
Citation: Gómez-Gast, N.;

Rivera-Santana, J.A.; Otero, J.A.;

Vieyra, H. Simulation of a Composite

with a Polyhydroxybutyrate (PHB)

Matrix Reinforced with Cylindrical

Inclusions: Prediction of Mechanical

Properties. Polymers 2023, 15, 4727.

https://doi.org/10.3390/

polym15244727

Academic Editor: Vincenzo Fiore

Received: 7 November 2023

Revised: 30 November 2023

Accepted: 2 December 2023

Published: 17 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Simulation of a Composite with a Polyhydroxybutyrate (PHB)
Matrix Reinforced with Cylindrical Inclusions: Prediction of
Mechanical Properties
Natalia Gómez-Gast 1,2, Juan Andrés Rivera-Santana 3, José A. Otero 1 and Horacio Vieyra 2,*

1 Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Carretera Lago de Guadalupe 3.5,
Colonia Margarita Maza de Juárez, Atizapán de Zaragoza 52926, Mexico; a00354363@tec.mx or
nataliagast@gmail.com (N.G.-G.); j.a.otero@tec.mx (J.A.O.)

2 Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Eduardo Monroy Cárdenas 2000,
San Antonio Buenavista, Toluca de Lerdo 50110, Mexico

3 Escuela de Ingeniería, Cetys Universidad, Campus Mexicali, Calzada Cetys, s/n, Colonia Rivera,
Mexicali 21259, Mexico; juanandres.rivera@cetys.mx

* Correspondence: h.vieyra@tec.mx

Abstract: Biocomposite development, as a sustainable alternative to fossil-derived materials with
diverse industrial applications, requires expediting the design process and reducing production
costs. Simulation methods offer a solution to these challenges. The main aspects to consider in
simulating composite materials successfully include accurately representing microstructure geometry,
carefully selecting mesh elements, establishing appropriate boundary conditions representing system
forces, utilizing an efficient numerical method to accelerate simulations, and incorporating statistical
tools like experimental designs and re-regression models. This study proposes a comprehensive
methodology encompassing these aspects. We present the simulation using a numerical homoge-
nization technique based on FEM to analyze the mechanical behavior of a composite material of a
polyhydroxybutyrate (PHB) biodegradable matrix reinforced with cylindrical inclusions of flax and
kenab. Here, the representative volume element (RVE) considered the geometry, and the numerical
homogenization method (NHM) calculated the macro-mechanical behavior of composites. The results
were validated using the asymptotic homogenization method (AHM) and experimental data, with
error estimations of 0.0019% and 7%, respectively. This model is valuable for predicting longitudinal
and transverse elastic moduli, shear modulus, and Poisson’s coefficient, emphasizing its significance
in composite materials research.

Keywords: simulation; polymer properties; finite element; biocomposites; biodegradable matrix;
cylindrical inclusions

1. Introduction

Biocomposites are mixtures of at least two phases, a matrix and a reinforcement,
with at least one biodegradable component [1–3]. The matrix may be biodegradable,
non-biodegradable, or partially bioderived [4–9]. The reinforcements can be naturally
derived from animals, minerals, and plants or be synthetic [10–12]. When the matrix is not
biodegradable but the reinforcement is, it is called a partially biodegradable biocomposite.
When matrix and reinforcement are biodegradable, they are called fully biodegradable
biocomposites [13].

Biocomposites offer various advantages due to the renewable origin of their com-
ponents. For example, they help to reduce dependence on petroleum-based products,
promote the use of renewable raw materials, and contribute to the recovery of by-products
and agricultural waste [2,14–18]. Biocomposites are a safe and environmentally sustainable
alternative to fossil-derived materials [19,20]. Moreover, the biodegradability of these
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materials aligns with multiple regulations concerning plastic usage and the shift towards a
circular economy across various regions, including the Americas, the Caribbean, the Euro-
pean Community, and the United Nations [21–24]. Due to their versatility, biocomposite
materials emerge in diverse industry applications, for example, vascular prostheses [25,26],
laminated materials [27], and packaging materials [28,29], among other products.

