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Abstract: In the present work, electrospun membranes of polyvinylpyrrolidone (PVP) nanofibers
were manufactured using extracts and phenolic fractions of Dysphania ambrosioides (epazote), Opuntia
ficus-indica (nopal), and Tradescantia pallida (chicken grass). The characterization of the membranes
was carried out by scanning electron microscopy and Fourier transform infrared spectroscopy. The
membranes synthesized through the use of the extracts generally showed a slight decrease in the
diameter of the fibers but an increase in the size of the pores due to the presence of nanoparticles
(rosaries) on the surface of the fibers, while the membranes synthesized using the phenolic fraction
demonstrated an inversely proportional relationship between the compounds of this family with
the diameter of the fibers and the size of the pore, allowing to elucidate part of the polymerization
mechanisms of PVP nanofibers, in addition to proposing a reaction mechanism in the interaction
between PVP and phenolic compounds for surface functionalization. Likewise, we demonstrate that
the generation of reaction seeds through functionalization allows the addition of other compounds to
the fibers in the membranes synthesized using the complete extract.

Keywords: electrospun membranes; therapeutic membranes; phenol compounds; ATR_FTIR;
microplastics

1. Introduction

Skin wounds have been a prevalent health problem since the beginning of the human
species; however, the ways in which they have been addressed have changed little. There
are many studies that affirm that “traditional” healing methods are useless, including
increasing the probability of contracting some type of infection, delaying the healing
process, and causing discomfort and more pain to the patient [1–3]. In recent decades,
active healing devices have been developed, such as hydrogels, foams, hydrocolloids, and
ointments, which have helped promote the healing process [4,5]. However, one of their
greatest disadvantages is that they are occlusive methods that do not allow gas exchange
and natural perspiration of the wound, producing maceration of the tissue [6]. That is
why various work groups around the world seek to overcome the challenges presented
by the wound healing process by proposing new technologies and innovative devices that
intervene actively and dynamically with the different elements and events that occur in the
healing process [7–9].

Electrospinning is a promising method for the rapid and cost-effective production
of nanofibers (NFs) from a wide variety of natural, synthetic, and hybrid polymers. This
method of manufacturing NFs is composed of three basic elements: (1) a syringe with a
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metal needle to transport the polymer solution with a controlled feeding rate; (2) a high-
voltage generator; and (3) a metal collector in which to deposit the final fibers. In a stable
electrospinning process, the high voltage generates repulsive forces in the liquid polymer
to overcome its surface tension at the tip of the needle, forming what is known as a Taylor
cone. Subsequently, a jet of liquid is formed that travels through the air and is directed
towards the collector plate, which is also attached to the voltage generator. Before the
deposition of the solid fibers on the collector, the solvents evaporate on the way from the
needle to the collector, and, finally, the fibers manage to reach the plate completely dry to
form a membrane based on NFs [10]. The deposition of these NFs forms nanostructured
membranes with a high surface/volume ratio and high porosity, and that also have the
advantage of being able to introduce different therapeutic compounds. The molecules can
be embedded directly into the polymer matrix or attached to the fiber surface. Given their
properties, NFs have opened the doors to designing a new generation of medical textiles [7].
The versatility of the electrospinning technique allows the electrospun membranes to mimic
the extracellular environment while being able to administer several therapeutic agents in
a focused manner that can also act for a long time. Additionally, because NFs are made
from biocompatible polymers, they do not require removal and allow the beneficial effects
to act constantly. Unlike the simple electrospinning system (two components: a polymer
dissolved in a solvent), the integration of other agents in the spinning solution generates
other types of physical–molecular interactions that provide greater resistance and stability
and allow good electrospinning. The main forces that can be found in the polymer–extract
interaction are the polymer’s own bonds and hydrogen bonds. These combined interactions
increase the viscosity of the solution, stabilizing the jet and providing the fibers with greater
stability [10–16].

Around the world, the therapeutic potential of plants has been known since ancient
times, many of which have been studied for the characterization of their biologically active
compounds. However, many other compounds present different activities that can mediate
other processes, from enzymatic to structural. In recent years, there has been great research
interest in the encapsulation of bioactive plant extracts in electrospun materials. Different
authors have reported the incorporation of different plant extracts in NFs, such as mucilage
from Opuntia ficus-indica [17,18], centella asiatica extract [19], Hypericum perforatum extract [20],
Annona muricata leaf extract [21], Calendula officinalis extract [22], Lawsonia inermis extract [23],
Moringa oleifera extract [24], Garcinia mangostana extract [25], Matricaria chamomilla extract [26],
and Curcuma longa extract [27], to mention a few.

