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Abstract: Herein, the inhibition impacts of chitin, pectin, and amylopectin as carbohydrate polymers
on the corrosion of mild steel in 0.5 M HCl were researched utilizing various experimental and
theoretical tools. The acquired outcomes showed that the inhibition efficiencies (% IEs) of the tested
carbohydrate polymers were increased by raising their concentrations and these biopolymers acting
as mixed-kind inhibitors with major anodic ones. The acquired % IEs values were reduced with rising
temperature. The higher % IEs of the tested polymers were inferred via powerful adsorption of the
polymeric molecules on the steel surface and such adsorption obeyed the Langmuir isotherm. The
computed thermodynamic and kinetic quantities confirmed the mechanism of physical adsorption.
The kinetics and mechanisms of corrosion and its protection by polymeric compounds were illumi-
nated. The results obtained from all the techniques used confirmed that there was good agreement
with each other, and that the % of IEs followed the sequence: chitin > amylopectin > pectin.

Keywords: mild steel; corrosion; carbohydrate polymers; inhibitors; experimental and theoreti-
cal studies

1. Introduction

Corrosion inhibitors are recognized as common operative approaches for keeping the
surfaces of metals protected against corrosive media aggressiveness [1–5]. Many kinds
of chemical compounds have been assessed and utilized as corrosion inhibitors [6–16].
Carbohydrate polymers, a significant type of natural and biological polymer (biopoly-
mers), are environmentally friendly, biodegradable, biocompatible, cheap, highly abun-
dant, renewable, and can be simply modified to create materials with excellent proper-
ties. They show diverse structural characters regarding molecular weights, structures of
monosaccharides, etc. These variations determine the functional properties of them. Chitin,
poly(N-acetylglucosamine), is one of the most supreme, plentiful, natural biopolymers
on Earth. It is biodegradable in the natural environment over time [17,18]. Chitin has
several medicinal and industrial uses such as food processing and biotechnological appli-
cations [19]. Pectin is an acidic hetero-biopolymer that originates from natural plants. It
is employed as a gelling and thickening agent in food, medicines, cosmetics, and in various
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industrial applications [20]. Amylopectin is a much-branched biopolymer that is found in
plants [21]. It is also utilized in various domains mostly as a thickening agent, stabilizer, etc.

Carbohydrate polymers have been advertised as a class of molecules that can protect
metals from corrosion by acting as good inhibitors over other chemicals due to their
inherent stability, the presence of multiple adsorption sites, availability, relatively lower
cost, and environmentally friendly nature [22–34]. Corrosion inhibition by carbohydrate
polymers has a unique inhibiting mechanism to counteract corrosion through adsorption
on the surfaces of metals via specific centers of adsorption and through forming a shielding
layer that protects it from aggressive environments. The specific adsorption centers are
related to the cyclic rings located in the biopolymers and the presence of heteroatoms such
as nitrogen, oxygen, or sulfur atoms which increase the basicity and electron density in
biopolymers, which enhance the strength of the adsorption process. Through these centers,
biopolymers construct complexes with different metal ions and on the metal surfaces
that engage big surface areas, thus covering the surfaces and shielding them from the
aggressiveness of corrosive solutions. Additionally, most biopolymers allow long-time
usage due to metallic corrosion inhibition. Furthermore, they are water-soluble compounds
without the use of organic solvents. The geometrical configuration and functional groups
of these biopolymers are the main factors influencing their corrosion-inhibiting effects [29].
In light of the abovementioned facts, some research groups in recent decades reported
that carbohydrate polymers were utilized as proficient corrosion inhibitors in diversity
media [22–34]. Phosphorylated chitin was investigated as a corrosion inhibitor for steel
in a neutral medium [22]. Pectin was found to be a hopeful green corrosion inhibitor
in various corrosive media depending on its source, molecular weight, and degree of
esterification [29–31]. Moreover, the protecting impact has been progressed through the
addition of proper secondary species such as metal cations [3,8,35,36] and halide ions [14,37]
with the tested inhibitor by improving the inhibitor absorption on the surface of metal,
called the synergistic effect. Such adsorption was understood in light of the interaction
between the inhibitor and these species.