Because of their structural diversity and biodegradability, polyhydroxyalkanoates
(PHAs) are exceptional for replacing plastics. PHAs are polymers produced by Gram-
positive and Gram-negative bacteria from at least 75 genera [30]. The most known member
of the PHA family is polyhydroxybutyrate (PHB), a highly crystalline, naturally occur-
ring biopolymer [31,32]. PHB deficiencies in mechanical properties can be overcome by
producing composites with fibers. Natural fibers used as fillers in composites improve
characteristics such as stiffness, tensile strength, density, biodegradability, and the cost of
the final applications [33]. Bio-sourced and biodegradable PHB composites have gained
notoriety because various fibers, nanofibers, and modified fibers have been incorporated
as PHB fillers, widening the range of applications from packaging to 3D printing [34,35].
Yet, the development of biocomposites requires speeding up the design process, reducing
production costs, and facilitating the characterization of materials.

Materials simulation methods provide an alternative to the whole process and of-
fer additional advantages, such as non-destructive tests, to characterize the material that
significantly reduces the costs [36–38], optimizes models through parameterized program-
ming [39,40], and offer the possibility of validating the methodology by comparing results
with other methods and experimental data or exploring complex scenarios [41,42]. In
addition, including different parameters in the simulation methodology, such as volumetric
fraction, reinforcement geometries, and orientation, reduces errors due to the overesti-
mation of mechanical properties that occur with some classical theoretical models [43,44].
With a validated model and a parametric analysis, it is possible to gain insight into the
influence of different parameters and their interactions on the mechanical behavior of
composites [45].

The inclusion theory, as formulated in Eshelby’s work [46], has been widely used to
predict composite materials’ overall properties. This approach commonly works with a
single inclusion within a sparsely distributed framework in two-phase composites [47].
While versatile, the model assumes ellipsoidal inclusions, a representation that may not
cover all practical scenarios. It is essential to highlight that the Eshelby method is par-
ticularly effective in significantly diluted concentration conditions. However, various
alternative methods have been devised, including the Mori–Tanaka approach. This method
computes the average internal stress in the matrix of a material with uniformly distributed
macroscopic inclusions. The research reveals that the average stress in the matrix remains
constant throughout the material, regardless of its position within the domain [48]. Ad-
ditionally, this model has been subject to refinements, which redefined and extended the
Mori–Tanaka approach to apply to composite materials, accounting for anisotropic and
ellipsoidal phases [49].

Another noteworthy model is the self-consistent method, based on the premise that a
particle is embedded in an effective medium with unknown properties [50]. This method
calculates the effective properties by iteratively adjusting the local properties of each
phase until reaching self-consistency. Self-consistency occurs when the average strain in
each phase, weighted by the volume fraction of that phase, equals the macroscopic strain.
In contrast to the Eshelby and Mori–Tanaka methods, the self-consistent method yields
implicit equations for the effective properties, often requiring numerical iteration.

The effective properties of composite materials can also be calculated using a homoge-
nization procedure such as asymptotic homogenization (AH). The AH scheme is widely
used to predict effective material properties due to its rigorous mathematical background
based on perturbation theory. The boundary value problems of partial differential equa-
tions have been studied for application in many diverse engineering fields. The AH method
is mathematically rigorous, but it requires a complex and lengthy derivation procedure
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to obtain effective material properties [51]. AH assumes that any field quantity, such as
the displacement, can be described as an asymptotic expansion, which, once replaced in
the governing equations of equilibrium, allows the effective properties of the composite
material to be derived.

Another approach is numerical homogenization (NHM), which employs the finite
element method (FEM). This numerical method demonstrates high versatility, adapting
well to composites with various geometric inclusion configurations, especially those with
intricate fiber arrangements [52]. NHM enables efficient calculations of effective properties
by utilizing a unit cell model with appropriate periodic boundary conditions. Additionally,
NMH goes beyond determining mean-field solutions for highly heterogeneous problems.
It also includes the assessment of local fluctuations, a crucial consideration in numerous
applications [53]. The finite element analysis obtains the local solutions and averages the
effective properties of the composite [38,54–56], while statistical tools, such as experimental
designs, reduce the number of runs (simulations) required to obtain reliable results [36,45].

This work presents the simulation, using a numerical homogenization technique based
on FEM, to analyze the mechanical behavior of a composite material of a polyhydroxyalka-
noate (PHA) biodegradable matrix reinforced with cylindrical inclusions of flax. This
simulation considers three aspects: (1) An appropriate representation of the geometry,
microstructure, and periodicity; for this purpose, a representative volume element (RVE)
was used [38,56,57]; (2) Mesh element selection, which establishes adequate boundary
conditions that represent the forces that act in the system [58–60]; and (3) An efficient nu-
merical method to speed up the calculation time of the simulation [37,61]. The results were
validated by response surface methodology, AHM, and experimental data. The simulations
ran under a fractional experimental design.