Dysphania ambrosioides (DA), popularly known as epazote, is an aromatic perennial
plant that is used as a condiment and as a medicinal plant in Mexico and many other
Latin American countries, about which there have been reports of biological activities
such as amoebicidal, anticancer, antibacterial, antidiabetic, antidiarrheal, antifungal, anti-
inflammatory, antinociceptive, antioxidant, antiulcer, anxiolytic, immunomodulatory, and
vasorelaxant [28–30]. Opuntia ficus-indica, commonly known as nopal, is a shrub species
of the genus Opuntia of the cactus family, widely consumed in Mexico, which has been
documented with anti-inflammatory, hypoglycemic, stomach ulceration inhibitory, neu-
roprotective, and antioxidant properties. It has also been used to treat diabetes, burns,
bronchial problems, asthma, and indigestion [31,32]. Tradescantia pallida is a species of herba-
ceous and perennial plant endemic to Mexico, used mainly ornamentally; however, it has
been used in the biomonitoring of contamination through the frequency of micronuclei (so-
matic mutations induced by carcinogens), in addition to having antioxidant, α-glucosidase
inhibitory, antimicrobial, and hepatoprotective activity [33–36].

In this work, PVP membranes were manufactured by electrospinning using extracts
and fractions obtained from the three plants mentioned above. The aim of the study re-
ported here was to manufacture and characterize membranes based on a biocompatible
polymer (PVP) containing an extract/phenol fraction of the plants obtained by electrospin-
ning. However, the results obtained allowed not only the determination of the morphology
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and structure obtained by their manufacturing processes but also the elucidation of parts of
the reactions that are occurring for the functionalization of the fibers for future applications.

2. Materials and Methods
2.1. Obtaining Biological Material

The plant material of DA and OFI were obtained in a local market in the community
of San Andrés Calpan, located in the state of Puebla, México, and the plant material of TP
was obtained from gardens in the northern mountains of Puebla.

2.2. Obtaining the Extracts

For the preparation of the DA and TP extracts, stems and leaves were used, while for
the OFI extract, the chlorophyllic parenchyma of mature cladodes was used. The plant
material was dehydrated in the shade at room temperature and subsequently pulverized.
To obtain the hydroalcoholic extract, 40 g of the ground dry plant material was added
to 800 mL of methanol:water at a 1:1 (v/v) ratio, taking it to 75 ◦C for one hour, then
the supernatant was removed, and the procedure was repeated 6 times. The extract was
concentrated via low-pressure distillation using a rotary evaporator (Buchi 490, Flawil,
Switzerland) and subsequently stored at 4 ◦C.

2.3. Phenolic Fraction

To obtain the phenolic fraction, 0.5 g of extract from each plant was dissolved in
20 mL of 80% methanol (Meyer, Ciudad de México, Mexico) with 20 mL of distilled water,
macerating and stirring for an hour. The mixture was allowed to precipitate for one hour,
and the supernatant was removed and saved for subsequent steps. To the remaining solids,
20 mL of 70% acetone and 20 mL of distilled water were added, repeating the previous
extraction process. Both supernatants were mixed and refrigerated at 4 ◦C for one day.
The next day, the mixtures of both supernatants were filtered to obtain a crystalline liquid
phenolic fraction. These were concentrated via low-pressure distillation using a rotary
evaporator (Buchi 490, Flawil, Switzerland) and subsequently resuspended in 10 mL of
ethanol and stored refrigerated at 4 ◦C until use.

2.4. Preparation of the Membranes

PVP was purchased from Sigma-Aldrich,(Merck KGaA, Darmstadt, Germany) with an
average molecular weight of 360,000 g/mol (cat PVP360). The acetone (cat 0025), isopropyl
alcohol (cat 0405), and methanol (cat 5420) of analytical grade were purchased from Meyer
(México), and distilled water was obtained from a model 90750 water/pro/RO purifier
(Labconco, Kansas City, KS, USA).