Frequently, mineral acids are widely utilized in various industrial applications such as
acidizing processes, water treating, industrial cleaning, steel pickling, the removal of rust
in metal finishing, etc. [38]. In petroleum and gas industries, the usage of acidic media is
more customary than neutral or alkaline ones. However, acidic environments are highly
aggressive towards metallic surfaces, resulting in metal corrosion [8–11]. In addition, the
presence of certain impurities and/or a high level of aeration in the acidic media accelerates
corrosion damage [39]. Because of the ferociousness of these acidic media, metal vessels
employed in such activities are mostly exposed to corrosion [8–11] which is regarded
as a dangerous problem confronting economics and care. Therefore, there is a need to
mitigate and control the confrontational effects of these media on metal vessels. Instead,
mild (SABIC) steel is broadly utilized in various construction applications, infrastructures,
and so forth, but it still suffers from corrosion attack, which is regarded as a substantial
economic and safety concern. Therefore, the present study aims to explore, for the first time,
the performance of three carbohydrate polymers, namely, chitin, pectin, and amylopectin
(their structures are illustrated below), as green, cheap, and biocompatible inhibitors in
mild-steel corrosion in HCl solutions at a fixed temperature (303 K). Hydrochloric acid is the
most important mineral acid used in many industrial applications. For this purpose, several
experimental and theoretical tools were used. The thermodynamic and kinetic parameters
were computed and are discussed. The kinetics and mechanisms of steel corrosion and its
inhibition were also examined and are discussed.

2. Experimental Section
2.1. Materials

The HCl solution (corrosive medium) was made from Merck 37% HCl. The investi-
gated biopolymers (inhibitors) in this exciting work were three significant carbohydrate
polymers (Sigma-Aldrich), namely, chitin, pectin, and amylopectin (Figure 1). Fresh solu-
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tions of the investigated inhibitors were made in double-distilled water, which were applied
at concentrations of 100, 200, 300, 400, and 500 ppm (mg L−1). Most experiments were repli-
cated 3 times in the same conditions to ensure the reproducibility of the results. Corrosion
tests were carried out on mild-steel samples (Sabic Company, Riyadh, Saudi Arabia).
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Figure 1. Structures of repeating units of chitin (Chi), pectin (Pec), and amylopectin (A-Pec).

2.2. Techniques

Various experimental and theoretical tools were utilized to perform this work. The
experimental tools were electrochemical (PDP and EIS), chemical (WL), and spectroscopic
(SEM). The theoretical tools were density functional theory (DFT) calculations and molecu-
lar dynamic (MD) simulation studies.

PDP and EIS experiments were performed on a thermostated PGSTAT30 potentiostat–
galvanostat. The utilized electrochemical cell was a three-electrode cell [2,3]. The working
electrode (mild steel) was immersed in an inhibitor-free corrosive environment (HCl)
and/or treated with the required inhibitor concentration until a firm potential was reached.
In the PDP experiments, the potential of the working electrode was automatically reformed
from −200 mV to +200 mV vs. open circuit potential (OCP) at a scan rate of 1.0 mV/s.
Using AC signals at OCP, EIS experiments were performed with a frequency range of
100 kHz to 0.1 Hz and an amplitude of 4.0 mV from peak to peak.

WL was carried out using mild-steel rods with areas of about 14 cm2 which were
initially prepared before these experiments as reported earlier [2,3].

The surfaces of the examined mild-steel examples were imaged prior to and after
insertion in the corrosive medium in absence and presence of a certain concentration of
the tested carbohydrate polymers. This imaging was performed using a JEOL scanning
electron microscope (SEM), model T-200, with a repetition voltage of 10.0 kV. Additionally,
the mild-steel surfaces were prepared before imaging as mentioned elsewhere [2,3].

The density functional theory (DFT) supports the experimental results further (using
the Gaussian 09 program and the B3LYP/6-31+G (d,p) basis set). The energies of the
frontier molecular orbitals, or the highest occupied molecular orbital (EHOMO) and lowest
unoccupied molecular orbital (ELUMO), as well as the dipole moment, were computed
utilizing quantum chemical calculations for the examined carbohydrate polymers (Chi, Pec,
and A-Pec).

The molecular dynamic (MD) simulation studies assess the interaction between the
Fe(110) surface and the inhibitor molecules in the simulated corrosive medium using a
5-atom-thick layer unit cell of the Fe(110) surface. These calculations were performed on a
slab with a vacuum layer that was 20 Å × 28 Å with a 25 Å. This container holds 200 water
molecules and 1 inhibitor molecule. Data from an MD simulation were obtained using the
NVT at 298 K with a 1 fs time step and a 0.5 ns simulation period [40,41]. The temperature
was changed using the Berendsen thermostat [42]. The COMPASS forcefield, which is
extensively used in corrosion studies, was used in the MD simulation.
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3. Results and Discussion
3.1. OCP Measurements