2. Materials and Methods
2.1. Experimental Design

A fractional factorial design (DDF) with three factors and tree levels was used (RStudio
2023.06.2 Build 561, Posit Software, PBC, Boston, MA, USA). The factors were chosen from
the literature due to their impact on the mechanical behavior of composites: volumetric
fraction (Vf ), radius, and aspect ratio between the longitude and radius (ρ) of the rein-
forcements [62–64]. The factors and levels are summarized in Table 1. The selected matrix
material was polyhydroxybutyrate (PHB), and the reinforcement material was flax fibers.

Table 1. Fractional factorial design, three factors, and three levels.

Factor Low
Level Unit Code Medium

Level Unit Code High
Level Unit Code

Radius 0.0625 −1 0.125 0 0.1875 1
ρ 1 −1 3 0 5 1

Vf 8% −1 12% 0 16% 1

2.2. RVE Generation and Reinforcement Randomization

The RVE and the reinforcement sizing were established within the parameterization
section using a random angle vector for orientation. These angles were then used to
define the location of the inclusions using rotation matrices. One thousand points on the
circumferences of the cylindrical reinforcements were located and validated within the
RVE limits. The cell with the inclusions was generated(ANSYS APDL 2022 R1 Build 22.1
Canonsburg, PA, USA), as shown in Figure 1.
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scenarios. 
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Figure 1. RVEs with randomly oriented cylindrical inclusions, (a) ρ = 5; (b) ρ = 1.

2.3. Meshing

The discretization of the continuous system was carried out ((SOLID 187 element
ANSYS APDL 2022 R1 Build 22.1 Canonsburg, PA, USA), a tetrahedron with ten nodes
and three degrees of freedom at each node. The number of elements generated depended
on the number and length of reinforcements. Figure 2 displays two different RVEs with
variations in fiber dimensions.
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2.4. Boundary Conditions

Six local problems were analyzed, three for tensile stress and three for shear stress [65–67],
summarized in Table 2. Longitudinal tension stress conditions (problem 1) were as follows:
A known perpendicular load was applied to the x = Ax face of the RVE. Likewise, the
displacement of the cell in the three planes of symmetry, x = 0, y = 0, and z = 0, was
restricted to simulate the continuity of the material [55,68]. A homogeneous displacement
of the nodes was ensured on the faces x = Ay, and z = Az (faces in which no force was
applied). The equivalent procedure was performed for the second and third scenarios.

Conditions of shear force problems (problem 4) were as follows: Two known forces
were applied, equal and parallel to the x and y axes, on the faces x = Ax and y = Ay. The
displacement in the plane of symmetry z = 0 was restricted. Likewise, the movement of
the face y = 0 in the direction of x was limited, and that of the face x = 0 in the y direction,
to generate antisymmetric to the applied forces. Finally, a homogeneous displacement of
the nodes on the z = Az faces was ensured. The equivalent procedure was performed for
the fifth and sixth scenarios.
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Table 2. Boundary conditions for tensile and shear stress.

Local
Problem Illustration Symmetric Mirror

Face
Anti Symmetry

Face Load Face
Constant

Displacement
Faces

Problem 1: Tensile
stress. Axis = x
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y = 0.

x = 0, restrict
movement in

direction z x = Ax,
z = Az. y = Ay.

z = 0, restrict
movement in

direction x

2.5. RVE Analysis and Solution

Hooke’s law (1) was used to integrate the element’s nodes, material properties (stiff-
ness), and deformation after applying the loads.

σ = Cε, (1)

where σ is the stress vector, ε is the strain vector, and C is the stiffness matrix. The matrix
C was inverted to obtain the matrix S “compliance.” This matrix was used to rewrite the
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deformations as an unknown dependent change, allowing the deformation to be rewritten
in terms of the stress and the elements of the matrix S [66]. The engineering constants were
calculated with Equation (2).

ε11
ε22
ε33
ε23
ε13
ε12

 =



S11 S12 S13 0 0 0
S21 S22 S23 0 0 0
S31 S32 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66





σ11
σ22
σ33
σ23
σ13
σ12

. (2)

A numerical homogenization, which relies on finite element simulations utilizing
subroutines that calculate volume, deformation, and stress for each RVE element, was
subsequently used to compute the engineering constants, as described in Table 3 [55].