Several types of nanostructured membranes were prepared: PVP membranes, PVP
membranes made with the complete extracts, and PVP membranes made with the phenolic
fractions of each plant. These membranes were manufactured with a double-syringe infuser
(KD Scientific, Holliston, MA, USA), a high-voltage source with an operating range of
1–30 kV (Spellman, Bronx, NY, USA), and a circular copper collector plate that was covered
with aluminum foil for each membrane made. The parameters for manufacturing were
humidity and ambient temperature, with a current of 15 kV, a flow of 0.5 mL/h, a working
distance of 13 cm between dispenser and collector, and a deposition time of 10 min. For the
membranes manufactured with phenolic extract or fraction, concentrations of 7% wt. of
polymer and 5% wt. of extracts or phenolic fraction were used. The DA and OFI extracts,
as well as the phenolic fractions, were dissolved in isopropyl alcohol; only the TP extract
was dissolved in methanol to improve its solubility. All labels used for membranes within
the article are found in Table 1.
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Table 1. Sample Labels.

Samples Membranes

Polyvinylpyrrolidone PVP
Extract (Dysphania ambrosioides) + Polyvinylpyrrolidone DA + PVP
Extract (Opuntia ficus-indica) + Polyvinylpyrrolidone OFI + PVP
Extract (Tradescantia pallida) + Polyvinylpyrrolidone TP + PVP
Phenolic fraction (Dysphania ambrosioides) + Polyvinylpyrrolidone FR-DA + PVP
Phenolic fraction (Opuntia ficus-indica) + Polyvinylpyrrolidone FR-OFI + PVP
Phenolic fraction (Tradescantia pallida) + Polyvinylpyrrolidone FR-TP + PVP

2.5. Characterization of Membranes

The spectroscopic characterization of the extract and membranes was carried out
with a VERTEX 70 FTIR spectrometer (BRUKER Optics, Ettlingen, Germany) using the
attenuated total reflectance (ATR) technique at a resolution of ±4 cm−1. The morphological
characterization of the microstructures was carried out using a VEGA TS 5136SB microscope
(TESCAN, Brno-Kohoutovice, Czech Republic) with a high vacuum resolution (0.009 Pa)
of 3.5 nm, secondary (SE) and backscattered (BSE) detectors, and a magnification range
of 4–500,000× and an accelerating voltage of 0.5–30 kV. The analysis of the images was
carried out using the image J program, taking 25 measurements per region of interest,
for a total of 100 measurements per image. A statistical analysis was carried out using
descriptive statistics.

3. Results
3.1. Morphological Characterization of Membranes

In general, PVP membrane was used as a control. Figure 1 shows the membranes
obtained under different conditions, other representative images at different scales can
be seen in the supplementary material. In the case of the PVP membrane, random but
homogeneous-diameter nanofibers (NFs) were observed without defects and with a uni-
form morphology. However, in the case of the membranes made with the complete extracts,
extract agglomerates of variable size, like rosaries, were present in the 3 types of mem-
branes. The membranes made with the phenolic fractions did not show such structures
between the NFs on the lattice.
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Figure 1. SEM micrograph of membranes. (a) DA + PVP, (b) OFI + PVP, (c) TP + PVP, (d) FR-DA + PVP,
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PVP membranes showed the largest average diameter of NFs, with 915.17 nm, while
the membranes made with the extracts showed average diameters of NFs, with the average
diameter from DA + PVP of 544.04 nm, OFI + PVP of 680.5 nm, and TP + PVP of 572.57 nm;
showing an average diameter decrease of approximately 34%. In the same way, the
membranes made with the phenolic fractions showed the smallest average diameters of
NFs, with that from FR-DA + PVP of 323 nm, that from FR-OFI + PVP of 338.21 nm, and
that from FR-TP + PVP of 331.48 nm, with a reduction in the average diameter of 64%
compared to the control, as can be seen in Figure 2.
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It has been reported that the addition of different plant extracts, such as C. asiatica,
C. longa, L. inermis, and M. chamomilla, to different polymers, such as PCL, chitosan/PEO,
chitosan/PVA, and polylactic acid (PLA), reduces the diameter of the fiber from 10 to
50% [18,22,25,26]. This is mainly attributed to the modification of the viscosity of the
solution by adding new compounds to the mixture, for which the fractionation of the
extracts for the identification of the compounds present in them is necessary.