Figure 2 displays the plots of OCP versus time for mild steel in a stagnant 0.5 M HCl
solution (corrosive medium) without and with numerous concentrations of amylopectin
(as an illustrative example). The figure signifies that the potential of the mild-steel elec-
trode (EOCP) in the HCl solution moved towards the positive direction up to a time of
about 30 min, after which the potential attained a steady state. This behavior indicates the
dissolution of the initially air-constructed oxide film resulting in the attack of the metal
surface [43]. However, with the addition of amylopectin (A-Pec), EOCP began with compar-
atively greater positive potentials than those in the absence of A-Pec, then moved towards
lower positive potentials. The potentials of steady states in the presence of A-Pec were
attained rapidly in comparison with the inhibitor-free solution. Additionally, by raising the
inhibitor concentration, [A-Pec], the potential of the steady state shifted to a more positive
value, suggesting a lower corrosion rate of mild steel and an improvement in the % IE [44].
Moreover, the positive (anodic) shifts in EOCP in the presence of A-Pec suggested that
such a polymer might behave as an anodic inhibitor. However, because the obtained EOCP
changes were less than +85 mV, the examined polymers can be considered as mixed-kind
inhibitors with an anodic majority [45].
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Figure 2. Plots of OCP vs. time for mild steel in 0.5 M HCl solution in absence and presence of
numerous amylopectin concentrations at 303 K.

3.2. PDP Measurements

Figure 3a–c illustrate the PDP curves (Tafel plots) for mild steel in a 0.5 M HCl
solution at 303 K, in the absence and presence of 100–500 ppm of the tested carbohydrate
polymers, Chi, Pec, and A-Pec, respectively. The values of corrosion potentials (Ecorr),
anodic and cathodic gradients (βa, βc), corrosion current densities (icorr), polarization
resistance (Rp), inhibition efficiencies (% IE), and degrees of surface coverage (θ) of the
tested carbohydrate polymers were evaluated and are presented in Table 1. It can be
observed that the addition of the studied polymers reduced the icorr values, indicating
that such polymers are proficient corrosion inhibitors for mild steel in 0.5 M HCl solution.
The Ecorr value for steel was somewhat shifted (in most cases) to lower negative values
(towards a positive or anodic trend) upon adding the polymers, recommending the mixed-
kind inhibition of the tested polymers with anodic seniority (the change in Ecorr was
<85 mV) [45] as discussed in the OCP section. Additionally, both a and c values were
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found to decrease significantly after the polymers were added, indicating that the polymers
reduced anodic metal dissolution and delayed cathodic hydrogen evolution reactions,
indicating the polymers’ mixed-kind inhibition. Moreover, the Rp value was enhanced
with increasing the polymers’ concentrations, proving corrosion inhibition.

The % IE values and θ of the examined polymers (presented in Table 1) were computed
from the subsequent equation [46],

% IE =

[
1−

icorr(inh)

icorr

]
× 100 = θ × 100 (1)

where icorr and icorr(inh) point to icorr in the absence (blank) and presence of the inhibitor,
respectively. The values of % IE were found to augment with raising the polymers’ con-
centrations and the magnitude of % IEs obeyed the order: chitin > amylopectin > pectin.
Overall, it could be concluded that the investigated carbohydrate polymers were proficient
mixed-type inhibitors.

3.3. EIS Measurements

Figures 4–6 show: (a) the Nyquist plot and the two forms of Bode plot, (b) the magni-
tude plot and (c) the phase plot, in the absence and presence of the studied carbohydrate
polymers at 303 K. The gained EIS spectra were analyzed via the equivalent circuit pre-
sented in Figure 7, similar to that utilized earlier to model the steel/acid interface [47,48].
The components of this circuit were a solution resistance (Rs) and a constant-phase element
(CPE), which were presented in the circuit instead of a pure double-layer capacitance to
provide a more precise fit and were placed in parallel with charge transfer resistance (Rct).
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Table 1. Corrosion parameters for mild-steel corrosion in 0.5 M HCl solution in absence and presence
of the examined carbohydrate polymers at 303 K.

Inhibitor Inhibitor Concn.
(ppm)

-Ecorr
(mV(SCE))

βa
(mV/dec.)

-βc
(mV/dec.)

icorr
(µA/cm2)

Rp
(ohm cm2) % IE θ

0 464 98 103 344 63 – –

Chi

100 465 76 79 127 132 63 0.63
200 463 79 88 86 263 75 0.75
300 461 66 78 55 324 84 0.84
400 458 76 76 38 486 89 0.89
500 455 74 77 28 564 92 0.92

Pec

100 469 73 77 158 103 54 0.54
200 452 76 72 107 172 69 0.69
300 462 78 64 72 224 79 0.79
400 472 79 63 50 307 85 0.85
500 470 77 65 41 388 88 0.88

A-Pec

100 461 96 82 151 127 56 0.56
200 455 95 79 93 237 73 0.73
300 452 85 78 58 305 83 0.83
400 449 93 75 41 456 88 0.88
500 448 90 76 34 527 90 0.90
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Figure 5. Plots of: (a) Nyquist, (b) Bode magnitude, and (c) Bode phase for mild steel in 0.5 M HCl
solution at 303 K in absence and presence of pectin.
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Using CPE points to the heterogeneity of steel surfaces due to surface irregularity,
disruptions, impurities, the adsorption of the inhibitor, and the construction of porous
adsorption films [49].