Table 3. Compliance element matrix and engineering constants for orthotropic materials [66].

Problem Element Matrix S
Engienering Constat

Constant Definition

1

s11 = 1
E11

E11 E11 = σ11
ε11

s12 = −v12
E22

v21 v21 = − ε22
ε11

s13 = −v32
E33

v31 v31 = − ε33
ε11

2

s21 = −v12
E11

v12 v12 = − ε22
ε11

s22 = 1
E22

E22 E22 = σ22
ε22

s23 = −v32
E22

v32 v32 = − ε22
ε33

3

s31 = −v13
E11

v12 v32 = − ε22
ε33

s32 = −v23
E22

v23 v32 = − ε33
ε22

s33 = 1
E33

E33 E33 = σ33
ε11

4 S44 = 1
G23

G23 G23 = − σ11
2(ε22+ε33)

5 S55 = 1
G13

G12 G13 = − σ11
2(ε11+ε33)

6 S66 = 1
G23

G13 G12 = − σ11
2(ε11+ε22)

3. Results
3.1. Validation, NHM vs. AHM

The simulation outcomes were compared with the results from the asymptotic ho-
mogenization method (AHM) [41,55]. Figure 3 shows NHM (blue asterisk) vs. AHM
(green squares), revealing that the calculated engineering constants align closely. The mean
average discrepancy between the two simulations was 0.0019%. The same behavior was
observed with the other constants described in Table 3.
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3.2. Simulation vs. Experimental Results

To compare the simulation results with experimental data, we used the data generated
by Yan et al. from a biodegradable matrix and cylindrical inclusions to match the parameters
included in our research (Table 4) [43]. The referred study used transversely isotropic fibers;
therefore, it was necessary to rotate the tensioner according to the fibers’ orientation.

Table 4. Experimental data were used for simulation.

Matrix (PLA) Reinforcements
(Carbon Fibers)

Young’s Modulus (E11) 2570 207,000
Young’s Modulus (E22) 14,000

Poisson Coefficient (v23 ) 0.3 0.25
Vf 0.85 0.15

Average length 77.1 µm

Table 5 shows the NHM simulation results for two ρ and the error estimations. Because
the ρ was not specified, two approximate data were used, taking the Yan et al. micrographs
as a reference. The ρ dramatically impacted the results, especially the longitudinal module,
probably due to the inclination angles used for the fibers’ rotation.
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Table 5. Experimental vs. simulation results by NHM.

Engineering
Constant

Experimental
Data(MPa)

NHM
(MPa)
ρ = 10

%Error
NHM
(MPa)
ρ = 13

%Error

Young’s Mogulus (E11) 5030 5012.9 0.33 5961.5 7.8
Young’s Modulus (E22) 3720 3480.6 6.45 3416.7 7.45

3.3. Mechanical Behavior of the Simulated Composite

Figure 4a,b showed that an increase in ρ or Vf results in an increment in the modulus
E11. Additionally, it is possible to identify an interaction between these factors. When
ρ =1, the mean value of E11 is 3686 MPa for Vf = 8% and 3790 MPa was the mean value
for Vf = 12%, representing an approximate 2.7% increase. However, for ρ = 3, the value
of E11 is 4150 MPa for Vf = 8%, and 4555 MPa for Vf = 12%, indicating a 9% increase in
the modulus. This suggests that as ρ increases, the impact of Vf on reinforcing the elastic
modulus of composite becomes more evident.
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A similar effect is observed in the case of the modulus G12. Figure 4c,d, for ρ = 1, the
change in Vf from 8% to 12% appears to have an insignificant impact on the stiffness of
the composite. However, when ρ = 3, the increase in Vf results in a 7% stiffness increment.
Regarding the coefficient v12. In Figure 4e,f, an increase in ρ leads to an approximately 1%
decrease in v12, which aligns with the increased composite’s stiffness. In the case of v12,
the interaction effect of the factors is less pronounced, but there is greater variability in
the data. The variability of the factor can be examined through the box plot presented in
Appendix A.
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3.4. Linear Model and Contour Plot to Predict Elastic Modulus

The statistical analysis of the simulation results appears in Figure 5. A Pareto diagram
(Figure 5a) highlighted the influence of the Young’s Modulus factor. Among these factors,
ρ and Vf were the most significant contributors, and notably, their interaction also had a
positive effect on the elastic modulus. In contrast, the Ratio(E_fiber/E_matrix) and the
radius size exhibited comparatively less impact on Young’s Modulus.
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Figure 5. (a) E11 Pareto plot showing the positive impact of the analyzed factors on elastic modulus;
(b) E11 response surface.