Regarding the average pore area of the membrane, PVP membranes showed an area
of 1405.04 nm, while the pore area was variable for the membranes made with the complete
extract, ranging from 2139.21 nm in DA + PVP membranes to 3132.52 nm in OFI + PVP
membranes, increasing the diameter of the pores up to 200%. Otherwise, the pore of
TP + PVP membranes had a diameter of 1361.8 nm, barely decreasing 4%. In the case of
membranes manufactured with phenolic fractions, the average pore area of the membranes
was reduced, with measures of FR-DA + PVP: 152.6 nm, FR-OFI + PVP: 172.18 nm, and
FR-TP + PVP: 181.88 nm, decreasing the pore size by 88% compared to that of the PVP
membranes, as can be seen in Figure 3.
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The fractionation of the compounds allows us to observe that the phenolic compounds
participate as variables in the polymerization of the nanofibers, decreasing their diameter
in their presence, which is also proportionally related to the pore size. We believe that
during the spinning of the NFs, they do so in a similar way to ropes, winding fibers
around themselves to increase their diameter, so in the presence of phenolic compounds,
modifications occur, both in the medium and in the fibers, that limit the interaction between
them, preventing the polymerization of larger-diameter fibers, which, in turn, favors an
apparent increase in the number of fibers, in this way decreasing the size of the pores in
the membranes.

Finally, Figure 4 shows the size distribution of nanoparticles present in the membranes
made with the extract. We believe that the formation of structures on the fibers is due to
the nature of the compounds present in the polymerization media, being those present in
the TP extract with a greater affinity between them, agglomerating between them in initial
stages within the polymerization medium without interfering in the lattice structure of the
fibers, while for the DA and OFI extracts, the later formation of these agglomerates allows
the interaction of the nanoparticles with the functionalized fibers, anchoring on its surface
and obstructing direct interaction with each other, generating pores of greater area. The
summary of all the data described here is found in Table 2.
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Table 2. Average data of morphological characterization of membranes.

Membranes NFD 1 NFD SD 1 PA 2 PA SD 2 NPA 3 + NPA SD 3 +

PVP 915.17 185.64 1405.04 997.84 - -
DA + PVP 544.04 125.08 2139.21 18,116.57 11,261.54 19,083.83
OFI + PVP 680.50 166.38 3132.52 2983.64 8504.04 150,252
TP + PVP 572.57 172.85 1361.80 1043.10 64,588.08 65,905.26
FR-DA + PVP 323.12 92.32 152.60 110.09 - -
FR-OFI + PVP 338.21 115.26 172.18 101.24 - -
FR-TP + PVP 331.48 138.22 181.88 137.356 - -

1 Average of nanofiber diameter (NFD), 2 pore area (PA), 3 nanoparticle area (NPA), Rosary (+), and standard
deviation (SD). All the measurements are in nm.

3.2. Structural Characterization

After the manufacture of the membrane, these were characterized by FTIR spec-
troscopy. Although there are spectra of the extracts obtained from each plant and the
phenolic fractions, these simply serve as a reference to know the reactive functional groups
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of the compounds present but not to identify them due to the great variety of them present,
even after fractionation.

The spectra of the plant extracts are presented in Figure 5a. We could identify three
main regions: one region from 3700 cm−1 to 2800 cm−1, related to the presence of amines
and alcohols; a second region from 1900 cm−1 to 1000 cm−1, where, in turn, we can observe
three peaks in all spectra, the first being approximately from 1990 cm−1 to 1500 cm−1,
attributable to the large presence of compounds with carbon–oxygen bonds such as esters,
carboxylic acids, amines and ketones; the second peak, from 1500 cm−1 to 1200 cm−1,
referring to the attributable carbon–carbon bond tension, mainly to alkanes, in addition
to the presence of alcohols and aromatic compounds; and the last peak found was from
1200 cm−1 to 1000 cm−1, mainly attributable to esters and alcohols. Finally, in the third
region, from 1000 cm−1 to 500 cm−1, we mainly found the identity signatures of the
compounds attributable to the delocalization of hydrogens in their structure.

Polymers 2023, 15, x FOR PEER REVIEW 7 of 11 
 

 

3.2. Structural Characterization 
After the manufacture of the membrane, these were characterized by FTIR spectros-

copy. Although there are spectra of the extracts obtained from each plant and the phenolic 
fractions, these simply serve as a reference to know the reactive functional groups of the 
compounds present but not to identify them due to the great variety of them present, even 
after fractionation. 

