superparamagnetic iron oxide@alginate nanocomposite. Solid State Sci. 2022, 128, 106870. [Google Scholar] [CrossRef]
- Thong, P.Q.; Thi, L.; Huong, T.; Thi, N.; Thanh, K.; Phuc, N.X. Multifunctional nanocarriers of Fe3O4 @ PLA-PEG/curcumin for MRI, magnetic hyperthermia and drug delivery. Nanomedicine 2023, 17, 1677–1693. [Google Scholar] [CrossRef]
- Chen, Y.H. Thermal properties of nanocrystalline goethite, magnetite, and maghemite. J. Alloys Compd. 2013, 553, 194–198. [Google Scholar] [CrossRef]
- Suppiah, D.D.; Abd Hamid, S.B. One step facile synthesis of ferromagnetic magnetite nanoparticles. J. Magn. Magn. Mater. 2016, 414, 204–208. [Google Scholar] [CrossRef]
- Kim, W.; Suh, C.-Y.; Cho, S.-W.; Roh, K.-M.; Kwon, H.; Song, K.; Shon, I.-J. A new method for the identification and quantification of magnetite–maghemite mixture using conventional X-ray diffraction technique. Talanta 2012, 94, 348–352. [Google Scholar] [CrossRef]
Ref. | Modification on Magnetite or PLA | Composite Synthesis Technique | Solvents | Fe3O4 (wt.%) |
---|---|---|---|---|
[10] | Polyethylene glycol-PLA copolymer (MEPLEG) | Double emulsion with simultaneous coprecipitation of Fe(II) and Fe(III) | CH2Cl2 organic phase; PVA water phase | 0–43 |
[11] | PLGA copolymer; Fe3O4 functionalized with oleic acid | Double emulsion with solvent evaporation | CH2Cl2 organic phase; PVA water phase | 1 |
[12] | PLAU copolymer (PLA-based polyurethane); Fe3O4 functionalized with oleic acid | Emulsion | CH2Cl2 | 0–9 |
[13] | PLA-b-PEG copolymer; Aldehyde modified Fe3O4 | UGI type condensation; composite microspheres obtained by simple emulsion | CH2Cl2 organic phase; PVA water phase | Not specified |
[14] | Fe3O4 functionalized with oleic acid | mixture of ethanol solution with PLA and magnetite dispersed by ultrasound | Ethanol | 0–16 |
[17] | Fe3O4 treated with 3% polymethylhydrogen-siloxane | Melting compound | No solvent | 4–16 |
[18] | Non-functionalized | Extrusion | No solvent | 20 |
[19] | Non-functionalized | Doctor blade technique | CH3Cl | 1–10 |
[22] | Fe3O4 functionalized with ricinoleic acid | Solvent-casting method for the preparation of Fe3O4 capped PLA | THF and CH2Cl2 | ~25 |
[23] | Non-functionalized | Casting | CH2Cl2 | 1 |
[24] | Fe3O4 functionalized with SiO2 and B-cyclodextrin | Solvent-casting | CH3Cl | 0–8 |
[25] | Fe3O4 conjugated with eucalyptus essential oil | Matrix-assisted pulsed laser evaporation (MAPLE) technique | Dimethyl sulfoxide (DMSO) | 3 |
Sample | Mn (Da) | Mw (Da) | Mw/Mn |
---|---|---|---|
Pre-polymer | 2278 | 2705 | 1.2 |
PLA (without catalyst) | 5830 | 7049 | 1.2 |
PLA 1x | 6930 | 8702 | 1.2 |
PLA 2x | 6835 | 9111 | 1.3 |
PLA 3x | 6937 | 9634 | 1.4 |
Sample | Average Particle Diameter (nm) |
---|---|
MNP-Fe3O4 | 27.9 ± 1.7 |
18% MNP-Fe3O4/PLA | 38.2 ± 1.6 |
33% MNP-Fe3O4/PLA | 12.0 ± 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de França, J.O.C.; Lima, Q.d.S.; Barbosa, M.M.d.M.; Fonseca, A.L.F.; Machado, G.d.F.; Dias, S.C.L.; Dias, J.A. Sonochemical Synthesis of Magnetite/Poly(lactic acid) Nanocomposites. Polymers 2023, 15, 4662. https://doi.org/10.3390/polym15244662
de França JOC, Lima QdS, Barbosa MMdM, Fonseca ALF, Machado GdF, Dias SCL, Dias JA. Sonochemical Synthesis of Magnetite/Poly(lactic acid) Nanocomposites. Polymers. 2023; 15(24):4662. https://doi.org/10.3390/polym15244662
Chicago/Turabian Stylede França, Juliene Oliveira Campos, Quezia dos Santos Lima, Mariana Martins de Melo Barbosa, Ana Lívia Fernandes Fonseca, Guilherme de França Machado, Sílvia Cláudia Loureiro Dias, and José Alves Dias. 2023. "Sonochemical Synthesis of Magnetite/Poly(lactic acid) Nanocomposites" Polymers 15, no. 24: 4662. https://doi.org/10.3390/polym15244662
APA Stylede França, J. O. C., Lima, Q. d. S., Barbosa, M. M. d. M., Fonseca, A. L. F., Machado, G. d. F., Dias, S. C. L., & Dias, J. A. (2023). Sonochemical Synthesis of Magnetite/Poly(lactic acid) Nanocomposites. Polymers, 15(24), 4662. https://doi.org/10.3390/polym15244662