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Abstract: Spent Fluid Catalytic Cracking (FCC) Catalyst is a major waste in the field of the petroleum
processing field, with a large output and serious pollution. The treatment cost of these waste catalysts
is high, and how to achieve their efficient reuse has become a key topic of research at home and
abroad. To this end, this paper conducted a mechanistic and experimental study on the replacement
of some carbon blacks by spent FCC catalysts for the preparation of rubber products and explored the
synergistic reinforcing effect of spent catalysts and carbon blacks, in order to extend the reuse methods
of spent catalysts and reduce the pollution caused by them to the environment. The experimental
results demonstrated that the filler dispersion and distribution in the compound are more uniform
after replacing the carbon black with modified spent FCC catalysts. The crosslinking density of rubber
increases, the Payne effect is decreased, and the dynamic mechanical properties and aging resistance
are improved. When the number of replacement parts reached 15, the comprehensive performance
of the rubber composites remained the same as that of the control group. In this paper, the spent
FCC catalysts modified by the physical method instead of the carbon-black-filled SBR can not only
improve the performance of rubber products, but also can provide basic technical and theoretical
support to realize the recycling of spent FCC catalysts and reduce the environmental pressure. The
feasibility of preparing rubber composites by spent catalysts is also verified.

Keywords: spent FCC catalyst; physical modification; SBR composites; reinforcement mechanism

1. Introduction

With the increase in car ownership, the demand for tires is growing rapidly every
year [1,2]. Rubber composite is widely used in the tire industry for its excellent compre-
hensive performance and processing performance [3,4]. In order to meet the requirements
of tire use, rubber compounds need to be prepared with a variety of reinforcing fillers to
improve their performance [5,6]. In the process of tire preparation, the amount of filler
accounts for more than 1/3 of the amount of tire rubber formula, and is becoming one
of the most important materials in the tire rubber composition [7,8]. Compared with the
high economic cost and serious environmental pollution caused by traditional fillers (car-
bon black), the “green tire” has become the main direction of automotive tire design and
development [9–12].

Fluid Catalytic Cracking (FCC) is one of the important refinery processing technolo-
gies and has a pivotal position in the petroleum refining industry [13–15]. In the process
of the petroleum catalytic cracking, the amount of the FCC catalyst is very large, and a
large number of spent catalysts are also produced, which is called spent FCC catalysts in
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the industry [16]. This part of the spent FCC catalysts cannot meet the catalytic cracking
requirements of petroleum; however, these catalysts still have high activity, and the residual
activity of spent FCC catalysts can be used again in other fields. After our extensive prelimi-
nary research, we found that waste FCC catalysts applied to the waste tire pyrolysis process
can significantly improve the quality of pyrolysis oil and meet the requirements of waste
tire pyrolysis [17–19]. Therefore, the regeneration, recycling, and harmless application of
spent catalysts is a key research direction in the future [20,21].

The FCC catalyst is a kind of porous, microsphere granular solid acid catalyst, which
is made of active components (Y and ZSM-5 molecular sieve), matrix (kaolin), and binder
(silica, alumina, etc.) by spray drying [22,23]. Kaolin, silica, and other substances are the
main additives in rubber. Agustini S et al. [24] used kaolin as a filler for natural rubber to
prepare solid tires for scooters. The vulcanization properties, mechanical properties, and
thermal properties of the rubber compound were investigated. The experimental results
demonstrated that the amount of kaolin had a great influence on the maximum torque,
scorch time, optimum curing time, and mechanical properties of the vulcanized rubber.
The thermogravimetric analysis demonstrated that the thermal stability of the rubber was
influenced by the amount of the kaolin-filling fraction. Tan J et al. [25] ground anthracite
coal to replace carbon-black-filled styrene–butadiene rubber (SBR) to prepare composites
of styrene–butadiene rubber (SBR) and modified anthracite coal (MA). The experimental
results demonstrate that the anthracite flakes can be well dispersed in the rubber matrix,
providing good reinforcement properties. In addition, the low content of carbon black or
silica composite fillers further promoted the dispersion of coal particles in the rubber, which
effectively enhanced the mechanical reinforcing properties of coal particles and the thermal
stability of rubber composites. Wang Z et al. [26] investigated the possibility of illite as
an alternative natural rubber (NR) filler. The experimental results demonstrated that illite
treated with cetyltrimethylammonium bromide (CTAB) could enhance the crosslinking
density and dispersion of illite-NR, and the mechanical properties and wear resistance of
illite/NR composites could be improved. Phuhiangpa N et al. [27] investigated the effect of
the nano calcium carbonate (NCC) and micron calcium carbonate (MCC) on natural rubber
composites. The experimental results demonstrate that two kinds of fillers (MCC and NCC)
and filled rubber composites showed the same trend, but the effect of the small particle
size in NCC on the composite properties was more pronounced and could be better used to
adjust the rubber product characteristics and processing properties.

