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Abstract: Intelligent composite structures with self-aware functions are preferable for future aircrafts.
The real-time location of damaged areas of composites is a key step. In this study, deep transfer
learning was used to achieve the real-time location of damaged areas. The sensor network obtained
acoustic emission signals from different damaged areas of the aluminum alloy plate. The acoustic
emission time-domain signal is transformed into the input image by continuous wavelet transform.
The convolutional neural network-based model automatically localized the damaged area by extract-
ing features from the input image. A small amount of composite acoustic emission data was used
to fine-tune some network parameters of the basic model through transfer learning. This enabled
the model to classify the damaged area of composites. The accuracy of the transfer learning model
trained with 900 samples is 96.38%, which is comparable to the accuracy of the model trained directly
with 1800 samples; the training time of the former is only 17.68% of that of the latter. The proposed
method can be easily adapted to new composite structures using transfer learning and a small dataset,
providing a new idea for structural health monitoring.

Keywords: composites; damage localization; acoustic emission; deep transfer learning

1. Introduction

Fiber-reinforced composites have been widely used in the marine, automobile, and
aircraft industries due to their excellent mechanical properties [1,2]. However, the influence
of various external loading conditions [3–7], such as low-velocity impacts, can significantly
affect the load-bearing capacity of composites, thus seriously compromising the safety of
the structural system. Many studies have used non-destructive testing methods such as
thermal imaging [8] and ultrasonic C-scanning [9] to locate and evaluate invisible damage
in composite structures. However, these methods require specialized equipment and cannot
quickly locate the damaged area. Therefore, it is urgent to develop an efficient and real-time
structural health monitoring (SHM) system to evaluate the damaged area of composite
structures.

Acoustic emission (AE) is a technique that can extract and characterize material
damage characteristics in real time. Elastic waves generated during material damage are
detected by AE sensors and converted into electrical signals. Therefore, AE technology can
monitor the condition of the structure without external excitation [10]. Many researchers
have proposed AE-based damage localization methods for composite structures [11–14].
Most of these studies require the extraction of specific characteristics of the AE signal, such
as the time of arrival (TOA). The damaged area is determined according to the location of
the sensor and the propagation velocity of the stress wave in the material. The method
assumes that the wave velocity is constant in all directions. However, due to the strong
anisotropy of the composite, the wave velocity is different in different directions. The wave
propagation is also affected by the interface and defects in the composites. In addition,
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different threshold values will result in different TOA [15]. Therefore, the application of the
TOA method is limited.

In recent years, with the development of data-driven methods, machine learning
(ML) methods represented by deep learning (DL) have been applied to damage/defect
detection and structural performance evaluation. Sause et al. [16] used neural networks
to learn the AE signals of fiber-reinforced composites to predict the failure load. Patel
et al. [17] predicted the effect of microstructure on the crack initiation of fiber-reinforced
ceramic composites by the ML model. Califano et al. [18] developed an SHM method
based on a neural network to detect whether there is damage in the carbon fiber/epoxy
composite panel. Santosh Kumar et al. [19] studied the relationship between specific
wear rate and mechanical properties of glass fiber-reinforced epoxy composites through
three ML algorithms. Ramasamy et al. [20] used an artificial neural network (ANN) to
predict impact damage tolerance based on AE data obtained during online monitoring
of low-velocity impact tests. Sharif-Khodaei [21] developed an ANN-based model that
can estimate the location of the impact by using sensor signal data. Datta [22] proposed a
localization impact model based on least squares support vector regression and applied it
to a carbon/epoxy composite plate structure. Kundu [23] used metamodeling techniques
to learn the mapping relationship between AE signal characteristics (spatial and temporal)
and damage properties, and a hierarchical Bayesian inference framework was used to
localize and characterize the damage during the online monitoring phase. However,
different pre-defined impairment features may lead to different recognition results. To
avoid this effect, a DL-based image classification technique was used [24,25]. The image
classification technique represented by a convolutional neural network (CNN) is a deep
learning architecture that has been widely studied in recent years [26]. Khan [27] used
CNN models and vibration data to identify delamination damage in composites. Tao [28]
used deep learning algorithms and ultrasound to characterize fatigue damage in composite
laminates. Atha [29] proposed a method to detect corrosion defects on a metal surface
based on 2D CNN. Kumar [30] used a deep learning algorithm to classify defects in sewer
inspection images automatically. The advantage of CNN is that it can process image input
and generate similar feature values from local areas with similar patterns. However, CNN
requires a large amount of data to train the model parameters, and the lack of data can lead
to non-convergence or over-fitting of the model. In the field of composites, the high cost of
experiments and numerical simulation makes it difficult to obtain a large amount of data.

