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Abstract: The progress of digital technologies demands more speed and larger storage capacity.
Optical storage systems have the advantage of being cheap, fast and capacious. This article explores
the potential use of polyimide-based films as a recording medium for optical storage devices. The
materials were designed through a host–guest approach that involves a cyano-containing polyimide
precursor and an azochromophore combined in the following ratios: 1:0.25, 1:0.5, 1:0.75 and 1:1. After
thermal treatment up to 200 ◦C, polyimide systems were formed with supramolecular structures
constructed via hydrogen bonding as shown by molecular modeling and FTIR at around 3350 cm−1.
The aspects arising from the variation of the azo-dye content in the polyimide samples and their
impact on the vitrification temperature, colorimetric features, refractive index, band gap, non-linear
optical susceptibility and birefringence were investigated for the first time. The thermal analysis
indicated a slight decrease in the vitrification temperature from 190.84 ◦C for the sample without
azo dye to 163.91 ◦C for the film containing the highest leading of azo dye. The morphology images
revealed the occurrence of periodic structures in azo-derived materials exposed to a UV laser, which
is accentuated by the addition of more azo dye molecules. Optical tests allowed observation of the
increase in the dominant wavelength, refractivity and optical conductivity of the samples, produced
by the incorporation of azochromophore and laser irradiation. The photo-generated birefringence
increased from 0.014 (sample with 1:0.25) to 0.036 (sample with 1:1), which in combination with the
created regular topography pattern, is essential for the use of these materials as recording media in
optical storage applications.

Keywords: flexible polyimide; azo derivative; photo-induced properties

1. Introduction

Polyimides (PIs) represent one of the most relevant kinds of thermally resistant poly-
mers employed in a wide range of applications, such as aerospace, membranes, adhesives,
automotive and in a variety of electronic devices [1–3]. For implementation in electronic
products, the material must exhibit distinctive features, aside from thermal stability, such
as flexibility, chemical resistance, dimensional stability, relatively low permittivity and a
specific molecular arrangement [4]. The latter feature can be achieved as a function of
chain conformation, which can be further tuned by the presence of certain external factors
(radiations or mechanical forces) [5–7]. In their absence, the route for adaptation of the
PI properties relies on controlling the polymer chemical structure by carefully selecting
the combination of monomers used in synthesis, which, generally, are diamines or diiso-
cyanates in reaction with dianhydrides [8]. Therefore, as a function of each monomer
feature (i.e., size, flexibility, symmetry, level of conjugation, etc.), it is possible to attain
the targeted conformational characteristics [9], with a deep impact on the balance of ther-
mal, mechanical, optical and electrical properties [10,11]. For example, incorporation of
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cyano groups in the PI structure provides additional chain flexibility and opportunities
for crosslinking while enhancing the thermal stability, and through its large polarization
and low molecular volume, it augments the dielectric constant in comparison with the PI
counterparts lacking this group [12].

Particular attention is given to photodeformable PIs owing to the noteworthy features
generated by radiation that enable their spatial and directional control [13]. To achieve
photosensitive PI films, it is preferable to insert photo-switchable chromophores into the
material structure, which is an approach that allows the extension of the molecular scale
motions up to the macroscopic level. Azo derivatives are the top choice photosensitizer due
to their ability to undergo reversible trans−cis and cis−trans isomerization in the presence
of ultraviolet (UV) and visible radiation [14,15]. The photo-induced properties are strongly
affected by the characteristics of the incident radiation, such as the wavelength, polarization
state and irradiation time, as well as the use of masks that allow selective irradiation of
the polymer surface. The geometrical modification of the molecules attributed to the azo-
compound isomerization may eventually lead to macroscopic deformation of polymeric
materials, for example, PIs [16]. During laser exposure, the unidirectional orientation of
the chromophore occurs as an outcome of the light-triggered isomerization among the
configurations of the azo-based unit. When such a molecule gains a transition dipole
aligned at 90◦ to the polarization vector, it determines a null transition dipole momentum.
Hence, no supplementary excitations take place, and the material displays a change in
the orientation of the optical axis with regard to the position of the radiation electric
vector [17]. By modifying the polarization state of the incident radiation, the material
can be commutated reversibly between two states of distinct molecular arrangement.
For instance, an isotropic in-plane disposition of the polymer chains can be converted
into a powerful anisotropic orientation via exposure to linearly polarized radiation [18].
In this way, the refractive index recorded along the polarization direction (named nx)
tends to shrink in magnitude, whereas the in-plane index orthogonal to this direction
(ny) is augmented. The original isotropic material might be optically restored when it is
under the effect of circularly polarized radiation. The large photo-generated and erasable
birefringence (∆n = ny ± nx) values are of great scientific interest [18].

