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Abstract: Polar-functionalized polyolefins are high-value materials with improved properties. How-
ever, their feedstocks generally come from non-renewable fossil products; thus, it requires the
development of renewable bio-based monomers to produce functionalized polyolefins. In this contri-
bution, via the Pd-catalyzed telomerization of 1,3-butadiene and three types of bio-based alcohols
(furfuryl alcohol, tetrahydrofurfuryl alcohol, and solketal), 2,7-octadienyl ether monomers including
OC8-FUR, OC8-THF, and OC8-SOL were synthesized and characterized, respectively. The copoly-
merization of these monomers with ethylene catalyzed by phosphine–sulfonate palladium catalysts
was further investigated. Microstructures of the resultant copolymers were analyzed by NMR and
ATR-IR spectroscopy, revealing linear structures with incorporations of difunctionalized side chains
bearing both allyl ether units and polar cyclic groups. Mechanical property studies exhibited better
strain-at-break of these copolymers compared to the non-polar polyethylene, among which the
copolymer E-FUR with the incorporation of 0.3 mol% displayed the highest strain-at-break and
stress-at-break values of 940% and 35.9 MPa, respectively.

Keywords: telomerization; bio-based monomers; functionalized polyethylene; palladium catalyst

1. Introduction

Functionalized polyolefin is of great importance in both academic and industrial fields
because of its significant improvement in surface properties such as wettability, adhesion,
printability, and compatibility [1,2]. However, the incorporation of polar functionalities
into the non-polar polyolefin backbone is highly challenging. Direct coordination–insertion
copolymerization of olefin and polar monomers catalyzed by transition–metal catalysts is
considered the most straightforward and powerful method to achieve this target. In this
regard, late-transition–metal catalysts exhibit excellent performance on copolymerizing
olefin and polar monomers, owing to their lower oxophilicity and better functional group
tolerance. Over the more than the preceding two decades, various late-transition–metal cat-
alyst systems have been developed [3–9], among which Drent’s type phosphine–sulfonate
palladium catalysts have stood out on copolymerizing a broad scope of polar monomers,
including many challenging monomers such as vinyl ether, vinyl fluoride, vinyl acetate,
acrylonitrile, and acrylic acid [9–20]. In addition to the catalyst development, the design of
polar monomers also enables the synthesis of functionalized polyolefin featuring distinctive
chain structures [21–27].

Generally, feedstocks of polyolefin come from petroleum or natural gas, which are
non-renewable resources. Therefore, utilizing renewable bio-based feedstocks to pro-
duce functionalized polyolefin as an alternative is of great significance from a long-
term point of view [28–30]. Several works have successfully copolymerized bio-based
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monomers, such as eugenol [31,32], sugar derivatives [33], furan derivatives [34,35], and
10-undecenoic acid [36], with ethylene to afford functionalized polyethylenes. However,
renewable monomers suitable for olefin copolymerization are severely limited by ap-
plicable types of bio-molecules. Thus, expanding the scope of bio-based monomers is
needed, which could be achieved by converting bio-molecules to desirable monomers for
olefin copolymerization.

Telomerization is a versatile reaction that refers to a metal-catalyzed dimerization of
1,3-dienes in the presence of a nucleophile, such as alcohol, amine, amide, acid, anhydride,
and water (Scheme 1) [37,38], in which the produced linear compounds can serve as poten-
tial polar olefin monomer candidates for olefin copolymerization. More importantly, this
one-step reaction is not only highly active and chemo-selective but is also an environment-
friendly and green chemical [39,40], providing an ideal method to produce bio-derived
monomers. As shown in Scheme 1, the generated linear compounds contain two double
bonds: one is a terminal double bond that can polymerize with olefin, while the other is an
internal double bond that is difficult to participate in the coordination–insertion polymer-
ization [41], but can undergo the crosslinking reaction to improve polymer properties [42].
It is worth noting that there are long spacers between the terminal double bond and the
polar groups, which could decrease the possibility of poisoning the active metal center.
Taking alcohol as an example, Kaminsky’s pioneering work has successfully achieved the
copolymerization of ethylene with the industrial intermediate 2,7-octadienyl methyl ether
that is pre-protected by alkyl aluminum [43].
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Scheme 1. Telomerization of 1,3-butadiene with a nucleophile and synthesis of bio-derived 2,7-
octadienyl ether monomers through telomerization of 1,3-butadiene and bio-based alcohols.