The spectra of the plant extracts are presented in Figure 5a. We could identify three 
main regions: one region from 3700 cm−1 to 2800 cm−1, related to the presence of amines 
and alcohols; a second region from 1900 cm−1 to 1000 cm−1, where, in turn, we can observe 
three peaks in all spectra, the first being approximately from 1990 cm−1 to 1500 cm−1, at-
tributable to the large presence of compounds with carbon–oxygen bonds such as esters, 
carboxylic acids, amines and ketones; the second peak, from 1500 cm−1 to 1200 cm−1, refer-
ring to the attributable carbon–carbon bond tension, mainly to alkanes, in addition to the 
presence of alcohols and aromatic compounds; and the last peak found was from 1200 
cm−1 to 1000 cm−1, mainly attributable to esters and alcohols. Finally, in the third region, 
from 1000 cm−1 to 500 cm−1, we mainly found the identity signatures of the compounds 
attributable to the delocalization of hydrogens in their structure. 

 
Figure 5. FTIR spectra: (a) extracts and (b) phenol fractions. (Red) DA, (Green) OFI, and (Blue) TP. 

With respect to each plant, based on its spectrum, we can reach certain conclusions 
about the compounds present. DA presents a broader peak in the first region; however, a 
secondary peak at 3100 cm−1 stands out, which, in addition to corresponding to the pres-
ence of OH groups, can be related to the presence of aromatic compounds in the extract, 
also related to the presence of a broad band in region three, attributable to multiple delo-
calized H signals present in these compounds; however, the intensity in the spectrum, 
higher than in the other extracts, tells us of a wide variety and concentration with respect 
to the other plants. Likewise, the increase in the intensity of the second and third peaks in 
the second region is related to the presence of aromatic compounds. Finally, we can also 
find a peak at 3700 cm−1, attributable to free alcohols in the medium. While the OFI extract 
shows a composition similar to DA at a lower concentration, with different compounds 
attributable to the change in the morphology of the peaks in the third region, TP shows a 
slightly different presence of compounds, with a lower presence of compounds with OH 
groups, in addition to a lower presence of aromatic compounds due to the lower intensity 
of peak 3100 cm−1, simply appreciating small secondary peaks in the vicinity. The change 
in morphology in the first peak of the second region also stands out; the first head is 
mainly attributable to carboxylic acids and esters, while the second confirms the presence 
of aromatic rings. 

After the fractionation of the extract into various partitions, it was spectrally charac-
terized, as can be seen in Figure 5b, where we can see that the morphology of the spectra 

Figure 5. FTIR spectra: (a) extracts and (b) phenol fractions. (Red) DA, (Green) OFI, and (Blue) TP.

With respect to each plant, based on its spectrum, we can reach certain conclusions
about the compounds present. DA presents a broader peak in the first region; however,
a secondary peak at 3100 cm−1 stands out, which, in addition to corresponding to the
presence of OH groups, can be related to the presence of aromatic compounds in the
extract, also related to the presence of a broad band in region three, attributable to multiple
delocalized H signals present in these compounds; however, the intensity in the spectrum,
higher than in the other extracts, tells us of a wide variety and concentration with respect
to the other plants. Likewise, the increase in the intensity of the second and third peaks
in the second region is related to the presence of aromatic compounds. Finally, we can
also find a peak at 3700 cm−1, attributable to free alcohols in the medium. While the
OFI extract shows a composition similar to DA at a lower concentration, with different
compounds attributable to the change in the morphology of the peaks in the third region,
TP shows a slightly different presence of compounds, with a lower presence of compounds
with OH groups, in addition to a lower presence of aromatic compounds due to the lower
intensity of peak 3100 cm−1, simply appreciating small secondary peaks in the vicinity.
The change in morphology in the first peak of the second region also stands out; the first
head is mainly attributable to carboxylic acids and esters, while the second confirms the
presence of aromatic rings.