As a result of the chromophore rearrangement caused by light irradiation within the
polymer system, the overall material gains new properties such as birefringence, dichroism
and textured topography [19]. These characteristics could be exploited for the development
of polymer-based sensors [20], photoactuation [21] and optical storage [22] devices. For
the last application, polymers displaying optical sensitivity can be utilized as optical
recording media. The writing procedure entails selective excitation of the azo-based
moieties that suffer numerous trans–cis–trans isomerization accompanied by reorientation,
hence augmenting the amount of photochromic groups orthogonal to the polarization
direction. Such a mechanism implicates the movement of the side groups and the backbone
under the polymer glass transition temperature (Tg) [23]. The stable birefringence pattern
indicates good storage ability of the optical medium. The combination of bulk birefringence
and the production of a surface relief pattern are advantageous for attaining recording
layers that are increasing gain effect in holographic storage. In contrast to digital storage,
the holographic one can be accomplished by registering the interference pattern of radiation
that carries the optical data [24]. During the photoanisotropic modulation stage, the data
are registered in the polymer sheet as dichroism and birefringence, whereas for the surface
modulation, the data are registered as variations in the sample configuration.

Related to the preparation strategy of photo-sensitive PI materials based on azo
derivatives, there are two general possibilities. The first one is concerned with utilization
in polymer synthesis of monomers that contain azo-moiety in their structure [25], while the
other method involves the addition of azo derivatives in the PI host [26]. An interesting
approach to creating a supramolecular architecture of such materials is via hydrogen
bonding connection between the chromophore and PI host, as described in the works of
Schab-Balcerzak [27,28]. The reports are mainly focused on chromophores which comprise
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a pyridine ring as an alternative for phenyl of azobenzene or a matrix that includes pyridine
units. As far as we know, the effect of the azochromophore amount on the PI conformational,
thermal and optical properties before and after laser exposure has not been studied yet.

A previous article [29] focused on the photodesign of regular surface patterns in
supramolecular systems made from a photosensitive PI and another azo dye. The host PI
used in [29] is prepared from a carbonyl-containing dianhydride and a flexible diamine
containing ether and methyl kinks (lacking the cyano group). The surface topography
was evaluated at the nanoscale (before and after phase mask UV laser), revealing that a
higher pattern regularity and surface anisotropy are optimal for orientation of the nematic
molecules. A more recent work [30] had the goal of analyzing the effects induced by the
type of azo dye and on the thermal degradation behavior, colorimetry parameters and
morphological characteristics. Moreover, the cyano group from the diamine is placed in the
ortho-position, and the outcome produced by mask UV laser treatment on these samples is
investigated in relation to flexible electronic substrates use. In another work [31], a novel
aromatic diamine containing cyano groups was prepared. This monomer led to soluble
and flexible PIs, with raised thermal resistance. It was also shown that PIs containing
cyano units in the diamine moiety display good mechanical properties and a very flat
morphology [32].

Starting from these premises, this article is motivated to investigate, for the first time,
certain original insights arising from the implications of azo-dye content in polyimide
samples. The PI host structure used here contains the cyano group in the metha position
and is combined with an azochromophore that has cyano as the terminal group. These
new structural aspects are studied with regard to the possibility of adapting the thermal
properties, colorimetric features and optical parameters (refractive index, band gap, non-
linear optical susceptibility, optical conductivity and birefringence). Laser exposure of the
examined films was carried out using the same kind of phase mask, and it is generating bulk
orientation, which is reflected in a regular topography pattern and enhanced birefringence.
Both features are indicative of proper writing of the information in the polymer recording
medium, as imposed by the optical storage applications.

2. Materials and Methods
2.1. Materials

In this study, the following materials were used: 4,4′-isopropylidene-diphenoxy-
bis(phthalic anhydride) (6HDA), which was purchased from Sigma-Aldrich, St. Louis, MO,
USA; and 2,6-bis(3-aminophenoxy)benzonitrile (m-CN) and 4-[(4-cyanophenyl)diazenyl]
phenol (AzoCN) synthesized in our laboratory using previously reported methods [33–36]
at M.p. 136–138 and 200–202 ◦C, respectively. N,N-dimethylacetamide (HPLC grade),
p-aminobenzonitrile, phenol (99%) and NaNO2 (99.9%) were purchased from Merck KGaA,
Darmstadt, Germany. All reagents and solvents were used as received.