The EIS parameters, namely, Rs, Rct, and CPE, evaluated via EIS spectra are shown in
Table 2. The values of % IE were computed from Equation (2) [46] and are also listed in
Table 2,

% IE =

[
1− Rct

Rct(inh)

]
× 100 = θ × 100 (2)

The acquired value of Rct in the corrosive medium was augmented with increasing
polymer concentrations with a reduction in the CPE value, indicating that such polymers
reduce the corrosion rate of mild steel. Furthermore, reducing the CPE value implies the
adsorption of the polymeric molecules on the metal/solution interface [49] leading to the
protection of the metal, thus enhancing the values of the % IEs.

3.4. WL Measurements
3.4.1. Influence of Corrosive Medium

Figure 8 depicts the weight loss vs. time plots for mild steel at 303 K in various [HCl]
concentrations (0.1–2.0 M). The corrosion rates (CR) calculated in mpy are shown in Table 3.
The acquired outcomes indicated that the CR of the steel was augmented by increasing [HCl].
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Figure 7. Electrochemical equivalent circuit utilized to fit the EIS output data for mild steel in 0.5 M
HCl solution in absence and presence of the examined carbohydrate polymers.

Table 2. Impedance parameters for mild-steel corrosion in 0.5 M HCl solution in absence and presence
of the examined carbohydrate polymers at 303 K.

Inhibitor Inhibitor Concn.
(ppm)

Rs
(ohm cm2)

Rct
(ohm cm2)

CPE
(µF/cm2) % IE θ

0 1.28 51 312 – –

Chi

100 2.03 118 149 57 0.57

200 4.12 243 82 79 0.79

300 4.62 418 54 88 0.88

400 7.34 595 44 91 0.91

500 3.20 756 39 93 0.93

Pec

100 1.92 122 130 58 0.58

200 2.74 198 81 74 0.74

300 3.91 276 61 82 0.82

400 6.34 412 57 88 0.88

500 6.81 595 51 91 0.91

A-Pec

100 2.27 128 124 60 0.60

200 4.62 213 93 76 0.76

300 3.70 355 56 86 0.86

400 9.33 543 45 91 0.91

500 6.05 696 41 93 0.93

Polymers 2021, 13, x FOR PEER REVIEW 13 of 37 
 

 

 

Figure 8. Effect of [HCl] on the CR of mild steel at 303 K. 

3.4.2. Effect of inhibitors’ concentrations  

Figure 9 presents the WL runs for mild steel which were carried out in 0.5 M HCl 

solution (blank) with numerous concentrations (100–500 ppm) of the examined carbohy-

drate polymers (Chi, Pec, and A-Pec) at 303 K. The CR values for mild steel in the blank 

and with carbohydrate polymers were calculated and are shown in Table 4. The values of 

% IEs and θ of these polymers were also computed (Table 4) via Equation (3) [50],  

% IE =

 








CR

CRinh1

 

× 100 = θ × 100 (3)

The obtained results illuminated that adding the tested polymers to the blank re-

duced the CR of mild steel and, hence, inhibited the rate of steel corrosion. The values of 

the % IEs of the tested polymers were found to enhance with raising their concentrations. 

The gained outcomes (Table 4) indicated that, at comparable inhibitor concentrations, the 

% IE values of the examined carbohydrate polymers were raised in the order: Chi > A-Pec 

> Pec, in good agreement with those gained from both PDP and EIS tools, proving the 

rationality of the obtained outcomes as illustrated in Figure 10. 

4 8 12 16 20
0

3

6

9

12

15

 0.10 M

 0.25 M

 0.50 M

 1.00 M

 2.00 M

W
t.
 L

o
ss

 (
m

g
/c

m
2
)

Immersion Time (h)

Figure 8. Effect of [HCl] on the CR of mild steel at 303 K.

Table 3. Values of CR for mild steel in diverse [HCl] solutions at 303 K.

[HCl], M 0.10 0.25 0.50 1.00 2.00

CR (mpy) 118 142 177 199 247
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3.4.2. Effect of Inhibitors’ Concentrations

Figure 9 presents the WL runs for mild steel which were carried out in 0.5 M HCl solu-
tion (blank) with numerous concentrations (100–500 ppm) of the examined carbohydrate
polymers (Chi, Pec, and A-Pec) at 303 K. The CR values for mild steel in the blank and with
carbohydrate polymers were calculated and are shown in Table 4. The values of % IEs and
θ of these polymers were also computed (Table 4) via Equation (3) [50],

% IE =

[
1− CRinh

CR

]
× 100 = θ × 100 (3)

The obtained results illuminated that adding the tested polymers to the blank reduced
the CR of mild steel and, hence, inhibited the rate of steel corrosion. The values of the %
IEs of the tested polymers were found to enhance with raising their concentrations. The
gained outcomes (Table 4) indicated that, at comparable inhibitor concentrations, the % IE
values of the examined carbohydrate polymers were raised in the order: Chi > A-Pec > Pec,
in good agreement with those gained from both PDP and EIS tools, proving the rationality
of the obtained outcomes as illustrated in Figure 10.
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Figure 9. WL vs. time plots for mild steel in 0.5 M HCl solution at 303 K in absence and presence of
the examined carbohydrate polymers: (a) Chi, (b) Pec, and (c) A-Pec.