To extend the reuse methods of spent catalysts and reduce the pollution caused by
them to the environment, this paper conducted a mechanistic and experimental study on
the replacement of some carbon blacks by spent FCC catalysts for the preparation of rubber
products, and the feasibility of the application of the spent catalysts to prepare rubber
composite was also explored. The use of the spent FCC catalyst as a filler to replace part
of the carbon black for rubber composite preparation can not only realize the recycling of
waste rubber products, but also reduce the environmental pollution caused by the improper
treatment of the spent catalyst. The feasibility of preparing rubber composites by spent
catalysts is also verified.

2. Experiment
2.1. Experimental Scheme

To explore the influence of the number of replacement parts of spent FCC catalysts
and the vulcanization system on the properties of rubber composites, the experimental
formulations used in this study are shown in Table 1.

The purpose of the 1#–4# in Table 1 is to study the influence of replacing different
ratios of carbon black on the mechanical properties of the rubber composites before the
modification of the spent FCC catalyst. The purpose of the 5#–7# is to study the influence of
particle size and pore size variation on the mechanical properties of rubber composites after
the modification of spent FCC catalysts. The purpose of the 8#–10# is to study the influence
of adding the S, accelerator NS, and silane coupling agent Si69 on the reinforcement
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performance of the filler with the increase in the replacement amount of the modified spent
FCC catalyst.

Table 1. Experimental formulation.

Samples 1# 2# 3# 4# 5# 6# 7# 8# 9# 10# Manufacturer

SBR1500 100 100 100 100 100 100 100 100 100 100
PetroChina Dushanzi

Petrochemical Company,
Karamay, China

Zinc oxide 3 3 3 3 3 3 3 3 3 3
Shijiazhuang Yunpo Chemical

Technology Co., Ltd.,
Shijiazhuang, China

Accelerator
NS 1 1 1 1 1 1 1 1.07 1.13 1.2

Shandong Shangshun
Chemical Co., Ltd.,

Weifang, China

Sulphur (S) 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.87 1.98 2.1
Chaoyang Tianming Industry

& Trade Co., Ltd.,
Beijing, China

Silane
coupling

agent Si69
\ \ \ \ \ \ \ 0.25 0.5 0.75 Shandong Xiya Chemical Co.,

Ltd., Linyi, China

Carbon black
N660 50 45 40 35 45 40 35 45 40 35 Shanghai Cabot Chemical Co.,

Ltd., Shanghai, China
Spent fcc
catalyst \ 5 10 15 \ \ \ \ \ \ Sinopec Jinan Oil Refinery,

Jinan, China
Modified

spent FCC
catalyst

\ \ \ \ 5 10 15 5 10 15 Sinopec Jinan Oil Refinery,
Jinan, China

Note: The unit of component dosage in the table is g.