2.2. Polyamidic Acid (PAA) Synthesis

Using polycondensation reaction with equimolar quantities of 2,6-bis(3-aminophenoxy)
benzonitrile (m-CN) and 4,4′-isopropylidene-diphenoxy-bis(phthalic anhydride) (6HDA),
polyamidic acid was obtained. The reaction was undertaken in DMAc at a total concen-
tration around 15%, at room temperature and under nitrogen atmosphere for 4 h. The
obtained PAA solution was used in the next stage of realizing the supramolecular systems.

2.3. Polyimide-Based Supramolecular System

To realize the supramolecular systems, in the solution of polyamidic acid was intro-
duced the azochromophore 4-[(4-cyanophenyl)diazenyl]phenol (AzoCN) in different ratios,
followed by casting onto glass plates and thermal treatment. Thus, the molar ratio between
polyamidic acid and azomonomer was 1:1 (SPIN100), 1:0.75 (SPIN75), 1:0.5 (SPIN50) and
1:0.25 (SPIN25). The pristine PI film based on m-CN and 6HDA was abbreviated SPIN0.
The used quantities are presented in Table 1. The step-by-step structural evolution of
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the reaction is depicted in Scheme 1. By casting guest–host PAA solutions on glass plate,
followed by thermal treatment, flexible films with imide structures were obtained. The
thermal treatment was realized starting at 50 ◦C for 4 h, followed by slowly increasing
the temperature at 100, 125, 150, 175 and 200 ◦C and maintained at each step for 1 h. The
thicknesses of the polymer films are the following: 40 µm for SPIN25, 30 µm for SPIN50,
30 µm for SPIN75 and 20 µm for SPIN100.

Table 1. Quantities of polyamidic acid and azo monomer used in the PI-based supramolecular
systems.

Sample Code Polyamidic Acid
Mol (g)

Azo Monomer
(Azo CN) Mol (g)

SPIN25 0.1806 × 10−4 (0.151) 0.045 × 10−4 (0.01007)
SPIN50 0.1806 × 10−4 (0.151) 0.09 × 10−4 (0.020137)
SPIN75 0.1806 × 10−4 (0.151) 0.135 × 10−4 (0.0302)
SPIN100 0.1806 × 10−4 (0.151) 0.18 × 10−4 (0.04027)
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Scheme 1. Step-by-step evolution of the reaction that generates the final PI-based supramolecular 
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Scheme 1. Step-by-step evolution of the reaction that generates the final PI-based supramolecular
system.

2.4. Laser Exposure

In Figure 1 is presented a sketch of the experimental arrangement used for the genera-
tion permanent relief grating on azo–copolyimide films. The third harmonic (355 nm)
of a pulsed Nd:YAG laser (Brilliant, Quantel; 6 mm in diameter, 10 ns pulse length)
directed through a 3× Galilean expander was used to illuminate a phase mask with
1000 grooves/mm (Edmund Optics Ltd., York, UK). In order to provide a laser irradiation
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spot with smooth energy distribution, the Galilean expander was interposed between two
iris diaphragms. An iris with a 5 mm aperture was employed in the first step to pick
the core region from the original Gaussian laser beam. This first cropping of the beam
ensures clean edges of energy and, at the same time, avoids the residual corresponding to
the second harmonic from reaching the irradiation area of the sample. The selected laser
beam is then passed through the Galilean expander, from which a 10 mm central region is
selected using a second iris diaphragm.
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The generated near-field interference pattern was used for the fabrication of permanent
relief grating with the same periodicity as that of the phase mask on PI-based supramolecu-
lar systems. The irradiation sequences were performed in air for different azo-copolyimide
compositions while keeping constant the laser fluence (45 mJ/cm2), total delivered laser
shots (300 laser pulses) and pulse repetition frequency (10 Hz). The attenuation factor of
the assembly composed of the phase mask sandwiched between the two quartz plates
was considered in order to estimate the laser fluence incident on the polymer sample.
The laser-irradiated films have the following labels: SPIN25-L, SPIN50-L, SPIN75-L and
SPIN100-L.

2.5. Characterization

Molecular modeling was undertaken with the help of HyperChem software. The
molecular mechanics’ calculations involving Polak–Ribiere algorithm (0.001 kcal/mol)
were used. Parametric method number 3 (PM3) was useful for quantum estimation of the
molecular structure. The optimization is attained at a minimum free energy.