After the fractionation of the extract into various partitions, it was spectrally charac-
terized, as can be seen in Figure 5b, where we can see that the morphology of the spectra
is apparently maintained, mainly by cleaning up the noise in them in addition to some
specific changes from plant to plant. We can observe, in the first instance, the disappearance
of the peak at 3700 cm−1, referring to livery alcohols, in addition to a better delimitation
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of the widest peak in the first region with a decrease in the secondary peak at 3100 cm−1,
referring to aromatic compounds, and finally, the decrease in the intensity of the third
peak of the second region as well as multiple signals present in the third region, which
strongly suggests a high presence of esters, alcohols, carboxylic acids, and aldehydes in the
extract, which, after fractionation, have been separated into other fractions. OFI maintains
a similar pattern to DA, as mentioned above, with TP again being the one with the greatest
changes, even with hardly any signals in the vicinity of 3100 cm−1 that are attributable to
aromatic compounds, which suggests that the majority of phenolic compounds present less
complexity than that present in other plants, in addition to the increase in intensity in the
second peak of the second region, attributable to the OH groups present in the phenols,
which by removing the other compounds allowed its signal to be found.

Additionally, in Figure 6, all the membranes were compared against the PVP mem-
brane, revealing the most important differences present at 1750 cm−1, in the region between
3600 cm−1 and 3300 cm−1, and the increase in intensity in the region between 3000 cm−1

and 2800 cm−1, changes that could be attributed to the opening of the rings present in the
molecules generating reactive seeds for the incorporation of other compounds, a process
in which we believe the OH groups present in the medium for the phenols interact with
the nitrogen–carbon bond of the PVP ring, breaking the ring and exposing the nitrogen,
forming a secondary amine, while the carbon of this bond would remain protonated, be-
ing reduced by the OH in the medium to form a carboxylic acid. However, as we have
mentioned, the concentration of these phenolic groups would mediate the reaction, so the
higher the concentration of these compounds, the greater the number of reaction seeds
generated, with the TP plant being the one with the greatest activity and the one with
the greatest changes in its spectrum. The initial PVP molecule and the proposed product
after the interaction and reaction with the groups present in the medium are shown in
Figure 7. Similar changes in the spectrum and the PVP structure due to the addition of
oxygen through photooxidation have been reported previously [37].
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In addition, the FTIR spectra of the membranes conjugated with extracts presented an-
other series of changes in bands within positions 731, 1018, 1101, 1117, 1250, and 1269 cm−1,
indicating the conjugation of the compounds present in the extracts with the fibers of
PVP due to the presence of the seed reaction sites, which allows interaction with other
compounds; however, their own nature is what establishes the shape and size of the agglom-
erates present in the fiber, since TP fibers have a greater degree of surface functionalization,
an undetermined specific compound is necessary to initiate this reaction, which seems to
be found in higher concentration in the other extracts, which seem to be aromatic in nature,
with alcohols and even phenols attributable to the present peaks.

4. Conclusions

In this study, electrospun PVP membranes were obtained with extracts and phenolic
fractions of the plants Dysphania ambrosioides, Opuntia ficus-indica, and Tradescantia pallida.
Likewise, the conditions for the fabrication allowed us to obtain results of greater impor-
tance that allow us to partially elucidate the steps that occur for the functionalization of the
fibers and the incorporation of other compounds into them. The opening of the PVP rings
not only allows the incorporation of other compounds as we can see in the membranes
manufactured together with the extracts, which we originally pursued to generate ther-
apeutic membranes, but it also allows the destabilization of the fibers, allowing a better
degradation of them, avoiding their accumulation as microplastics. Likewise, the genera-
tion of reaction seeds on the fibers through functionalization would allow the addition of a
greater diversity of compounds. Future studies under more controlled conditions should
be performed to fully elucidate the reaction mechanisms and the participating compounds
for their applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym15244720/s1, Figure S1: SEM micrograph of membranes.
(a) FR-DA + PVP, (b) FR-OFI + PVP, and (c) FR-TP + PVP; Figure S2: SEM micrograph of membranes.
(a) DA + PVP, (b) OFI + PVP, (c) TP + PVP, and (d) PVP Control; Figure S3: SEM micrograph
of membranes. (a) DA + PVP, (b) OFI + PVP, (c) TP + PVP, (d) FR-DA + PVP, (e) FR-OFI + PVP,
(f) FR-TP + PVP, and (g) PVP Control; Figure S4: SEM micrograph of membranes. (a) DA + PVP,
(b) OFI + PVP, (c) TP + PVP, (d) FR-DA + PVP, (e) FR-OFI + PVP, (f) FR-TP + PVP, and (g) PVP Control.
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