2.2. Experimental Process
2.2.1. Spent FCC Catalyst Modification

First, the spent FCC Catalyst was ball milled (all-round planetary ball mill, QM-QX4,
Nanjing Nanda Instruments Co., Ltd., Nanjing, China) at 180 r/min for 2 h. Then, the
spent FCC catalyst was calcined (tube furnace, MFLGKD 405-12, Shanghai Muffle Furnace
Technology Instruments Co., Ltd., Shanghai, China) at 600 ◦C for 3 h. Subsequently, the
spent FCC catalyst and deionized water were mixed 1:5 for ultrasonic (ultrasonic disperser,
VCY-1500, Shanghai Yanyong Ultrasonic Equipment Co., Ltd., Shanghai, China) treatment
for 1 h, with continuous stirring during the ultrasonic process. Finally, the spent FCC
catalyst was filtered and dried (electric blast drying oven, DHG-9240A, Shanghai Yiheng
Scientific Instrument Co., Ltd., Shanghai, China) to complete the preparation of the spent
FCC catalyst. The modification process of the spent FCC catalyst was roughly shown
in Figure 1.
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2.2.2. Preparation of Rubber Composites

First, the butadiene rubber was plasticized into thin pieces of about 4mm in the open
mixing machine (open mixing machine, X (S) K-160, Shanghai Rubber Machinery Factory,
Shanghai, China) for later cutting and compacting. Subsequently, rubber, fillers (carbon
black and spent FCC catalyst), and small materials were added to the mixer (laboratory
small mixer, 0.3 L, Harbin Harper Electric Technology Co., Ltd., Harbin, China) to complete
the preliminary preparation of rubber products. Then, the S and accelerator NS were
added to the open mixing machine to complete the preparation of the compounded rubber.
Finally, the mixed rubber pieces after standing for 12 h were used for the initial testing
and vulcanization.

The vulcanization time T90 of each group of blends is measured by a rotorless sul-
furometer (rotorless vulcanization instrument, M-2000-AN, high-speed rail detection in-
strument (Dongguan) Co., Ltd., Dongguan, China). Using a flat vulcanizing machine
(flat vulcanizing machine, XLD-400X400X2, Qingdao Yilang Rubber Equipment Co., Ltd.,
Qingdao, China) for vulcanization, the vulcanization conditions are 150 ◦C × 1.3 T90.

2.3. Characterization

The Payne effect of the compound was tested by a rubber processing analyzer (Rubber
Processing Analyzer, RPA2000, Alpha Technologies, Inc., Akron, OH, USA). The frequency
was 1Hz, the strain range was between 0.28% and 40%, and the temperature was 60 ◦C.

The Mooney viscosity of the compound was tested by the Mooney viscometer (Mooney
viscometer, PremierMV, Alpha Technology Co., Ltd., Akron, OH, USA) according to the
standard ISO 289-1: 1994.

Vulcanization properties of the compound were tested by a rotorless rheometer ac-
cording to the standard ISO 6502:1991, and the test temperature was 150 ◦C.

The hardness test of rubber was carried out using a Shore hardness tester (Shore
hardness tester, LX-A, Shanghai Liuling Instrument Factory, Shanghai, China) according to
the standard ISO 7619-1:2004. The rubber rebound rate was tested using a rubber rebound
tester (rubber rebound tester, DIN-53512, Dongguan Songjiao Testing Instruments Co., Ltd.,
Dongguan, China) according to the standard ISO 4662-1986. The abrasion was tested
by the DIN roller abrasion tester (DIN roller abrasion tester, GT-2012-D, Taichung Gao
Tai Testing Machine Co., Ltd., Taiwan, China) according to the standard ISO 4649-2002.
Tensile tearing properties were tested using the tensile testing machine (Tensile Testing
Machine, AI-7000-MGD, Gautech Testing Instruments (Dongguan) Co., Ltd.) according to
the standard of ISO 37-2005 and ISO 34-1:2004.

The dynamic mechanical properties of vulcanized rubber were tested by a dynamic
thermo-mechanical analyzer (dynamic thermo-mechanical analyzer, EPLEXOR 150N,
GABO, Ahlden, Germany). The dynamic strain was 0.25%, the static strain was 7%,
the heating rate was 2 ◦C/min, the temperature range was −65~65 ◦C, and the frequency
was 10 Hz.