The quantitative structure–activity relationships (QSAR) properties could be employed
to link molecular structure with chemical and physical properties. Molecular dynamics
(MD) was useful for extraction of information on the van der Waals and hydrogen bonding
interactions and the energetic and geometric quantities using Newtonian equations of
motions derived from constituent atoms of the systems. Based on this, total energy (Etot),
potential energy (Epot), and kinetic energy (Ekin) were evaluated.

The infrared spectroscopy (FTIR) experiments were carried out on FT-IR Bruker Vertex
70 instrument.

Differential scanning calorimetry (DSC) was experimented on a Mettler Toledo DSC
1 (Mettler Toledo, Greifensee, Switzerland) instrument. The polymer specimens were
incorporated in some aluminum pans and subjected to a heating rate of 10 ◦C min−1 (under
N2 medium).

Optical microscopy of the laser-exposed films was performed on a ADL 601 P Bresser
device (Bresser, Rhede, Germany) in ambient temperature.

Illuminance and colorimetry studies were undertaken on CL-70F device (Konica
Minolta, INC., Tokyo, Japan).

Refractometry and birefringence analyses were undertaken on DR-M4 (Atago Co.,
Ltd., Saitama, Japan) instrument under variable wavelength.
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3. Results and Discussion

The new PI-based supramolecular systems were designed using the guest–host ap-
proach, and the employed strategy here was to emphasize the effect of the azochromophore
content on the UV-induced properties. The samples were examined from a structural,
thermal, morphological and optical point of view to analyze their utility as recording media
for optical storage applications.

3.1. Molecular Modeling

The performed simulations allowed the visualization of the geometrical conformation
of the prepared PI-based supramolecular systems containing distinct amounts of azochro-
mophore. Figure 2 presents the resulting simulation images displaying the full geometry
optimization of the PI/AzoCN systems achieved for minimal energy in a vacuum. It can
be observed that the synthetized cyano-containing PI is able to interact with AzoCN via
hydrogen bonding, as supported by FTIR measurements.
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Figure 2. Geometry optimization (at minimal energy) of each PI-based supramolecular system (tube
shape) containing various amounts of AzoCN. The PI (4 structural units) and AzoCN interact via
hydrogen bonding. Colors: red is oxygen, cyan is carbon, withe is hydrogen, blue is nitrogen, and
violet is AzoCN chromophore.

QSAR enables the estimation of certain properties [37], such as the van der Waals
surface-bounded molecular volume (Vw) and polarizability (P0). The results for these
parameters are summarized in Table 2. The Vw is related to the van der Waals radius, so it
denotes the volume of the molecular system. As shown in the computations, the magnitude
of Vw increases as the content of the azochromophore is enhanced. The polarizability of
the samples is also augmented by the incorporation of more AzoCN into the system. The
MD simulations of the investigated structures are useful for extracting information on their
energetic properties [38]. Figure 3 illustrates the variation of the potential energy (Epot)
and kinetic energy (Ekin) when the molar ratio between PI and azomonomer was varied.
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As can be seen, the kinetic and potential energies increase as the percentage of AzoCN in
the samples is enhanced.

Table 2. Van der Waals volume and polarizability computed for the PI-based supramolecular systems.

Sample Code Vw (Å3) P0 (Å3)

SPIN25 2923.65 375.15
SPIN50 3147.13 402.11
SPIN75 3358.33 426.95
SPIN100 3700.15 452.36

Polymers 2023, 15, x  7 of 19 
 

 

it denotes the volume of the molecular system. As shown in the computations, the mag-
nitude of Vw increases as the content of the azochromophore is enhanced. The polariza-
bility of the samples is also augmented by the incorporation of more AzoCN into the 
system. The MD simulations of the investigated structures are useful for extracting in-
formation on their energetic properties [38]. Figure 3 illustrates the variation of the po-
tential energy (Epot) and kinetic energy (Ekin) when the molar ratio between PI and 
azomonomer was varied. As can be seen, the kinetic and potential energies increase as 
the percentage of AzoCN in the samples is enhanced. 

Table 2. Van der Waals volume and polarizability computed for the PI-based supramolecular sys-
tems. 

Sample Code Vw (Å3) P0 (Å3) 
SPIN25 2923.65 375.15 
SPIN50 3147.13 402.11 
SPIN75 3358.33 426.95 
SPIN100 3700.15 452.36 

 
Figure 3. Total energy (Etot), potential energy (Epot) and kinetic energy (Ekin) values computed 
for the studied PI-based supramolecular systems. 