Herein, we utilized the telomerization of 1,3-butadiene and bio-based alcohols to
develop three 2,7-octadienyl ether monomers. Copolymerization of ethylene and these
bio-derived monomers were investigated by phosphine–sulfonate palladium catalysts.
The functionalities were successfully incorporated into the polyethylene backbones, and
microstructures were comprehensively studied. In addition, the mechanical properties of
this copolymer type were evaluated.

2. Materials and Methods
2.1. General Information

All syntheses involving air- and moisture-sensitive compounds were carried out using
standard Schlenk-type glassware (or in a glove box) under an atmosphere of nitrogen.
All solvents were purified from the MBraun SPS system. NMR spectra for monomers,
palladium complexes, and copolymers were recorded on a Bruker AV400 (1H: 400 MHz,
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13C: 100 MHz) or a Bruker AV500 (1H: 500 MHz, 13C: 125 MHz). NMR assignments
were confirmed by 1H−13C HSQC and 1H−13C HMBC experiments when necessary. The
molecular weights (Mw) and molecular weight distributions (Mw/Mn) of copolymers were
measured by means of gel permeation chromatography (GPC) on a PL-GPC 220-type high-
temperature chromatograph equipped with three PL-gel 10 µm Mixed-B LS type columns
at 150 ◦C. Melting temperature (Tm) of copolymers was measured through DSC analyses,
which were carried out on a TA Q2000 DSC Instruments under nitrogen atmosphere
at heating and cooling rates of 10 ◦C/min (temperature range: 40–160 ◦C). IR spectra
were acquired on a VERTEX 70 Fourier transform infrared spectrometer. Stress/strain
experiments were performed at 5 mm/min on an Electromechanical Universal Testing
Machine (E43.104) at room temperature. Samples were melt-pressed at 160 ◦C to obtain the
test specimens, which have 41-mm gauge length, 17-mm width, and 1.5-mm thickness. At
least two specimens of each polymer were tested.

Materials: furfuryl alcohol, tetrahydrofurfuryl alcohol, and solketal were commercially
available, which were further dried over Na2SO4 and NaHCO3 for 2 h and distilled. Palla-
dium catalysts Pd-1, Pd-2, and Pd-3 were prepared using the literature procedures [44–46].
All other reagents were commercially available and used as received.

2.2. Synthesis of Pd-3

The synthesis of Pd-3 was similar to Pd-2: Ligand was first synthesized using the
procedure according to the previously reported literature [10]. The solution of ligand
(300 mg, 0.68 mmol) and (tmeda)PdMe2 (171.8 mg, 0.68 mmol) in 1.4-dioxane (30 mL) was
stirred for 24 h at room temperature. The white powder produced during the reaction was
filtered and dried in a vacuum. After added to 150 mL of DMSO, the mixture was stirred
at 65 ◦C until the white solids were all dissolved. Subsequently, the solvent was further
removed to give a beige solid, which was washed 3 times with ethyl ether and dried in
vacuum (350 mg, 80.8% yield) (Figures S1–S3). 1H NMR (500 MHz, 298 K, CDCl3, 7.26
ppm): δ = 8.19 (dd, 1H, aryl-H), 7.42 (t, 1H, aryl-H), 7.28 (m, 2H, aryl-H), 6.09 (s, 2H, aryl-H),
3.82 (s, 6H, OCH3), 3.78 (s, 3H, OCH3), 3.06 (s, 6H, dmso-H), 2.84 (m, 1H, cyclohexane-H),
2.32 (m, 1H, cyclohexane-H), 1.89 (m, 1H, cyclohexane-H), 1.74 (m, 1H, cyclohexane-H),
1.68 (m, 2H, cyclohexane-H), 1.49 (m, 2H, cyclohexane-H), 1.25 (m, 3H, cyclohexane-H),
0.36 (s, 3H, Pd-CH3). 31P NMR (202 MHz, 298 K, CDCl3, 7.26 ppm): δ = 23.64. 13C{1H}
NMR (125 MHz, 298 K, CDCl3, 77.16 ppm): δ = 164.55 (C-OCH3), 162.64 (C-OCH3), 148.08
(C-SO3), 132.88 (P-C(PhSO3)), 130.24, 130.11, 129.75, 128.33, 98.29 (P-C(PhOMe3)), 91.21,
55.64 (OCH3), 55.49 (OCH3), 41.33 (S-CH3), 40.28 (P-CH), 32.64 (CH2), 29.75 (CH2), 27.47
(CH2), 27.31 (CH2), 26.15 (CH2),−1.03 (Pd-CH3).