The aging experiment of rubber was tested by using a hot air aging box (hot air aging
box, GT-7017-M, High-Tech Testing Instruments Co., Ltd., Taiwan, China) according to the
standard ISO 188-1998.

3. Results and Discussion
3.1. Analysis of Physical–Chemical Characteristics of Spent FCC Catalysts

The characterization results of XRD spectra of the spent FCC catalyst before and after
modification are shown in Figure 2.

The crystal plane spacing of the spent FCC catalyst before and after the modification
has not changed much in Figure 2. There was no new diffraction peak, indicating that the
spent FCC catalyst did not change its phase composition after the modification [28,29].
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Figure 2. XRD spectrum of spent FCC catalyst.

The volume change and distribution of the particle size of the spent FCC catalyst
before and after the modification are shown in Table 2 and Figure 3.

Table 2. Changes in particle size and volume of spent FCC catalyst before and after modification.

Before Modification After Modification Reduce Proportion (%)

Dv (10)/µm 0.0306 0.0259 15.36
Dv (50)/µm 12.8 0.163 98.73
Dv (90)/µm 55.0 18.7 66.0
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The particle size of the spent FCC catalyst decreased significantly after a modification
from Table 2 and Figure 3. The average particle size of the spent FCC catalyst decreased
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from 12.8 µm to 0.163 µm, which may be due to the serious agglomeration phenomenon
before the modification of the spent FCC catalyst. During the ball milling process, the
collision between the ball, the cylinder wall, and the spent FCC catalyst or the spent FCC
catalyst self-grinded with each other, which contributed to the particle size reduction.

The changes of the specific surface area of the spent FCC catalyst before and after the
modification are shown in Table 3.

Table 3. Brunauer–Emmett–Teller (BET) characterization results.

Specific
Surface Area

(m2/g)

Substrate
Surface
(m2/g)

Micropore
Surface Area

(m2/g)

Total Pore
Volume
(mL/g)

Micropore
Volume
(mL/g)

Before
modification 75 17 58 0.1564 0.0104

After
modification 89 29 60 0.1884 0.0152

The changes of the pore size morphology before and after the modification of spent
FCC catalysts are shown in Figure 4.
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From Table 3 and Figure 4, it can be observed that the specific surface area and pore
volume of the spent FCC catalyst increase after the modification. Because the ball milling
reduces the catalyst particle size; the combination of calcination and sonication reduces the
adsorbed material on the catalyst (on the surface and inside the pores), thus increasing the
specific surface area and pore volume [30].

The relative percentages of major elements before and after the modification of the
spent FCC catalysts are shown in Figure 5.

It can be observed from Figure 5 that the elements contained in the spent FCC catalyst
before the modification mainly include aluminum (Al), silicon (Si), lanthanum (La), etc.
The relative content of Si and Al elements increased after the modification of the spent
FCC catalyst, while the content of the cerium (Ce) remained basically unchanged and the
relative content of the other elements decreased. This may be due to the volatilization of
coke and other substances adsorbed from crude oil during the high-temperature calcination
process, which caused the elemental content of the spent FCC catalyst to change.
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3.2. Processing Performance Analysis of Rubber Composites

The rubber vulcanization characteristics of the different proportions of carbon black
replaced by the spent FCC catalyst before the modification are shown in Table 4.

Table 4. Vulcanization characteristics of rubber composites with spent FCC catalyst before modification.

1# 2# 3# 4#

Mooney viscosity/MU 70.90 70.14 69.27 68.77
ML/(N·m) 2.13 2.06 1.87 2.19
MH/(N·m) 20.27 12.75 9.96 9.85

MH-ML/(N·m) 18.14 10.69 8.09 7.66
T10/min 11.92 10.07 10.2 8.87
T90/min 29.53 36.83 44.11 46.00
T100/min 56.33 59.59 59.72 59.93

Note: 1#, 2#, 3#, respectively corresponding to the experimental group in Table 1.