3.2. FTIR Investigation 
Figure 4 depicts the FTIR spectra of the pristine PI film and the corresponding su-

pramolecular structures. The characteristic absorption band of pristine PI films is present 
in all the analyzed compounds. The absorption peaks at 1780 and 1720 cm−1 which cor-
respond to the C=O asymmetrical and symmetrical stretching of the PI and the absorp-
tion peaks at 1370 (imide III: C–N stretching vibration) and 720 cm−1 (imide IV: bending 
vibration of cyclic C=O) are also present. Other chemical groups were assigned as fol-
lows: aromatic –C–H linkages due to the absorption bands at 3066–3061 cm−1, the pres-
ence of CH3 groups at 2968–2853 cm−1 and aromatic ether due to the absorption bands at 
1208–1134 cm−1. At the same time, the presence of the CN group in all the compounds is 
evidenced by the absorption characteristic band at 2230 cm−1. Azo-supramolecular pol-
ymer films showed the same characteristic absorption bands, such as pristine polymer 
film SPIN0, and some specific differences. The broad absorption band around 3350 cm−1 
presented a slightly higher intensity, and the azo group, –N=N–, is overlapping with C=C 
of the aromatic rings at 1600 cm−1. 

Figure 3. Total energy (Etot), potential energy (Epot) and kinetic energy (Ekin) values computed for
the studied PI-based supramolecular systems.

3.2. FTIR Investigation

Figure 4 depicts the FTIR spectra of the pristine PI film and the corresponding
supramolecular structures. The characteristic absorption band of pristine PI films is present
in all the analyzed compounds. The absorption peaks at 1780 and 1720 cm−1 which corre-
spond to the C=O asymmetrical and symmetrical stretching of the PI and the absorption
peaks at 1370 (imide III: C–N stretching vibration) and 720 cm−1 (imide IV: bending vi-
bration of cyclic C=O) are also present. Other chemical groups were assigned as follows:
aromatic –C–H linkages due to the absorption bands at 3066–3061 cm−1, the presence
of CH3 groups at 2968–2853 cm−1 and aromatic ether due to the absorption bands at
1208–1134 cm−1. At the same time, the presence of the CN group in all the compounds
is evidenced by the absorption characteristic band at 2230 cm−1. Azo-supramolecular
polymer films showed the same characteristic absorption bands, such as pristine polymer
film SPIN0, and some specific differences. The broad absorption band around 3350 cm−1

presented a slightly higher intensity, and the azo group, –N=N–, is overlapping with C=C
of the aromatic rings at 1600 cm−1.

For comparison, all the FTIR spectra are shown in Figure 5 in the range of 3750–2100 cm−1.
As can be easily noted, the azo-PI supramolecular films (SPIN25, SPIN50, SPIN75 and SPIN100)
present broad absorption bands around 3350 cm−1, which can be considered to be due to the
formation of H-bonds between the carbonyl group in the imide rings and the hydrogen donor
of the hydroxylic unit of the chromophore. Thus, the more intense absorption bands in the
IR spectrum of the supramolecular azo-PI films situated in the range of 3600–3150 cm−1 are
characteristic for H-bonds. This domain includes absorption bands of the valence vibrations
of free or bounded aromatic hydroxyl groups and hydrogen bonds between the carbonyl
in the imide rings and OH group from the chromophore [29]. Supramolecular azo-PI films
exhibit the broad absorption band at around 3350 cm−1, probably due to the intermolecular
H-bonded OH group. It is a clear evidence of the existence of the hydrogen bonds in the
supramolecular azo-PI films (SPIN25, SPIN50, SPIN75 and SPIN100), as can be seen in the



Polymers 2023, 15, 1056 8 of 17

FTIR spectra in the range of 3600–3150 cm−1, but it is not possible to distinguish the difference
between the distinct quantities of the AzoCN (Figure 5).
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3.3. Thermal Properties