Table 4. Values of CR of mild steel, %IE, and θ of the tested carbohydrate polymers, Chi, Pec, and
A-Pec, in 0.5 M HCl solution at diverse temperatures.

Inhibitor
Inhibitor

Concn. (ppm)

Temperature (K)

293 303 313 323

CR % IE θ CR % IE θ CR % IE θ CR % IE θ

0 145 – – 157 – – 166 – – 172 – –

Chi

100 55 62 0.62 64 60 0.60 73 56 0.56 81 54 0.54

200 33 77 0.77 39 75 0.75 51 69 0.69 62 64 0.64

300 23 84 0.84 30 81 0.81 45 73 0.73 52 70 0.70

400 16 89 0.89 22 86 0.86 33 80 0.80 40 77 0.77

500 15 90 0.90 19 88 0.88 27 84 0.84 31 82 0.82

Pec

100 67 54 0.54 74 53 0.53 88 47 0.47 96 44 0.44

200 44 70 0.70 53 66 0.66 61 63 0.63 72 58 0.58

300 28 81 0.81 39 75 0.75 48 71 0.71 58 66 0.66

400 22 85 0.85 28 82 0.82 40 76 0.76 45 74 0.74

500 20 86 0.86 25 84 0.84 33 80 0.80 40 77 0.77

A-Pec

100 54 63 0.63 61 61 0.61 73 56 0.56 81 53 0.53

200 40 74 0.74 41 74 0.74 51 71 0.71 67 61 0.61

300 28 81 0.81 31 80 0.80 46 78 0.78 53 69 0.69

400 23 84 0.84 25 84 0.84 32 81 0.81 40 77 0.77

500 19 87 0.87 24 85 0.85 28 83 0.83 34 80 0.80

3.4.3. Effect of Time of Immersion on % IEs

The influence of time of immersion on the % IEs of the tested polymers at a certain
concentration (500 ppm as a descriptive case) in 0.5 M HCl solution was explored for
24 h at 303 K as shown in Figure 11. This figure demonstrates that the tested polymeric
molecules inhibited mild-steel corrosion for all times of immersion. Initially, the values of
% IEs increased continuously with expanding the time of immersion up to around 12 h;
afterwards, they reduced slightly for short times and, lastly, they reached approximately the
constant values after 16 h. The values of % IEs increasing with the time of immersion at the
initial stages can be attributed to the adsorption of multilayers of the polymeric molecules
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on the steel surface leading to increased % IE values. After around 12 h, some adsorbed
polymeric molecules were desorbed from the steel surface, resulting in a reduction in the
covered areas with polymeric molecules and, thus, decreasing the % IEs. After 16 h, the
constancy of the % IE values with time may be ascribed to the compactness of the adsorbed
layers on the steel surface [51].
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Figure 11. Graphs of the change in %IEs of 500 ppm of the examined carbohydrate polymers with
time of immersion for mild steel in 0.5 M HCl at 303 K.

3.4.4. Effect of Temperature

To evaluate thermodynamic and activation parameters, WL measurements were
performed at numerous temperatures. The values of CR of mild steel and both the % IEs
and θ values of the tested carbohydrate polymers at different temperatures were evaluated
and are shown in Table 4. As the temperature increased, the values of CR increased while
the values of IE decreased, as shown in Figure 12. This supports the physical adsorption of
the examined polymers [52,53].
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Figure 12. Graphs of the change in %IEs with the temperature in the mild-steel corrosion in 0.5 M
HCl comprising various concentrations of the examined carbohydrate polymers. (a) Chi, (b) Pec, and
(c) A-Pec.

3.4.5. Adsorption Considerations

In the present investigation, the examined carbohydrate polymers were set to profes-
sionally inhibit mild-steel corrosion in a 0.5 M HCl solution up to a % IE of approximately
90%, and such performance was explained by the strong adsorption of the polymeric
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molecules on the steel surface [54–58]. The illustrative outcomes revealed that the finest
depiction of the polymers’ adsorption was the Langmuir isotherm (Figure 13), termed by
Equation (4) [59],

Cinh
θ

=
1

Kads
+ Cinh (4)

where Kads is the adsorption constant. Values of Kads were evaluated as the reciprocal of
the intercepts of Figure 13 and are presented in Table 5.