Using a small amount of data to obtain a model with good performance has become
a pressing problem for DL-based composite structural health assessment. The damaged
area location method proposed in this study has the following advantages: (1) Using the
transfer learning strategy, the damaged area location model can be transferred to different
structures with a small amount of data, which greatly reduces the cost of building the
composite material database. (2) The trained model can be used as an intelligent perception
module for vehicles with the composite structure to locate the damaged area in real time.
In addition, related studies have shown that reducing the complexity of data sets can
potentially improve the accuracy of deep learning models [31,32]. In this paper, we reduce
the complexity of the data set by transforming the original time–domain data. Then, the DL
model is trained with low-cost AE time–frequency data of aluminum alloy, and then the
damage location (source domain) of the aluminum alloy sheet is transferred to the damage
location of fiber-reinforced composites (target domain) by transfer learning. The similarity
of acoustic emission signal propagation in solid materials provides a basis for the mobility
of damaged locations of different materials.

The contents of this paper are organized as follows: In Section 2, a series of pencil
lead break experiments in different areas were carried out on aluminum alloy plates and
carbon-fiber-reinforced plastics (CFRP) laminates to simulate material damage, and the AE
signals are recorded using a network of sensors. In Section 3, the AE time-domain signal is
converted into time–frequency scale diagrams by continuous wavelet transform to generate
datasets for training and testing the DL model. At the same time, a transfer framework is
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proposed to transfer the damage location model of the aluminum alloy plate to the damage
location of CFRP laminate. In Section 4, the effect of transfer learning on the performance
of the DL model is compared.

2. Materials and Methods
2.1. Material Preparation

Aluminum alloy plates and composite laminates of the same size were prepared
for AE experiments. The grade of the aluminum alloy plate is 2A12T4 and the size is
500 × 500 × 5 mm. The CFRP composite laminates were prepared by hot pressing plain
weave prepregs. The prepreg consists of T300 carbon fiber fabric and epoxy resin (ap-
proximately 42% resin volume fraction), with a thickness of approximately 0.25 mm. The
prepreg was cut to a predetermined size (500 × 500 mm) and stacked 20 layers at a lay-up
angle of 0◦, as shown in Figure 1a. The laminate preparation process is shown in Figure 1b.
The prepreg is laid on the surface of the mold plate with a release agent, then covered with
a bleeder cloth and a non-porous release film. These are sealed in a vacuum bag and placed
in an autoclave. Before heating and curing, the vacuum bag is vacuumed to remove air
and volatiles. The curing process of the laminate is shown in Figure 1c. After heating to
120 ◦C, a pressure of 0.8 MPa is applied to the prepreg to ensure that air and volatiles are
removed without extruding too much resin. The laminate begins to cool after 2–3 h of heat
and pressure. For the cooling rate, it has been shown that a lower cooling rate is more
conducive to crystallization [33], which means that better mechanical properties can be
obtained. Therefore, the composite laminates in this study were cooled naturally in an air
environment.
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Figure 1. (a) Fabrication process; (b) manufacturing process for CFRP composite laminates; (c) hot-
pressing process parameters.