The prediction model for Young’s Modulus is expressed by Equation (3) and excludes
the radius factor due to its little impact on the response variable.

E11 = 4004.16 + 304.75ρ + 127.75V f + 26.9β + 40.06ρ̂2 + 76.54ρ V f + 16.91ρ β + 7.43V f β + 5.04 β V f ρ (3)

where: Young’s Modulus (E11) ; Volumetric Fraction
(

Vf

)
; Aspect Ratio (ρ); Modulus

Ratio (β).
Figure 5b reveals insightful interactions between the factors. This graph used Vf

and ρ due to significant influences. The Vf -axis indicates that an increment in Vf had a
slight effect on Young’s Modulus, but as ρ increased, the influence of the Vf became more
pronounced. The response surface pointed to the optimal approach for enhancing the
elastic modulus. The color map (blue–yellow) indicates the direction of improvement.

4. Discussion

In this work, we modeled the mechanical behavior of a composite material of a
polyhydroxyalkanoate (PHA) biodegradable matrix reinforced with cylindrical inclusions
of flax using the NHM. We validated our results with the AHM method for its accurate
prediction of macroscopic behaviors [69,70]. This characteristic is pivotal, especially when
comparing simulation outcomes. AHM has proven helpful in the simulation work of short
fiber composites compared with NHM in three-dimensional cell cases [71].

For a second validation, we compared our NHM results with published experimental
data, with errors ranging from 0.33% to 6.45% obtained for the transverse and longitudinal
moduli, with a noticeable increase in error as ρ increased. Several aspects could contribute
to this discrepancy. First, the simulations assumed perfect contact between the matrix and
reinforcement, which may not hold in experimental conditions [72–74]. Second, it was
assumed that the reinforcements had uniform geometry, a simplification that does not align
with real-world variations. Finally, the simulated material did not account for aggregation.
All these aspects could introduce additional rigidity to the composite material. Future
research will enhance the algorithm by incorporating a probability distribution to simulate
agglomerations and geometric variations. Nonetheless, the error percentage falls within
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the range reported by other algorithms for predicting mechanical properties. Some studies
suggest that error prediction is due to non-linear elastic behavior or estimation errors when
the mesh size is too small. Despite the limitations of the present model, we considered it
worthwhile to obtain a good approximation of the compound and to reduce experimental
costs [36,71,75–79].

The significance of the ρ of reinforcement was underscored in our statistical analysis,
a finding that aligns with various experimental studies. For instance, in the case of a
PLC–hemp mixture, it was observed that Young’s Modulus increased by 48% as the ρ of the
reinforcements changed from 19 to 26. However, when this ratio exceeded 30, a saturation
effect occurred, likely attributable to moisture absorption by the fibers [80]. Additionally,
another study [81] supports the notion that particles with larger aspect ratios are more
effective in enhancing composite stiffness. In their study, a ρ of 10, combined with a volume
fraction of 30%, resulted in a 4.5% increase in Young’s Modulus and a 1.3% decrease in Pois-
son’s coefficient. Nevertheless, they also observed a saturation effect when the ρ exceeded
10, suggesting the occurrence of a “shear lag” phenomenon that limits stress transmission
from the matrix to the fibers. In a PHBV–potato mixture, researchers have noted that fibers
with small aspect ratios tend to function more as fillers than reinforcements [82].

When the matrix is reinforced with long particles or fibers and the fiber length is lower
than the length of RVE, the matrix and fiber interact as springs connected in series, resulting
in a high reinforcement effect. However, if the fiber length exceeds the dimensions of the
RVE, the interactions resemble parallel springs, leading to a diminished reinforcement effect.
The β and the ρ also interact, and when β is >10, these interactions become dominating
factors in determining the directional effective Young’s Modulus [83].