2.3. Synthesis of 2,7-Octadienyl Ether Monomers

A general procedure: Pd(OAc)2 (25 mg, 0.11 mmol), 1,3-bis(2,4,6-trimethylphenyl)
imidazolium chloride (IMesHCl) (151 mg, 0.44 mmol), potassium tert-butoxide (1.3 g,
11.58 mmol) were dissolved in the bio-based alcohol (0.22 mol). The mixture was transferred
to a steel autoclave and then cooled with liquid nitrogen. After the addition of 1,3-butadiene
(30 g, 0.55 mol, calculated by weight), the autoclave was sealed and heated to 90 ◦C. The
reaction mixture was stirred for 16 h, and then excess 1,3-butadiene was removed under
vacuum. The residue was distilled in vacuo, and the desired monomer was obtained as a
colorless oil in the temperature range of 72 ◦C–80 ◦C in vacuo. The distilled oil was directly
used for ethylene copolymerization without further purification.

Monomer OC8-FUR: 70% yield. 1H NMR (500 MHz, CDCl3): δ = 7.40 (d, J = 1.9 Hz,
1H, furyl-H), 6.37–6.27 (m, 2H, furyl-H), 5.84–5.76 (m, 1H, CH2=CH), 5.76–5.68 (m, 1H,
CH=CH), 5.61–5.54 (m, 1H, CH=CH), 5.04–4.91 (m, 2H, CH2=CH), 4.43 (s, 2H, OCH2), 3.97
(dd, J = 6.3, 1.2 Hz, 2H, OCH2), 2.12–2.01 (m, 4H, CH2), 1.44–1.54 (m, 2H, CH2). 13C NMR
(125 MHz, CDCl3): δ = 151.89 (furyl-C), 142.54 (furyl-C), 138.41 (CH2=CH), 134.64 (CH=CH),
126.23 (CH=CH), 114.54 (CH2=CH), 110.11 (furyl-C), 109.00 (furyl-C), 70.57 (OCH2), 63.46
(OCH2), 33.11 (CH2), 31.58 (CH2), 28.14 (CH2).
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Monomer OC8-THF: 56% yield. 1H NMR (500 MHz, CDCl3): δ = 5.80–5.71 (m,
1H, CH2=CH), 5.69–5.62 (m, 1H, CH=CH), 5.56–5.49 (m, 1H, CH=CH), 5.03–4.81 (m, 2H,
CH2=CH), 4.07–3.98 (m, 1H, CH), 3.94 (t, J = 5.5 Hz, 2H, OCH2), 3.88–3.81 (m, 1H, OCH2),
3.76–3.69 (m, 1H, OCH2), 3.41–3.36 (m, 2H, OCH2), 2.06–1.99 (m, 4H, CH2), 1.96–1.88 (m,
1H, OCH2), 1.84 (dt, J = 14.7, 7.3 Hz, 2H, OCH2), 1.61–1.54 (m, 1H, OCH2), 1.48–1.41 (m,
2H, CH2). 13C NMR (125 MHz, CDCl3): δ = 138.60 (CH2=CH), 134.21 (CH=CH), 126.67
(CH=CH), 114.57 (CH2=CH), 77.90 (OCH), 72.53 (OCH2), 72.13 (OCH2), 68.26 (OCH2), 33.22
(CH2), 31.67 (CH2), 28.26 (CH2), 28.19 (CH2), 25.61 (CH2).