The rubber vulcanization characteristics of modified spent FCC catalyst replacing
carbon black with different proportions are shown in Table 5.

Table 5. Vulcanization characteristics of rubber composites after modification with spent FCC catalyst.

5# 6# 7# 8# 9# 10#

Mooney
viscosity/MU 70.68 69.13 68.95 70.31 69.27 68.46

ML/(N·m) 1.94 1.92 1.84 2.15 2.08 1.99
MH/(N·m) 18.43 18.2 16.12 22.08 21.70 21.29

MH-ML/(N·m) 16.53 16.28 14.28 19.93 19.62 19.30
T10/min 10.8 12.05 12.22 10.22 11.06 11.27
T90/min 31.47 36.03 38.50 26.69 27.70 28.33

T100/min 59.18 59.87 59.95 48.75 52.91 53.00

Note: 5#, 6#, 7#, 8#, 9#, 10# respectively corresponding to the experimental group in Table 1.

From Table 4, it can be observed that with the increase in the number of parts of carbon
black replaced by the spent FCC catalyst, the Mooney viscosity of the rubber compound
demonstrated a decreasing trend, indicating that the addition of the spent FCC catalyst
improved the plasticity and processability of the compound [31]. The value of MH-ML is
considered to be positively related to the crosslinking density of the rubber [32,33]. The
higher the value, the higher the crosslinking density. According to the data in the table,
the MH-ML value decreases as the number of parts increases, which is related to the weak
reinforcement of the spent FCC catalyst and is consistent with the trend of the Menny
viscosity. T10 is generally considered to be related to the rubber scorch time; the larger the
value, the higher the processing safety, and vice versa [34]. It can be observed from the
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data that the processing safety decreases as the number of replacement parts of the spent
FCC catalyst increases. The elemental analysis demonstrates that the spent FCC catalyst
contains elements such as S, which leads to early local cross-linking during the mixing
process, therefore resulting in scorching. T90 is the positive vulcanization time. From the
data, it can be observed that as the number of replacement parts increases, the positive
vulcanization time becomes longer, which leads to an increase in vulcanization time and a
decrease in economic efficiency [35].

As can be observed from Table 5, the reinforcement of the modified spent FCC catalyst
is greatly improved, and it can be used as a reinforcing filler to replace a part of the carbon
black for the rubber filler. From the MH-ML difference, T10, and T90 in the data of columns
5#–7#, it can be observed that the crosslink density is significantly increased compared
with that before the modification. There is a slight increase in T10, and the processing
safety is improved. There is a significant decrease in the positive vulcanization time of T90.
This is due to the decrease in the particle size, the increase in the specific surface area and
pore volume, and the decrease in impurities of the modified spent FCC catalyst, which
leads to the enhancement of interfacial bonding with the polymer and the improvement of
performance [36]. From the data in columns 8#–10#, it can be observed that S, accelerator
NS, and the silane coupling agent Si69 increased equiproportionally with the increase in
the spent FCC catalyst replacement. The MH-ML difference and T10 and T90 parameters
are greatly improved; thus, the performance is even more excellent.

3.3. Rubber Composite Payne Effect Analysis

The change of the storage modulus of rubber composites with different parts of the
carbon black replaced by the spent FCC catalyst is shown in Figure 6.
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Figure 6 is the storage modulus and strain curve of rubber composites under the spent
FCC catalyst/carbon black. With the increase in strain, the storage modulus of filler–filled
rubber composites decreases, which is called the Payne effect [37,38]. ∆G′ represents the
degree of the network structure of the filler, and ∆G′ is the difference between the storage
modulus at a 40% strain and the storage modulus at a 0.28% strain. The smaller ∆G′

indicates that the Payne effect is weak and the filler has a better dispersion in the rubber
matrix. From Figure 6d, it can be observed that with the increase in the number of carbon
black parts replaced by the spent FCC catalyst, the ∆G′ of the compounded rubber shows a
decreasing trend. This is mainly because the spent FCC catalyst can form more filler–rubber
network structures with rubber, with less filler agglomeration, and exhibit a low modulus
in torsion tests; thus, the Payne effect is weakened.