3.4.6. Thermodynamic Parameters

The values of free energy (∆Go
ads), enthalpy (∆Ho

ads), and entropy (∆So
ads) of adsorp-

tion were evaluated and are presented in Table 5. The ∆Go
ads values were evaluated via

Equation (5) [59],
∆Go

ads = −RT ln(55.5 Kads) (5)

The gained higher negative values of ∆Go
ads designated the spontaneity of adsorption

and steadiness of the adsorbed film on the steel surface [60,61].
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Table 5. Thermodynamic parameters and Kads for mild-steel corrosion in 0.5 M HCl solution in the
absence and presence of the examined carbohydrate polymers at diverse temperatures.

Inhibitor Temp.
(K)

10−3 Kads
l mol−1

∆Go
ads

kJ mol−1
∆Ho

ads
kJ mol−1

∆So
ads

J mol−1 K−1

Chi

293 3.22 −29.06

−9.97

133.21

303 2.91 −29.78 131.19

313 2.54 −30.42 129.04

323 2.20 −31.02 126.90

Pec

293 2.28 −28.40

−10.47

132.66

303 1.99 −29.04 130.40

313 1.76 −29.67 128.23

323 1.53 −30.23 126.01

A-Pec

293 2.70 −29.03

−8.98

129.73

303 2.38 −29.65 127.49

313 2.08 −30.27 125.40

323 1.91 −31.09 124.06

The values of ∆Ho
ads were computed via the Van ’t Hoff equation (Equation (6)) [62]:

ln Kads =
−∆Ho

ads
RT

+ Constant (6)

The ln Kads vs. 1/T plots were straight (Figure 14), from which the gained negative
values of ∆Ho

ads agreed with the exothermic physical adsorption [63].
The ∆So

ads values were evaluated using the Gibbs–Helmholtz equation, Equation (7)

∆Go
ads = ∆Ho

ads −T∆So
ads (7)

The gained positive values of ∆So
ads specified the bigger disorder of the polymeric

molecules in their adsorption on the steel surface [64].
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Figure 14. Van ‘t Hoff plots for the examined carbohydrate polymers: (a) Chi, (b) Pec, and (c) A-Pec
adsorbed on mild-steel surface in 0.5 M HCl solution.

3.4.7. Kinetic Parameters

The values of activation energy (Ea
*) were evaluated (Table 6) via the Arrhenius

equation (Equation 8) [65]:

ln CR = ln A− Ea
∗

RT
(8)

The Arrhenius plots are illustrated in Figure 15. The gained values of Ea
* were within the

range of physical adsorption of the polymeric inhibitors [66].
The values of both ∆H* and ∆S* were calculated (Table 6) via Equation (9) [67],

ln
(

CR
T

)
=

(
ln

R
Nh

+
∆S∗

R

)
− ∆H∗

R
1
T

(9)

Also, the transition state plots are shown in Figure 16. The gained positive values of ∆H*

refer to the endothermic nature of corrosion, while the negative values of ∆S* describe
an association between the polymeric molecules leading to a decrease in the polymeric
molecules’ disorder [68].
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Figure 16. Transition state plots for mild-steel corrosion in 0.5 M HCl solution without and with
adding numerous concentrations of the tested carbohydrate polymers: (a) Chi, (b) Pec, and (c) A-Pec.
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Table 6. Activation parameters for mild-steel corrosion in 0.5 M HCl solution in the absence and
presence of the examined carbohydrate polymers.

Inhibitor Inhibitors
Concn. (mg l−1)

Ea
*

kJ mol−1
∆H*

kJ mol−1
∆S*

J mol−1 K−1

0 4.49 1.93 −49.88

Chi

100 10.23 7.65 −38.24

200 16.96 6.69 −19.95

300 22.45 19.95 −3.66

400 24.94 22.28 −1.41

500 19.87 17.37 −15.96

Pec

100 9.89 7.32 −38.24

200 12.72 10.16 −31.59

300 18.87 16.29 −14.13

400 19.70 17.13 −13.30

500 18.54 15.96 −18.29

A-Pec

100 10.97 8.40 −35.75

200 14.38 11.81 −27.43

300 18.12 15.54 −16.62

400 14.96 12.31 −29.93

500 14.84 12.39 −30.76

3.4.8. Kinetics of Corrosion

The corrosion kinetics of mild steel in a 0.5 M HCl solution were investigated in the
absence and presence of various concentrations of the examined carbohydrate polymers.
The ln WL vs. time plots (for chitin at 303 K as an illustrative example) were linear
(Figure 17), demonstrating that mild-steel corrosion in 0.5 M HCl and its inhibition were
negatively first-order reactions. The values of the first-order rate constant, k1 (in h−1), were
computed and are shown in Table 7. The values of half-life times (t1/2, in h) of this process
were gained (and are also listed in Table 7) via Equation (10) [69],

t1/2 =
0.693

k1
(10)
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Table 7. Values of k1 and t1/2 for mild-steel corrosion in 0.5 M HCl solution in the absence and
presence of chitin at 303 K.