2.2. Damage Area Location Experiment Based on Acoustic Emission

Researchers have used various types of artificial damage sources (pencil lead break,
impact, fatigue) as AE signal sources [34,35]. The AE source represented by the Hsu–Nielsen
pencil lead break (PLB) is a commonly used artificial AE source with good experimental
repeatability [34]. In this study, the AE source generated by the PLB experiment was used to
simulate the AE signal caused by material damage. The PLB signal source is generated by
pressing a pencil core (0.5 mm diameter, 5 mm long, at a 45-degree angle to the panel) onto
the top surface of the panel and breaking it approximately 3 mm from the tip. Note that the
difference in lead core diameter and break length affects the AE signal. In the experiment,
the angle, diameter, and length of the lead core fracture were kept as consistent as possible
to reduce this effect. To distinguish the reflected wave from the recorded waveform, the
distance between the sensor and the panel boundary is set at 75 mm, as shown in Figure 2.
The remaining area of the panel was divided into 49 square areas with sides of 50 mm. AE
sensors were placed in the 4 corners and marked as sensors 1 to 4. The remaining 45 areas
were used as damaged areas, and AE events caused by PLB in these areas were recorded
using a sensor network. The damaged area is uniformly expressed as R + number, e.g., area
1 is recorded as R1. To build the database, the PLB experiment was randomly repeated
40 times in each area, and 1800 impacts were recorded in 45 areas. Even within the same
area, the location of each random impact is different, resulting in a highly variable database.

The panels are supported by polymer foam to minimize vibration and energy transfer
from the environment to the panels. A cylindrical piezoelectric AE sensor (Figure 3) with
a diameter of 5 mm was used in the experiment to receive the AE signal propagating in
the panel. To maintain good contact between the panel surface and the sensor, vacuum
silicone grease is used as an acoustic coupling agent between the panel surface and the
AE sensor. The data acquisition device is a DS5 series AE system (Beijing Softland Times
Scientific &Technology Ltd., Beijing, China). The main parameters were set as follows: the
pre-amplification gain of the AE sensor was set to 40 dB, the trigger threshold was set to
10 dB, and the sampling frequency was set to 3 MHz.

2.3. CNN-Based Damage Area Localization Method

In this section, a CNN-based damage area localization model is developed. The
powerful feature extraction capability of CNN is applied to learn the nonlinear mapping
relationship between CWT images and damage areas to achieve damage location identifica-
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tion. For small training datasets, a transfer learning framework is developed to improve
the generalization performance of the model.
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2.3.1. Dataset Generation

In order to train the deep learning model, the captured AE signals must be processed
in the time–frequency domain. Based on the AE signals obtained by PLB experiments on
aluminum alloy plates and composite laminates in Section 2.2, the damage area location
datasets of the two materials are constructed by using continuous wavelet transform
technology.

Continuous wavelet transform (CWT) is a time–frequency transform method, which
is widely used in SHM applications [36,37]. The characteristic of CWT is that the signal can
be analyzed at multiple resolutions (wavelet has different resolutions in different frequency
segments), which makes CWT an ideal method for analyzing non-stationary signals such
as PLB.

CWT C(τ, f ) is defined as follows:

C(τ, f ) =
1√
s( f )

∫ +∞

−∞
x(t)ψ∗

(
t − τ

s( f )

)
dt (1)
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where x(t) is the acquired signal, ψ∗ is the complex conjugate of the mother wavelet ψ(t),
f is the frequency, τ is the translational parameter, the non-dimensional scale parameter s
is defined as s( f ) = fc fs/ f , fc is the central frequency, and fs is the sampling frequency. In
this study, the Morse wavelet is adopted as the mother wavelet, defined as