Monomer OC8-SOL: 65% yield. 1H NMR (500 MHz, CDCl3): δ = 5.81–5.72 (m,
1H, CH2=CH), 5.70–5.63 (m, 1H, CH=CH), 5.56–5.47 (m, 1H, CH=CH), 5.02–4.87 (m, 2H,
CH2=CH), 4.27–4.18 (m, 1H, CH), 4.03 (dd, J = 8.2, 6.4 Hz, 1H, OCH2), 3.99–3.89 (m, 2H,
OCH2), 3.69 (dd, J = 8.3, 6.4 Hz, 1H, OCH2), 3.48 (dd, J = 9.8, 5.8 Hz, 1H, OCH2), 3.39 (dd,
J = 9.8, 5.6 Hz, 1H, OCH2), 2.09–1.99 (m, 4H, CH2), 1.48–1.40 (m, 2H, CH2), 1.40 (s, 3H, CH3),
1.33 (s, 3H, CH3). 13C NMR (125 MHz, CDCl3): δ = 138.37 (CH2=CH), 134.43 (CH=CH),
126.31 (CH=CH), 114.56 (CH2=CH), 109.20 (C(CH3)2), 74.66 (OCH), 72.11 (OCH2), 70.76
(OCH2), 66.84 (OCH2), 33.10 (CH2), 31.55 (CH2), 28.14 (CH2), 26.70 (CH3), 25.31 (CH3).

2.4. A General Procedure for Ethylene Copolymerization

In a typical experiment, a 150 mL glass pressure reactor connected with a high-pressure
gas line was first dried at 90 ◦C under vacuum for at least 1 h. The reactor was then adjusted
to the desired polymerization temperature. 18 mL of toluene and the desired monomer
were added to the reactor under N2 atmosphere, and then the desired amount of the
palladium catalyst in 2 mL of CH2Cl2 was injected into the polymerization system via
syringe. With a rapid stirring, the reactor was pressurized and maintained at 8 bar of
ethylene. After 4 h, the pressure reactor was vented, and the polymerization was quenched
via the addition of 100 mL EtOH. The resulting precipitated polymers were collected and
dried in a vacuum oven to a constant weight.

3. Results and Discussion
3.1. Synthesis of 2,7-Octadienyl Ether Monomers Derived from Telomerization of 1,3-Butadiene
and Bio-Based Alcohols

The Pd-catalyzed telomerization of 1,3-butadiene with a nucleophile has been exten-
sively studied to provide a variety of diverse compounds [38,39,47,48]. Inspired by this
versatile reaction, we attempted to develop a new type of 2,7-octadienyl ether monomers
for ethylene copolymerization, deriving from 1,3-butadiene and bio-based alcohols. Three
typical bio-based alcohols were chosen as feedstocks, among which furfuryl and tetrahydro-
furfuryl alcohols are stemmed from the reduction of furfural that is industrially produced
from the hydrolysis and dehydration of agricultural wastes, while solketal is derived from
glycerol that is the large amount byproduct of the biodiesel production [49,50]. An in situ
generated catalyst system from Pd(OAc)2 and the common commercial N-heterocyclic
carbene ligand IMesHCl was used. Eventually, a series of 2,7-octadienyl ether monomers,
OC8-FUR, OC8-THF, and OC8-SOL (Scheme 2), was successfully synthesized.

These three new monomers were fully identified by 1D and 2D NMR spectroscopy
(Figure S5–S14). According to 1H NMR analyses, the obtained 2,7-octadienyl ether featured
linear structures (see details in the supporting information), indicating that these newly
synthesized monomers could be good candidates for copolymerization. Taking OC8-FUR
as an example, distinctive vinylic resonances for the terminal vinyl and the internal vinyl
are clearly observed at δ = 5.79, 4.99, and 5.70, 5.59 ppm (13C: 138.41, 114.54, and 134.64,
126.23 ppm), respectively, in the 1H NMR and 13C NMR spectra (Figure 1). The resonances
at δ = 7.40, 6.33, and 6.31 ppm were assigned to the characteristic furan ring (13C: 151.89,
142.54, 110.11, and 109.00 ppm).
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3.2. Synthesis of Bio-Derived Functionalized Polyethylenes

Late-transition–metal catalysts are powerful tools to copolymerize ethylene and polar
monomers due to their lower oxophilicity and higher functional group tolerance. Among
these catalysts, phosphine–sulfonate palladium catalysts have been found as a universal
kind of catalysts with excellent tolerance for a broad scope of polar monomers, producing
highly linear functionalized polyethylene. With three selected phosphine–sulfonate palla-
dium catalysts in hand (Scheme 2), 2,7-octadienyl ether monomers OC8-FUR, OC8-THF,
and OC8-SOL were applied to ethylene copolymerization (Table 1).
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Table 1. Copolymerization of Ethylene and Bio-derived 2,7-Octadienyl Ether Monomers a.
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Entry Cat Monomer c(M)
(mol L−1)