Inhibitors
Concn. (mg l−1) 103 k1, h−1 t1/2, h

0 (Blank) 89 7.79

100 73 9.49

200 66 10.50

300 57 12.16

400 51 13.59

500 49 14.14

Additionally, the orders (n) of corrosion inhibition were calculated using Equation (11) [70],

log CR = log k + n log Cinh (11)

where k is the specific rate constant (mg cm−2 h−1).
The graphs of log CR vs. log Cinh for the tested carbohydrate polymers at 303 K were

linear as presented in Figure 18. The values of n were found to be −0.76, −0.69, and −0.61
for Chi, Pec, and A-Pec, respectively (fractional first-order). The negative sign of n values
points to good % IEs [71].
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3.5. SEM Investigation

Figure 19 shows the micrographs of the surfaces of the examined mild-steel specimens
prior to and after insertion in the blank (0.5 M HCl) in the absence and presence of 300 ppm
of the examined carbohydrate polymers. Figure 19a,b illustrate the surfaces of the mild-
steel specimen prior to and after 24 h immersion in the blank, respectively. Figure 19b
demonstrates that the surface of the mild steel was highly corroded and various pits
were spread on its surface. Figure 19c–e demonstrate the micrographs of the surfaces
of the mild-steel specimens after 24 h immersion in the blank with 300 ppm of Chi, Pec,
and A-Pec, individually. These micrographs show that the damages shown on the steel
surfaces vanished and the surfaces were highly covered with the tested polymers. This is
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considered proof of the strong adsorption of the polymer molecules on the steel surfaces,
thus demonstrating good corrosion inhibition [72].
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3.6. DFT Study

Every ground state property of an electronic system is exclusively determined by
the electron density, according to the Hohenberg Kohn theorem, which forms the founda-
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tion of DFT. This hypothesis offers the simplest approach for investigating the molecular
structure and behavior of corrosion inhibitors on metal surfaces [73]. The molecules of
the investigated carbohydrates polymers contain several oxygen atoms for the Pec and
A-Pec moieties as well as several oxygen and nitrogen atoms for the Chi moiety. These
heteroatoms might be responsible for the metal surface’s effective adsorption by creating
coordinating bonds with the metal ions that prevent corrosion [74]. The polysaccharide
polymer molecules can be protonated by the aqueous acidic medium of 0.5 M HCl, which
can contribute significantly to the adsorption process.

The Koopman theorem coupled the parameters EHOMO and ELUMO to ionization
potential (I) and electron affinity (A) values as follows [75]:

Ionization potential (I) = −EHOMO (12)

Electron affinity (A) = −ELUMO (13)

Other reactivity indices, such as electronegativity (χ), electronic chemical potential (µ),
global hardness (η), softness (σ), and electron transfer fraction (∆N), were calculated using
the formulas:

Electronegativity (χ) =
I + A

2
(14)

Chemical potential (µ) = −χ (15)

Global hardness (η) =
I − A

2
(16)

Softness (σ) =
1
η

(17)

Electron transfer fraction (∆N) =
(χFe − χInh)

2(ηFe + ηInh)
(18)

Iron has a global hardness (ηFe) of 0 eV and an electronegativity (χFe) of 4.82 eV. Fe
is coupled to the Fe (110) surface at 4.82 eV, which has a packed surface and a larger
stabilization energy [76]. The value for bulk Fe atoms using Pearson’s electronegativity
scale was set to zero [77].

Figure 20 depicts the optimized structure and frontier molecular orbitals, specifi-
cally the HOMO and LUMO of Chi, Pec, and A-Pec. The electron density in the HOMO
and LUMO orbitals, respectively, appropriately depicts the inhibitor molecule’s electron-
donating and electron-accepting sites [78]. The quantum chemical characteristics in Table 8
effectively reveal the corrosion inhibitor’s reactivity as well as how well it adhered to the
metal surface. The energy details show how the molecules Chi, Pec, and A-Pec can donate
electrons. The higher electron exchange value of ∆N, the higher the contact of inhibitors
with the metal surface, which improves corrosion inhibition [79]. In conclusion, the Chi
inhibitor molecule has a higher propensity to transfer electrons to the metal surface than do
the Pec and A-Pec inhibitor molecules. In other words, the molecules of Chi, Pec, and A-Pec
bond with the metal surface during the chemisorption process, successfully preventing
corrosion [80,81]. Higher dipole moment values are related to improved inhibitor–metal
surface interaction through increased polarizability and effective surface area [82]. Com-
pared to the dipole moment of water, the dipole moments of Chi, Pec, and A-Pec are
significantly higher (1.88 Debye). As a result, the adsorbed water molecules on the metal
surface are successfully replaced by the Chi, Pec, and A-Pec molecules [83].