ψ(t) =
1√
π fb

exp
(

2π fc jt − t2

fb

)
(2)

where fb is the bandwidth. To avoid the interference of the signal intensity on the location
of the damaged area, the AE signal data measured by the AE sensor were normalized to
the interval (0, 1). Substitute the original AE time domain signal into Formula (1)—that
is, perform a convolution operation between the original signal and the parent wavelet to
obtain a two-dimensional matrix, where one dimension is time and the other dimension
is frequency. Convert this matrix into an RGB image to obtain the time–frequency scale
diagram of the original signal. Figure 4 shows the time-domain signal of a typical AE event
and the corresponding time–frequency scale diagram. In the time–frequency scale diagram,
the abscissa represents time, the ordinate represents frequency, and the color represents
amplitude, indicating the damage area information.
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The time–frequency scale diagrams of the data from the four sensors are arranged
according to the position of the sensors, and the obtained RGB images are used as the input
data of the deep learning model, as shown in Figure 5. The CWT image converted from the
acoustic emission signal of the pencil lead break contains the location and time information
of the damaged source. The dataset includes 1800 samples and is divided into the training
set, validation set, and test set according to the ratio of 60:20:20. The training set is used to
learn model parameters. The validation set is used to adjust the hyperparameters of the
model. The test set is used to evaluate the generality of the model.
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2.3.2. Convolutional Neural Networks

Convolutional neural networks are a class of deep neural networks most commonly
used in visual image recognition. CNN mainly consists of convolutional layers, pooling
layers, and fully connected layers.

The convolutional layer performs convolutional operations on the input data to extract
feature mappings, whereas the shallow convolutional layer extracts basic features, such
as edges and contours, and the deep convolutional layer extracts abstract features, such
as the entire image. The convolutional layer consists of a set of filters (convolutional
kernels) with learnable weights that perform the main computational tasks in CNN. In a
2D convolutional layer, forward propagation can be expressed as:

gi = f

[
N

∑
n=1

Conv2D(wi,n, an) + bi

]
(3)

where gi is the computed result of the i − th convolution kernel, an is the input data of size
Na × 1 × N, wi,n is the weight matrix of the i − th convolution kernel of size Nw × 1 × N,
bi is the deviation of the i − th convolution kernel, and f is the activation function. The
advantage of the activation function is that it introduces nonlinearity into the CNN, which is
beneficial for detecting the nonlinear features of the data. The common activation functions
are sigmoid, ReLU, and tanh. In this study, the ReLU function is used, which is more robust
to various disturbances and avoids the gradient disappearance problem to some extent.

The pooling layer achieves data reduction by down-sampling. The pooling layer is
typically located between two convolutional layers and serves as a regularizer. It reduces
both the amount of data passed to the next layer and the amount of computation required.
Although the pooling layer loses data information, it prevents overfitting. Max pooling is
the commonly used form of pooling and is expressed as:

pi(j) = max(j−1)×m≤k≤j×m(ai(k)) (4)

where ai(k) is the i − th feature map input to the k − th cell of the pooling layer, and pi(j)
is the output from the i − th feature map of the j − th cell of the pooling layer. The size of
the pooling layer filter is m × 1. The fully connected layer classifies the feature mappings
extracted from the convolutional and pooling layers.

In this study, the VGG16 architecture is used as the damage area detection model.
VGG16 is a 2D CNN architecture proposed by Simonyan [38]. Its outstanding contribution
is to prove that it can effectively improve performance through very small convolution and
increase network depth. The detailed configuration of the network structure is shown in
Figure 6, including 13 convolutional layers, 5 pooling layers, and 3 fully connected layers,
and excluding the activation layer. The model optimizer is Adam. The effects of different
mini-batch sizes (32, 64, and 128) and initial learning rates (0.001, 0.01, and 0.1) on the
model convergence and accuracy are compared. Finally, the initial learning rate was set to
0.001, and the mini-batch size used for each training iteration was set to 32.