Yield
(g)

act. b

(104)
X c

(mol %)
Mw

d

(104) Mw/Mn
d Brs c Tm

e

(◦C)
1 Pd-1 OC8-FUR 0.1 2.14 5.35 0.2 2.20 1.86 5.6 124.3
2 Pd-1 OC8-FUR 0.3 0.59 1.48 0.6 2.07 1.94 4.5 120.8
3 Pd-1 OC8-FUR 0.5 0.67 1.68 1.0 1.60 2.21 6.0 115.1
4 Pd-1 OC8-THF 0.5 0.29 0.73 1.3 1.45 2.16 7.9 117.8
5 Pd-1 OC8-SOL 0.5 0.57 1.43 1.9 1.41 2.16 −f 116.5
6 Pd-2 OC8-FUR 0.1 0.65 1.63 0.2 4.16 1.97 4.2 123.3
7 Pd-2 OC8-FUR 0.3 0.21 0.53 1.4 4.40 1.89 3.3 116.0
8 Pd-2 OC8-FUR 0.5 0.23 0.58 2.0 4.79 2.13 7.7 114.4
9 Pd-2 OC8-THF 0.5 0.18 0.45 2.1 3.34 2.12 9.6 116.0

10 Pd-2 OC8-SOL 0.5 0.38 0.95 2.9 6.10 2.16 −f 117.2
11 Pd-3 OC8-FUR 0.1 0.79 1.98 0.3 7.26 2.18 4.4 123.9
12 Pd-3 OC8-FUR 0.3 0.49 1.23 0.5 7.52 1.87 0.7 118.0
13 Pd-3 OC8-FUR 0.5 0.18 0.45 1.1 3.66 2.13 9.1 115.4
14 Pd-3 OC8-THF 0.5 0.28 0.70 1.4 6.05 1.94 4.4 119.1
15 Pd-3 OC8-SOL 0.5 0.31 0.78 1.6 5.98 2.15 −f 118.1

16 g Pd-3 OC8-SOL 0.3 0.99 1.24 0.6 9.42 1.68 −f 118.3
17 g Pd-3 OC8-FUR 0.5 0.35 0.44 1.6 2.75 1.96 1.9 112.1

a Reaction conditions: Pd catalyst (10.0 µmol), toluene/CH2Cl2 (18 mL/2 mL), 90 ◦C, 4 h, ethylene (8 bar),
500 rpm, at least two runs, unless otherwise noted. b Activity is in unit of g mol−1 h−1 c X = Incorporation of polar
monomer, Brs = Number of branches per 1000 C, as determined by 1H NMR in C2D2Cl4 at 110 ◦C. d Determined
by GPC in 1,2,4-trichlorobenzene at 150 ◦C vs. linear polystyrene standards (Figure S28–S39). e Determined by
DSC (second heating) (Figure S40–S47). f Not determined because it is unable to distinguish the methyl groups on
the polymer chain and the 2,2-dimethyl-1,3-dioxolane. g Pd catalyst (20 µmol), toluene/CH2Cl2 (38 mL/2 mL).

The classical phosphine–sulfonate palladium catalyst Pd-1 was first investigated
toward ethylene copolymerization with OC8-FUR under different concentrations. In the
presence of 0.1 M OC8-FUR, the highest activity of 5.35 × 104 g mol−1 h−1 was achieved,
along with the incorporation of 0.2 mol% (Table 1, entry 1). By increasing the concentration
of OC8-FUR from 0.1 M to 0.3 M to 0.5 M, the incorporation increased correspondingly,
reaching the highest value of 1.0 mol%, albeit with the decrease of the activity and the
copolymer molecular weight, as anticipated. Under otherwise identical conditions, the
activity of ethylene and 0.5 M OC8-THF copolymerization dropped by half compared
to that of OC8-FUR, yet the monomer incorporation slightly increased (Table 1, entries
4 vs. 3). As for OC8-SOL, the highest incorporation of 1.9 mol% was observed (Table 1,
entry 5), along with a higher activity than that of OC8-THF. It is speculated that the two
methyl groups on the dioxolane ring could enhance the steric hindrance, inhibiting the
coordination of the oxygen atom to the metal center. In terms of the copolymer molecular
weight, the trend followed the order of OC8-FUR > OC8-THF > OC8-SOL.