Of interest, Robinson et al. [84] highlighted that the effectiveness of fiber length in
reinforcing a material depends not only on its diameter but also on the ratio between the
elastic modulus of the reinforcement and the resin (β), the Poisson coefficient, and the
volume fraction. This relationship is mathematically presented in Equation (4).

lc = 2.3 d

√
E f (1 + vm)

Em

√√√√ln

(
π

4Vf

)1/2

, (4)

where: The fiber diameter (d), the modulus fiber (Ef), the matrix modulus (Em), the matrix
poisson (vm), the volumetric fraction (Vf). According to this relationship, the minimum
length of the reinforcements should be 6 mm; however, the longest inclusion used in the
simulation is 2.8 mm, because of which the elastic modulus of the matrix increased between
17 and 31% and the shear by 15–24%. The effect of the β was also analyzed, but for the
simulated cases, the effect of the β is not so significant.

Additionally, most studies concur on the influence of ρ on the Elastic Modulus, but
there are notable exceptions. In the epoxy–nanocarbon fibers research, the authors reported
that reinforcements with a lower ρ led to a greater apparent Young’s Modulus [85], at-
tributed to enhanced interfacial adhesion. Also, the authors reported that reinforcements
with a lower ρ led to a greater apparent Young’s Modulus. This phenomenon results from
enhanced interfacial adhesion due to better dispersion and alignment of short fibers. The
researchers also emphasized that the Vf had a more significant impact than the ρ opposite
to the simulation results [85]. Furthermore, another study analyzing a PHBV–cellulose com-
posite [86] showed that weak interfacial adhesion softened the matrix modulus, particularly
when employing reinforcements with a small ρ.

The simulation works have also analyzed the reinforcement orientation; unidirectional
fibers increase longitudinal modulus by 26%, but the transverse modulus decreases to 4.75.
This effect depends on interacting with the Vf [87]. Other work states that a simulation
with random fibers is closer to the experimental data [88]. The proposed methodology
uses random reinforcement orientation to simulate the injected composite material. In the
experimental validation, the fiber rotation was limited to −30◦ to 30◦ since the micrographs
of the work used as a reference showed limited fiber rotation [43].
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The last methodology step presented in this research proposed a non-linear regression
model, Equation (3), to predict the Young’s Modulus of the compound. The model is con-
sidered helpful in predicting the mechanical properties of the composite when parameters
such as ρ and Vf are varied. For example, increasing ρ to 9.5 and Vf to 20% (in coding units)
and then substituting into Equation (3) while keeping the β constant estimates the Young’s
Modulus (E11) to be 7515.2 MPa.

It is necessary to consider that the model is a generalization and may incorporate noise.
Additionally, the model assumes a constant relationship between the factor and E11, which
can lead to inaccurate predictions when the factor’s level is changed to values significantly
distant from those simulated. Non-linear regression models are sensitive to the initial
parameter values.

Although this simulation methodology might seem simple, it allows precise predic-
tions of the mechanical behavior of composites, including changes in elastic and shear
modulus, in scenarios involving fibers with approximate cylindrical shapes. The regression
model enhances result reliability, leading to reduced computational costs, design, and pro-
duction times for materials with similar characteristics (β,ρ,Vf). For example, it is possible
to utilize the model to predict the elastic modulus of a PHB-Jute composite with Vf = 16%,
β = 7.7, and ρ = 5, resulting in E11 = 4800 MPa (approximately). Worth noting is that the
structure of the composites is complex and requires the design of complex algorithms that
include random distributions of the reinforcements in the unit cells, include movement
restrictions of the nodes and planes, and thus represent the reality of a composite material.

5. Conclusions

Many fibers are industrial waste and are underused. Biodegradable matrix composites
with fiber reinforcements have been developed because they could potentially replace poly-
mers in olefins. Composites of PHB with natural fibers have great potential for industrial
applications. The algorithm developed here facilitated the simulation of the reinforce-
ment of a PHB matrix with cylindrical fiber inclusions and produced reliable results. The
algorithm’s parameters helped simulate different configurations of the materials. This algo-
rithm relied on the geometric depiction of the material and used numerical homogenization
methods for analysis. This model is a valuable tool for predicting both longitudinal and
transverse elastic moduli, shear modulus, and Poisson’s coefficient. Furthermore, a linear
regression model was developed, simplifying the prediction of mechanical properties for
alternative material configurations while mitigating the need for extensive computational
resources. This simulation methodology sets the basis for future work, including chal-
lenging conditions such as porous cells, aggregations, and inclusions with different aspect
ratios. This advancement aims to enhance the representation of composite materials in a
simulation process.
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