3.4. Analysis of Physical and Mechanical Properties of Rubber Composites

The function of fillers in rubber products is mostly to improve the mechanical proper-
ties such as hardness, tensile strength, and elongation at the break of rubber composites.
The mechanical properties corresponding to different experimental formulations in Table 1
are shown in Table 6 (Table 1, formulation 1#–4#) and Table 7 (Table 1, formulation 5#–10#).

Table 6. Mechanical properties of vulcanized rubber.

1# 2# 3# 4#

Hardness/Shore A 60.0 48.5 45.5 45.0
10% tensile stress/MPa 0.54 0.56 0.55 0.54

100% tensile stress/MPa 2.74 1.67 1.36 1.18
300% tensile stress/MPa 12.82 6.57 4.25 2.55

Tensile strength/MPa 19.61 18.22 13.62 8.48
Elongation at break/% 454.85 657.80 693.20 752.91

Tensile product 8919.61 11,985.12 9441.38 6384.68
Tearing strength/N 77.78 54.39 50.41 39.54

Specific gravity/g·cm−3 1.142 1.149 1.156 1.163
DIN abrasion/cm3 0.108 0.137 0.149 0.166
Rebound rate/% 60.3 60.9 61.4 61.7

Note: 1#, 2#, 3#, respectively corresponding to the experimental group in Table 1.

Table 7. Mechanical properties of vulcanized rubber.

5# 6# 7# 8# 9# 10#

Hardness/Shore A 58.0 57.5 55.0 62.0 61.5 61.0
10% tensile stress/MPa 0.60 0.56 0.53 0.62 0.57 0.56

100% tensile stress/MPa 2.54 2.37 2.04 3.16 3.01 3.00
300% tensile stress/MPa 11.03 9.67 7.50 13.12 13.10 12.88

Tensile strength/MPa 19.46 19.35 19.01 20.04 19.95 19.79
Elongation at break/% 478.22 505.41 580.31 441.34 443.60 443.87

Tensile product 9306.16 9830.22 11,031.69 8846.31 8848.27 8784.10
Tearing strength/N 73.68 71.44 68.37 87.13 83.25 81.46

Specific gravity/g·cm−3 1.146 1.152 1.162 1.147 1.153 1.161
DIN abrasion/cm3 0.128 0.129 0.131 0.109 0.119 0.124
Rebound rate/% 62.0 62.5 63.1 64.00 65.50 66.70

Note: 5#, 6#, 7#, 8#, 9#, 10# respectively corresponding to the experimental group in Table 1.

As shown in Table 6, the mechanical properties of the rubber material filled with
the spent FCC catalyst directly instead of the carbon black rubber were poor. The tensile
strength, tear strength, and abrasion properties decreased significantly as the number of
replacement parts increased.

From Table 7 (formulation 5#–7#), it can be observed that the hardness and tensile stress
of the rubber composites demonstrated a decreasing trend as the number of replacement
parts of the spent FCC catalyst increased. This may be due to the combination of the spent
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FCC catalyst with the rubber molecular chain being weaker compared to the carbon black,
resulting in the decrease in the hardness and tensile stress of the rubber composites.

From Table 7 (formulation 8#–10#), it can be observed that with the increase in the
number of replacement carbon black parts after the modification of the spent FCC catalyst,
the fixed tensile strength, tensile strength, and tear strength of the rubber composites were
enhanced after the addition of S, accelerator NS, and the silane coupling agent Si69 in
an equal proportion, so that the properties of the three groups of the rubber composites
remained basically the same as the control group (formulation 1#). This is mainly because
with the increase in the accelerator NS, S, and silane coupling agent Si69, the interfacial
bonding between silica and rubber molecular chains in the spent FCC catalyst is enhanced.
At the same time, the increase in the accelerator NS and S improves the degree of vulcaniza-
tion and increases the crosslinking density; this shows the characteristics of a high modulus
and high elongation.