Encouraged by the successful insertion of 2,7-octadienyl ether monomers catalyzed
by Pd-1, two gradually bulkier palladium catalysts, Pd-2 and Pd-3, were further studied
(as shown in Figure S48: the steric hindrance order of these three palladium catalysts is
Pd-1 (buried volume: VBur = 45.1%) < Pd-2 (VBur = 49.6%) < Pd-3 (VBur = 50.8%)). For
OC8-FUR, Pd-2 exhibited lower activities and higher molecular weight of copolymers
compared to those by Pd-1 (Table 1, entries 6–8 vs. 1–3). These results agreed with the
general rule that bulky substituents could increase the axial steric hindrance to enhance
the polymer molecular weight by suppressing the β-H elimination reaction yet also slow
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ethylene coordination and insertion to lower activities. Moreover, the increased steric bulk
could also suppress the coordination of the polar unit to the palladium center, resulting
in the improvement of the monomer incorporation. Unlike those of Pd-1, copolymer
molecular weights generated by Pd-2 displayed an upward tendency with the monomer
concentration increasing. This could be ascribed to the increasing incorporation of the
monomer with a larger molecular weight than ethylene. Similar variation tends on the
activity, the copolymer molecular weight and the monomer incorporation afforded by Pd-2
were found for OC8-THF and OC8-SOL (Table 1, entries 9 vs. 4 and 10 vs. 5). Note that
the highest incorporation was found for OC8-SOL with the value of 2.9 mol%.

Pd-3 bearing larger steric bulky substituents further enhanced the molecular weights
of E-FUR copolymers at monomer concentrations of 0.1 M and 0.3 M (Table 1, entries 11
and 12). However, in the presence of 0.5 M OC8-FUR, the copolymer molecular weight
dropped dramatically (Table 1, entry 13). Compared to Pd-2, Pd-3 provided lower monomer
incorporations, which were similar to those of Pd-1. It is assumed that the steric hindrance
of Pd-3 was too large, so the incorporation of the large monomer was disfavored. As for
OC8-THF and OC8-SOL, phenomena of the incorporation decrease were also observed
using Pd-3 (Table 1, entries 14 and 15). By lowering the OC8-SOL concentration to 0.3 M
and increasing the amount of Pd-3, the highest molecular weight of ethylene and 2,7-
octadienyl ether copolymer was generated with the value of 94.2 kDa, yet the incorporation
decreased as anticipated (Table 1, entry 16). The condition of increasing the Pd-3 amount
was also applied to the copolymerization of ethylene and 0.5 M OC8-FUR. The monomer
incorporation was improved from 1.1 mol% to 1.6 mol%, but the molecular weight slightly
decreased (Table 1, entries 17 vs. 13).

3.3. Analysis of Copolymer Microstructures

Comprehensive NMR spectroscopy (Figure S15–S27), including 1H NMR, 13C NMR,
1H−13C HSQC, and 1H−13C HMBC, was further employed to identify microstructures
of copolymers derived from the three 2,7-octadienyl ether monomers (see details in the
supporting information). All the obtained copolymers showed linear chain structures with
low branching density. As shown in Figure 2, the characteristic signals of the internal
double bond appeared at δ = 134.08 and 126.49 ppm, suggesting that the ally ether unit
did not participate in the coordination–insertion polymerization. This assumption was
further confirmed by no observation of the cyclic structure in 13C NMR spectra according to
previous reports on allyl ether monomers [27], which is probably because of the difficulty
of the internal double bond coordination–insertion process. Additionally, key resonances
of the terminal polar furfural, tetrahydrofurfuryl, and 2,2-dimethyl-1,3-dioxolane rings
were clearly observed in the 13C NMR spectra. In a word, the ethylene and bio-based
2,7-octadienyl ether copolymers revealed a linear structure with long difunctionalized side
chains, which could provide potential reaction sites for further modification.