3.7. MD Simulation Study

The MD simulation accurately modelled the interaction between the inhibitor molecules
and the metal surface [84]. The Chi, Pec, and A-Pec polymer molecules, as well as the
Fe(110) crystal structure, were all adjusted before the MD simulations began. The top and
side viewpoints of the interaction site under examination are shown in Figure 21. It can be
observed that all of the polymer molecules of carbohydrates were adsorbed on the smooth
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Fe (110) surface. As a result, the flat location ensured the best contact possible between
the heteroatoms and the metallic surface. All inhibitor molecules rejected water molecules
from their adsorption sites, implying that as inhibitor concentrations grow, more water
molecules will be desorbed from the mild-steel surface [85]. In theory, when the adsorption
energy is the lowest during the simulation process, the inhibition performance is at its
maximum. The adsorption energies of the Chi, Pec, and A-Pec molecules were determined
to be 136387, 136396, and 136515 kcal mol−1, respectively, which corresponds to the order
of inhibition efficiency reported in the experimental investigations. The negative outcome
suggested that the adsorptive system was stable, and spontaneous adsorption may occur
in this setting. In general, the theoretical analyses back up the experimental findings.
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Table 8. Quantum chemical parameters for the tested carbohydrate polymers.

Parameters Chi Pec A-Pec

EHOMO (ev) −0.140 −0.164 −0.153

ELUMO (ev) −0.134 −0.135 −0.108

Energy gap (ev) 0.006 0.029 0.046

Ionization potential (I) 0.140 0.164 0.153

Electron affinity (A) 0.134 0.135 0.108

Electronegativity (χ) 0.137 0.149 0.130

Global hardness (η) 0.003 0.014 0.023

Global softness (σ) 335.008 69.686 43.802

∆N 784.451 162.736 102.705

Dipole moment (D) 14.283 6.297 8.088
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3.8. Mechanism of Corrosion and Corrosion Inhibition

In HCl solutions, the mechanism of corrosion of iron and steel has been suggested by
Mulle [86] to proceed according to the following stages:

Anodic reactions which result in the dissolution of iron into ferrous cations as follows,

Fe + Cl−
 (FeCl−)ads (19)

(FeCl−)ads 
 (FeCl)ads + e− (20)

(FeCl)ads → (FeCl+)ads + e− (21)

(FeCl+)ads → Fe2+ + Cl− (22)

Simultaneously, the cathodic reactions occur leading to H2 evolution,

Fe + H+ 
 (FeH+)ads (23)

(FeH+)ads + e− → (FeCl)ads (24)

(FeH)ads + H+ + e− → Fe + H2 (25)

Instead, iron and steel can form various oxide phases on their surfaces, which some-
what defend them. The presence of Cl− ions as well as the augmented potential in the
positive path, which is applied through the PDP measurements, can dissolve these ox-
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ides [33]. When Cl− ions were present in the solution, they strongly attacked the surface of
iron as an active anodic potential, leading to the continuous dissolution of iron in the forms
of uniform and pitting corrosion [33].

The results obtained from the various tools used in this paper indicated that the in-
hibitory performance of the investigated carbohydrate polymers on mild-steel corrosion
in HCl solutions was determined to be dependent on the chemical structures and concen-
trations of such polymers. The proposed mechanism of steel corrosion inhibition in the
tested medium included strong adsorption of the polymeric molecules on the steel surface
due to such compounds containing free electron pairs on the heteroatoms which exist in
their chemical structures that can construct coordination bonds with the vacant d-orbitals
on the iron surface [87]. Furthermore, in the hydrochloric acid solutions, Cl− ions were
specifically adsorbed on the steel surface which formed negative charges on the surface.
Additionally, in the acidic solutions, the examined polymeric molecules which contained
basic groups were suggested to protonate, forming positively charged ones. Therefore, an
electrostatic attraction was suggested to occur amongst the positive-charged polymeric
molecules and the negative-charged steel surface (physical adsorption), leading to the
formation of a strongly adsorbed layer that protected the metal surface [63].

4. Conclusions

The inhibitory impacts of chitin, pectin, and amylopectin as carbohydrate polymers
on mild-steel corrosion in 0.5 M HCl were explored utilizing several experimental and
theoretical techniques. The outcomes of the PDP study showed that the examined polymers
were set to be mixed-kind inhibitors with a major anodic one. The high % IEs of the tested
polymers were explained via strong polymeric adsorption on the steel surface and such
adsorption agreed with the Langmuir isotherm. The computed thermodynamic and kinetic
parameters confirmed the mechanism of physical adsorption of the inhibitors. The kinetics
and mechanisms of corrosion and its inhibition by the investigated polymers were examined
and discussed. The results gained from all employed tools were found to be consistent with
each other, which revealed that, under similar experimental circumstances, the inhibition
efficiencies of the tested polymers followed the sequence: chitin > amylopectin > pectin.
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