The thermal characteristics are essential for the utilization of these polymer materials
in optical storage. The DSC experiments allowed the evaluation of the glass transition tem-
perature (Tg) of each sample (see Supplementary Material, Figures S1–S5). The flexibility
of the main chain is enhanced by the presence of the H3C–C–CH3 and –O– bridges that
affect the internal rotation barrier and, implicitly, the magnitude of the Tg. According to
Table 3, the inserted amount of azomonomer introduced in the supramolecular systems
is slightly influencing the intermolecular interactions, and this is reflected in the sample
thermal behavior. Hence, a higher quantity of the azochromophore is diminishing the
interactions among the chains features, and through this, the Tg is slowly reduced with
regard to the sample without azo dye (Figure S1). It is known that a bigger glass tran-
sition temperature is indicative of a higher chain rigidity, which, in turn, is linked to a
larger residual birefringence [39]. However, in such situations, the maximum generated
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birefringence (by various external factors) is lower, presuming a constant chromophore
concentration. Thus, the reduction in Tg by the presence of more AzoCN is beneficial for
inducing a larger birefringence to the PI-based supramolecular systems. In any case, the
Tg values are above 160 ◦C, which makes the examined PI-based supramolecular systems
suitable for the optical storage uses. Moreover, based on the experimentally registered Tg
of the samples, it is possible to extract information on the volumetric coefficient of thermal
expansion (noted here as αv), as described in the work of Bicerano [40]. The obtained
values are listed in Table 3, where it can be noted that the value of this parameter slightly
changes upon enhancing the amount of the azo derivative in the sample. Thus, the small
increase in αv reveals a propensity for variation in the size of the sample at temperatures
reaching the vitrification point.

Table 3. Thermal properties of the analyzed PI-based supramolecular systems: glass transition
temperature (Tg) and thermal expansion (αv).

Sample Code Tg (◦C) αv (1/◦C)

SPIN0 190.84 4.75 × 10−4

SPIN25 176.60 5.08 × 10−4

SPIN50 171.30 5.21 × 10−4

SPIN75 164.68 5.38 × 10−4

SPIN100 163.91 5.41 × 10−4

3.4. Optical Microscopy

The morphology of the laser-treated films was studied using optical microscopy. As
seen in Figure 6, all samples display a wavy-like topography. This is caused by the pres-
ence of a photoactive component in the PI-based supramolecular systems, which enables
the morphology under UV exposure to be controlled. The utilization of polarized light
determines the selective excitation of the AzoCN and parallel disposition of its dipole
to the direction of the radiation polarization. After stopping the irradiation procedure,
some of the azo-based units tend towards molecular relaxation; however, a large amount
of molecules keep their light-triggered orientation [41]. The observed periodic structures
in azo-derived materials under UV laser treatment are known in the literature as surface
relief gratings (SRGs) [29]. They are produced by a complex mechanism which combines
radiation-driven mass transport and material fluidity [29,42]. In the case of the investigated
samples, it is remarked that the addition of more AzoCN in the system makes the waves
to be more clearly contoured. Thus, a greater surface anisotropy is favored by the higher
amount of azochromophore. The mechanism of this phenomenon might be the following:
a larger amount of azo dye in the system enhances the sensitivity to the action of polarized
radiation. In this way, there are more AzoCN molecules that can be orientated via laser
exposure, so that a larger part of the obtained material is aligned along the direction of
the radiation polarization. Hence, the sample gains a larger surface anisotropy. The photo-
generated anisotropy of morphology is expected to be reflected in the optical performance
of the samples, namely, in gaining birefringence. The combination of bulk birefringence
and the SRG pattern are useful for attaining recording layers with a good ability to store
information.
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3.5. Optical Properties
3.5.1. Illuminance and Color Properties

The variation of the azo-derivative content in the PI systems produces changes in
the appearance of the prepared films. To monitor this, tests of the illuminance and color
features of the samples (under a LED light source) were performed. Figure 7 illustrates the
spectral distribution of the visible radiations emitted by the LED, which are changed due
to the presence of each PI/AzoCN system. The peak max parameter reveals the biggest
wavelength optically emitted from the light source in the presence of the samples [43]. It can
be observed that the peak max slightly increases with the addition of the azochromophore.
In addition, the magnitude of the recorded illuminance is gradually reduced upon more azo
dye incorporation. After laser irradiation, the illuminance values are enhanced, while the
peak max values are slightly reduced with regard to the non-irradiated films. This might
be due to the surface structuring which diminishes the light reflection into the incident
medium and favors its propagation through the sample optical medium.
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The colorimetry experiments proved that both PI dyeing with AzoCN and UV laser
treatment are generating effects that can be monitored using this technique. Figure 8
displays the chromaticity diagram of the light emitted by the LED recorded in the presence
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of the PI-based supramolecular systems before and after laser exposure. The correlated
color temperature (denoted as Tcp) indicates the color appearance of the radiation released
by a light source, linking its color to that of a reference source (usually a black-body radiator)
at a similar temperature [43]. In the absence of the samples, the Tcp of the LED source
is 6916 K. When placing the samples onto the measuring device, the Tcp corresponding
to the light coming from the LED changes. By increasing the amount of AzoCN in the
system, the Tcp is reduced for both the pristine and irradiated films. In Figure 8, there
are also presented the data of the dominant light wavelength (λd), which describes the
color shade noticed by the human eye [43]. The incorporation of a larger amount of azo
dye in the PI-based samples seems to enhance the magnitude of λd. This shift towards
higher wavelengths means that the samples are perceived to display a yellowing effect
upon doping with the selected azochromophore. For the laser-exposed films, the same
tendency is remarked, but the values of the λd parameter are slightly smaller with regard
to their non-irradiated counterpart. Thus, the changes in the color shade of the samples, is
a good indicative of proper dyeing with the chosen light-sensitive compound.
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3.5.2. Light Dispersion and Related Parameters