The wear resistance of rubber composites after replacing the carbon black with the
spent FCC catalyst was slightly lower than that of the control group. This may be due
to the particle size of the spent FCC catalyst being larger than that of the carbon black
(N660 particle size 49–60 nm), and the combination of the spent FCC catalyst and rubber
molecular chains is weaker compared to the carbon black, which leads to the easy fall off of
the spent FCC catalyst during the process of abrasion. After the spent FCC catalyst falls off,
the surface of the rubber composite is defective, resulting in more rubber particles being
worn off and therefore with increased wear. The spent FCC catalysts contain reinforcing
substances such as SiO2. With the increase in the amount of the accelerator NS, S and silane
coupling agent Si69, the interfacial combination of silica in the spent FCC catalyst and
rubber molecular chain is enhanced, and the spent FCC catalyst does not easily fall off
during the wear process; thus, the wear consumption is reduced.

3.5. Microscopic Morphology

The microscopic morphologies corresponding to the rubber composites prepared by
formulations 1#, 5#, 6#, and 7# are shown in Figure 7.
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As can be observed from Figure 7, the modified spent FCC catalyst, instead of the
carbon black filler in the rubber, has a better dispersion and no more obvious agglomeration
phenomenon. When 15 phr of the modified spent FCC catalyst was used to replace the
equal mass of the carbon black, the dispersion and distribution of the filler in the rubber
was optimal, which was consistent with the Payne effect results shown in Figure 8.
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3.6. Dynamic Properties Analysis of Rubber Composites

Figure 8 shows the change curve of the loss factor (tanδ) with a temperature for rubber
composites at −65~65 ◦C [39,40]. Usually, the higher the peak value of tanδ, the better the
dispersion of the filler. The tanδ at 0 ◦C represents the wet skid resistance of the tire, and
the larger the value, the better the wet skid resistance. The tanδ at 60 ◦C represents the
rolling resistance of the tire, and the smaller the value, the lower the rolling resistance. The
peak value of tanδ from high to low is 7# ≈ 10# > 6# ≈ 9# > 5# ≈ 8# > 1#, which is basically
consistent with the characterization results in Figure 6, indicating that the replacement of
the carbon black by the spent FCC catalyst for rubber filling can improve the dispersion of
the filler in the rubber matrix. At 0 ◦C, the curves of formulation 5#–7# are lower than those
of the control group (formulation 1#), indicating that the wet skid resistance of the tires
decreases after replacing the carbon black with the spent FCC catalyst. The corresponding
curves of formulation 8#–10# are higher than those of the control group (formulation 1#).
With the increase in the number of replacement parts of spent FCC catalysts, the equal
proportional addition of S, accelerator NS and the silane coupling agent Si69 improved
the anti-slip properties of the tires. Mao C et al. [41] believed that there is an inevitable
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relationship between the surface roughness of the sample and the wet skid resistance. The
rougher the surface, the higher the coefficient of the wet friction and the better the wet skid
resistance. Therefore, the wet skid resistance of the rubber polymer in this experiment may
be related to the particle size of the spent FCC catalyst and the interfacial bonding strength
of the filler and the rubber. At 60 ◦C, the corresponding curves of formulations 5#–10#

are lower than those of formulation 1#, while the corresponding curves of formulations
8#–10# continue to show a downward trend and are lower than those of formulations 5#–7#,
indicating that with the increase in replacement parts of the spent FCC catalyst, the addition
of S, accelerator NS and the silane coupling agent Si69 in equal proportion could reduce
the rolling resistance of the tire.

3.7. Aging Properties’ Analysis

The aging properties of the vulcanized rubber composites (formulations 1#–10#) were
tested after aging at 100 ◦C for 24 h. The aging tensile properties are shown in Table 8.

Table 8. Aging tensile properties of rubber composites.