ATR-IR analyses were performed for representative ethylene and 2,7-octadienyl ether
copolymers, and a polyethylene sample produced by Pd-3 [46] was also tested as a com-
parison (Figure 3). As shown in Figure 3, all the copolymers feature characteristic bands at
close 968 cm−1, assigned to the symmetric C–O–C stretching vibration of the allyl ether
unit, which is absent in the PE sample. For E-FUR, the characteristic peak at 1148 cm−1

belongs to the typical absorption of furan rings [51], while the symmetric C−O−C−O
stretching vibration of the acetal group is observed at 846 cm−1 for E-SOL [52].
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3.4. Mechanical Properties of Copolymers

Since difunctionalized polyethylenes derived from these new bio-based 2,7-octadienyl
ether monomers were successfully prepared, we attempted to determine the influence of the
monomer incorporation on mechanical properties. Polyethylene samples were synthesized
for comparison to gain a deep understanding. However, polyethylenes produced by Pd-1
and Pd-2 were unable to conduct tensile tests due to low molecular weights and the brittle
nature [52], which was attributed to the steric hindrance effect of the palladium catalysts
on the polymer molecular weight. In principle, a lower steric hindrance in the catalyst facil-
itated the chain transfer of β-H elimination, which reduced the polymer molecular weight.
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Thus, five copolymer samples with different monomer types and monomer incorporations
and a polyethylene sample afforded by Pd-3 were selected for tensile tests to evaluate the
mechanical properties (Figure 4). Typically, the branching density has a great influence on
mechanical properties. Since the selected polymers generated by the phosphine–sulfonate
palladium catalyst featured low branching densities, the impact of the monomer incorpo-
ration would be pronounced. As shown in Figure 4, all copolymers displayed significant
improvement on strain-at-break, in contrast with the non-polar polyethylene. In view
of tensile strength, copolymers with low incorporations (E-FUR, 0.3 mol% and E-SOL,
0.6 mol%) showed comparable or higher stress-at-break values compared to that of the
polyethylene sample. With the increase of the monomer incorporation, the tensile strength
of copolymers decreased correspondingly. It is probably because the intramolecular interac-
tions involving the polar groups on the copolymer chain might decrease the intermolecular
chain entanglement, leading to damage to the copolymer’s mechanical properties [17].
Likewise, the copolymer with lower incorporation of 0.3 mol% (vs. 1.6 mol%) had fewer
branches and higher molecular weight, both of which favored tensile strength. Copolymers
of E-FUR and E-SOL with the same incorporation of 1.6 mol% exhibited similar mechanical
properties. In general, among the selected copolymer samples, E-FUR with the lowest
incorporation of 0.3 mol% showed the highest values of stress-at-break and strain-at-break,
which are higher than those of the compared polyethylene (35.9 MPa vs. 30.2 MPa; 940% vs.
565%). These results suggested that low incorporations of 2,7-octadienyl ether monomers
are enough to be beneficial for mechanical properties.
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Figure 4. Stress–strain curves for selected functionalized polyethylene samples and a non-polar
polyethylene sample generated by Pd-3.

4. Conclusions

In summary, three bio-derived 2,7-octadienyl ether monomers were developed through
the telomerization of 1,3-butadiene and renewable bio-based alcohols. These new monomers
featured linear structures with a terminal double bond, an internal double bond, and a
terminal polar cyclic group. By utilizing phosphine–sulfonate palladium catalysts, polar-
functionalized polyethylenes were achieved by the copolymerization of ethylene and
2,7-octadienyl ether monomers. The microstructure analyses revealed linear structures
with incorporations of long side chains containing both allyl ether units and polar cyclic
groups into the backbone. The copolymers with different monomer types and incorpo-
rations were tested for mechanical properties. With the incorporation of 2,7-octadienyl
ether monomers, the strain-at-break values of copolymers were improved compared to the
non-polar polyethylene. Furthermore, the low incorporation of polar monomers was of ad-
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vantage to both stress-at-break and strain-at-break. Our work provides a potential method
to expand polar monomers derived from bio-based feedstocks for olefin copolymerization
to synthesize new types of functionalized polyolefins.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/polym15041044/s1, Figures S1–S3: Characterization of
Pd-3; Figures S4–S14: Characterization of 2,7-octadienyl ether monomers; Figures S15–S27: NMR
figures of copolymers; Figures S28–S39: GPC figures of copolymers; Figures S40–S47: DSC figures of
copolymers; Figure S48: Steric maps of Pd-1, Pd-2, and Pd-3; Figure S49: Possible reaction pathways
in the copolymerization process.
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