The speed of the optical radiations moving through the air/sample media can be
quantified using refractive index (n) experiments. As noted in Figure 9, this parameter can
suffer relevant changes upon introduction of the azo dye in the system. This is because
the polar AzoCN molecules are increasing the overall polarizability of the system; hence,
the magnitude of n is augmented, meaning that the visible radiations are slowed down
after gradually doping the samples. Such an influence of dye on the refractive properties of
other type of polymers was reported by Abdelrazek [44]. Moreover, the manner in which
the refractive index ranges with wavelength is affected by the film composition, namely,
the values of n are more increased towards wavelengths below 650 nm. This accentuates
the power of the optical radiation to split into constituent colors when refracted by the
sample. Upon UV laser treatment, the prepared films display a higher refractive index
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in comparison to the pristine ones. This result is supported by Cimrova [45], who also
observed an increase in n after the laser exposure of azobenzene-containing copolymers.
For the analyzed laser-exposed polymer sheets, the differences between n values at the
lowest wavelengths are a little bigger (with regard to the pristine films), so the dispersion
properties are slightly enhanced. The influence of the dye content in PI materials on the
light dispersion properties has not been emphasized in the literature yet, as far as we know.
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The registered light dispersion properties of the PI-based supramolecular systems
enable the calculation of important dispersion-related parameters. Through utilization
of the Wemple and DiDomenico (WDD) theory [46], it is possible to analyze the spectral
dependence of the refractive index under the band gap energy region (interband absorption
edge). Accordingly, the refractive index can be linked to photon energy, as depicted in the
below relationship (1):

n2 = 1 +
EdE0

E2
0 − E2 , (1)

where E is the photon energy, Ed is the dispersion energy, and E0 is the single oscillator
energy.

The parameters Ed and E0 can be extracted from the plot of (n2 − 1)−1 versus the
square of the photon energy. Figure 10 illustrates these graphs for the examined films under
the form of straight lines. The data of Ed and E0 are summarized in Table 4.
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Table 4. Light dispersion parameters for the PI-based supramolecular systems.

Sample
Code

Ed
(eV)

E0
(eV)

Eg
(eV) n0

ζ (1)
(e.s.u.)

ζ (3)×1014

(e.s.u.)

nNL,
×1013

(e.s.u.)

SPIN25 12.66 7.83 3.92 2.272 0.1287 4.6609 7.7314
SPIN50 12.09 7.52 3.76 2.268 0.1280 4.5564 7.5700
SPIN75 11.69 7.31 3.65 2.265 0.1273 4.4684 7.4216

SPIN100 11.38 7.12 3.56 2.264 0.1272 4.4508 7.4066
SPIN25-L 10.57 6.65 3.33 2.261 0.1266 4.3531 7.2553
SPIN50-L 10.21 6.45 3.23 2.258 0.1260 4.2820 7.1451
SPIN75-L 10.08 6.38 3.19 2.257 0.1258 4.2496 7.0947