Test Items 1# 5# 6# 7# 8# 9# 10#

Elongation at
break/%

Before aging 454.85 478.22 505.41 580.31 441.34 443.60 443.87
After aging 270.49 311.26 331.82 385.11 295.08 297.68 298.86

Aging property change rate/% 40.53 34.91 34.35 33.64 33.14 32.89 32.67
Tensile strength/

MPa
Before aging 19.61 19.46 19.35 19.01 20.04 19.85 19.79
After aging 16.82 18.24 17.43 16.82 19.06 18.49 18.28

Aging property change rate/% 14.23 6.27 9.92 11.52 4.89 6.85 8.59

Tensile product Before aging 8919.61 9306.16 9779.68 11,031.69 8844.45 8805.46 8784.19
After aging 4550.26 5677.38 5783.62 6477.55 5624.22 5504.10 5463.16

Aging property change rate/% 48.99 38.99 40.86 41.28 36.41 37.49 37.81
Aging coefficient 0.51 0.61 0.59 0.59 0.64 0.63 0.62

As shown in Table 8, the aging property change rates of the elongation at the break,
and the tensile strength and tensile product of the rubber composites prepared by replacing
the carbon black with spent FCC catalysts (formulations 5#–7#), are lower than those of the
control group (formulation 1#), indicating that the aging resistance is better than that of
the control group. With the increase in the number of replacement parts of the spent FCC
catalyst, the aging property change rate of the composites was reduced again by adding S,
accelerator NS and the silane coupling agent Si69 (formulation 8#–10#) in equal proportion;
the anti-aging property is improved again and is significantly better than that of the control
group. This is mainly because the spent FCC catalyst is porous material and can adsorb
some of the vulcanization system and other rubber additives to become the carrier of the
slow-release agent. During the aging process, the S absorbed in the pore size is released
and re-involved in the vulcanization reaction. At the same time, the silane coupling agent
Si69 contains four elemental sulfur, which will also be re-involved in the vulcanization
reaction during the aging process to enhance the anti-aging properties of rubber.

3.8. Synergistic Reinforcement Mechanism of Spent FCC Catalyst and Carbon Black for SBR

The spent FCC catalyst is uniformly and disorderly dispersed in the SBR matrix.
During the mixing process of the filler (spent FCC catalyst) and rubber, rubber molecular
chains are adsorbed on the surface of the filler to form bound rubber; meanwhile, some
rubber molecular chains enter the voids and pores of the filler to form a small amount of
inclusion rubber (retention rubber). The interaction between the spent FCC catalyst and
rubber mainly includes the physical adsorption and chemical combination, which can form
a close filler–polymer network structure with rubber, so as to improve the basic physical
properties of rubber products. When the rubber products are stretched by an external force,
the existence of the bound rubber is conducive to prolonging the crack expansion path so
that the rubber can withstand a greater external force, and the existence of the inclusion



Polymers 2023, 15, 1000 13 of 15

rubber is conducive to limiting the displacement of the molecular chains around the filler,
thereby improving the mechanical properties of the rubber.

4. Conclusions

In this paper, we explore the spent FCC catalysts to replace different parts of the
carbon black for the rubber product preparation to realize the resource utilization and
diversified applications of spent FCC catalysts. The use of the spent FCC catalyst as a filler
to replace part of the carbon black for the rubber composite preparation can not only realize
the recycling of waste rubber products, but also reduce the environmental pollution caused
by the improper treatment of the spent catalyst.

The spent FCC catalyst as a filler to replace carbon black in the rubber has good
dispersibility, which is conducive to the improvement of the comprehensive performance
of rubber products (stretching, stretching, rebound, tearing, etc.). The Payne effect is
decreased by about 3–16%, and the rolling resistance is obviously reduced. The spent FCC
catalyst is a porous material, which can be used as a carrier of the slow release agent. In
the aging process, S in the pore size of the spent FCC catalyst will be released again to
participate in the vulcanization reaction and improve the anti-aging properties of rubber
products.
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