SPIN100-L 9.85 6.25 3.12 2.256 0.1255 4.2108 7.0344

The data of refractive index dispersion at energies under the interband absorption
edge can be attributed to the fundamental electronic excitation spectrum. The E0 parameter
offers relevant information on the band structure of the polymeric material, while Ed is
connected to the mean potency of interband photosensitive transitions, including structural
variations [47]. The results reveal that the introduction of AzoCN in the system determines
the diminishment of the strength of the interband transition and the average excitation
for electronic transitions (quantified by E0). This aspect is further accentuated by the laser
treatment of the samples. The changes in strength of the interband optical transitions
reveal the dye-induced modification of the microstructural properties, which are affecting
the electron/hole excitations in the energy-dependent fundamental electronic excitation
spectrum. In addition to this, as was suggested by Tanaka [48], an estimative value of the
optical band gap (Eg) can be obtained from the oscillator energy. The attained Eg values for
the samples before and after UV irradiation are shown in Table 4. The increasing amount
of azochromophore has the effect of reducing the band gap of the studied systems. This
is consistent with the report of Abdelrazek [44] for sulfone-based polymers doped with
another azo dye. It seems that the presence of AzoCN favors the occurrence of localized
states close to conduction or valance bands owing to the vacancies, defects and interstitials.
This strongly influences the optical band gap energy but does not display a pronounced
effect on the oscillator energy. Aside from the azo-component addition, laser exposure
enhances the appearance of localized states and lowers the forbidden gap with regard to
the non-irradiated counterpart samples.

Furthermore, the WDD approach is useful for extracting additional optical parameters,
reflecting the linear and non-linear optical properties of the studied systems, such as the
zero frequency refractive index (n0), linear optical susceptibility (ζ(1)), third-order optical
susceptibility (ζ (3)) and the nonlinear refractive index (nNL), as shown in Equations (2)–(4):

n0 = (1 + Ed/E0)
1/2, (2)

ζ(1) =
1

4π
(Ed/E0), (3)

ζ(3) = 6.82× 10−15 × (Ed/E0)
4, (4)

nNL =
12πζ(3)

n0
. (5)

The calculated values of the aforementioned parameters are listed in Table 4. The static
refractive index shows a decrease when more AzoCN is present in the samples. In addition,
a resembling tendency is observed for the non-linear optical parameters. Laser treatment
further reduces the values of these optical constants when compared to the pristine films. It
appears that the non-linear optical performance of the prepared materials can be controlled
via the composition of the films and exposure to polarized light.
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The studied PI-based supramolecular systems are also able to respond as a result of
the charge carrier motions in the presence of optical radiations. This aspect is quantified
by optical conductivity (σ0), which is a function of the refractive index and absorption
coefficient, as indicated in Equation (6):

σ0 =
αnc
4π

, (6)

where α is the absorption coefficient, and c denotes the light velocity in a vacuum.
Figure 11 displays the wavelength variation of the optical conductivity of the analyzed

films. At a constant azo dye content, the data are revealing a slight decrease of σ0 towards
lower photon energies. When changing the system composition by adding more AzoCN,
the optical conductivity is augmented. Laser irradiation of the films determines a slight
increase in σ0 at smaller wavelengths with regard to the initial samples. The increase in
the samples’ conductivity at optical frequencies, especially after exposure, is beneficial
for optical storage purposes as, in this way, the recording medium interacts better with
polarized radiations from UV and a visible range, facilitating the information writing
process.
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3.5.3. Birefringence

Birefringence appears to be the key optical parameter of a material that is able to
record data in an optical storage device [41]. In the case of writeable media, the ‘bit’
occurs in the recording layer that is exposed to a laser beam of elevated power during
several tens of seconds. Therefore, the writing mechanism in an optical storage system
involves an optically generated birefringence. Figure 12 presents the birefringence data
of the samples. As noticed, the pristine samples display an inherent birefringence, which
is gradually increased by the incorporation of AzoCN. Birefringence was also reported
in other polymer/azo dye systems [49]. The power from the laser pulse produces certain
modifications in the PI/AzoCN recording layer that are reflected in a larger birefringence
(coarse bars from Figure 12). The orientation of the PI-based films is more pronounced
as the azo- dye content is larger. In this case, there are more photosensitive molecules in
the samples that can suffer light-triggered orientation, hence higher birefringence. The
induction of such stable birefringence denotes the good ability of the highly AzoCN-
doped samples to store information upon laser irradiation, as demanded by optical storage
applications.
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(1.664–1.671 at 589 nm), and Eg is additionally diminished (3.33–3.12 eV). The values of the
non–linear optical parameters are slightly reduced upon sample doping with AzoCN and
laser treatment. At the same time, the birefringence is enhanced from 0.0012 (SPIN25) to
0.0028 (SPIN100) upon AzoCN insertion, and this is further augmented by laser irradiation
as follows: 0.014 (SPIN25-L), 0.0208 (SPIN50-L), 0.0301 (SPIN75-L) and 0.0365 (SPIN100-L).
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