2.3.3. Transfer Learning Framework

A deep learning model typically contains millions of parameters, so a considerable
amount of data is needed to effectively train all the parameters to achieve highly accurate
predictions. However, in many cases, it is difficult to obtain a large amount of data,
which limits the application of deep learning models. A small dataset will also greatly
affect the generalization ability of the model. The solution to overcome these problems is
called transfer learning [39], in which the knowledge learned by the model in one domain
is applied to other domains. Typically, pre-trained models that have been trained on
large datasets are used to assist in learning new tasks. These pre-trained models can
extract shallow basic features and deep abstract features. Specifically, some of the network
parameters of the pre-trained model are frozen to retain its ability to extract shallow features,
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while the parameters of the other part of the network are retrained using data from the
new domain to adjust its higher-order feature representation to make it more relevant to
the specific task [40].
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Acoustic emission refers to the phenomenon in which a material locally emits transient
elastic waves due to the rapid release of energy. Acoustic emission is also called stress wave
emission. The elastic wave emitted by the acoustic emission source propagates through the
solid medium to the surface of the object, causing the surface to vibrate mechanically. In
solid media, the reflection and refraction of stress waves follow the same physical laws. In
addition, due to the difference in the elastic modulus, density, and internal structures of
different media, the propagation speed and attenuation of the stress wave are also different.
The similar propagation laws and different propagation details of stress waves in different
solid media support the rationality and effectiveness of transfer learning. In this study,
the VGG16 model is first pre-trained using the AE data of the aluminum alloy plate to
obtain the basic model of transfer learning. Next, one part of the network parameters
of the pre-trained model is frozen to retain its ability to extract the shallow features of
time–frequency image data, while the other part of the network parameters is retrained
using the AE data of CFRP laminates to adjust its higher-order feature representation and
make it more relevant to the damage area identification task of composite laminates, as
shown in Figure 7. The performance of the model under different transfer strategies will be
illustrated and discussed in Section 3.
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Figure 7. A transfer learning framework for locating damaged areas.

3. Results and Discussion
3.1. Pre-Trained Model Training and Testing

The DL model is trained and tested based on the AE dataset of the aluminum alloy
plate to obtain a pre-trained model for composite laminate. First, the hyperparameters of
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the DL model are initialized and the training set is used to train the model parameters.
Second, the validation set is used to verify the prediction accuracy of the model, and
the hyperparameters of the model are adjusted according to the inference results of the
validation set. Finally, when the prediction accuracy meets the requirements, the training
is stopped and the model is saved. After 440 iterations, both the loss and accuracy of the
model converge, and the accuracy of the model on the validation set is 97.3%, as shown
in Figure 8. Based on the personal computer of this study (CPU Intel(R) Core(TM) i7-
12700 2.10 GHz) and the size of the dataset, it takes about 3.3 h for the model to complete
convergence training.
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Figure 8. (a) Model training loss and validation loss; (b) model training accuracy and validation
accuracy.

The performance of the model on the test set is shown in Figure 9, and the average
recognition accuracy of the damaged area is 95.83%. Moreover, it can be seen that the
model has a higher prediction accuracy for the damaged area distributed in the center of
the plate, but a lower prediction accuracy for the damaged area distributed at the edge.
There are two reasons for this result: (1) the uncertainty of the experimental setup, and
(2) the dispersion and edge reflection during elastic wave propagation. In addition, 20% of
the composite laminate AE dataset was directly input into the pre-training model, and the
damage area identification results are shown in Figure 10; the average recognition accuracy
of the damaged area is 46.39%. The accuracy, precision, and recall indicators of the two test
sets are shown in Table 1. It can be seen that the DL model trained by aluminum alloy data
can still maintain a certain accuracy on composite material data.

3.2. Damage Area Localization Based on Transfer Learning

According to the transfer learning framework shown in Figure 7, the transfer learning
from the damaged area location of the aluminum alloy plate to the damaged area location
of composite laminate is realized. First, the CNN model is trained with the AE data set
of aluminum alloy plate to obtain the pre-training model. Then, the model parameters
of the first few layers of the pre-training model are frozen, and the composite laminate
AE data set is used to retrain the last three fully connected layers (FC1, FC2, FC3) and
the last convolution block (Conv5, including three Convolution2D layers + ReLU layers +
MaxPooling2D layers) of the pre-training model. The recognition accuracy of the model
with and without the transfer learning framework is shown in Figure 11. Adding more
samples to the training dataset helps the DL model learn and understand the data better,
allowing it to make more accurate predictions. The accuracy of the damaged area increases
for both models as the number of samples increases.



Polymers 2023, 15, 1520 10 of 14

Polymers 2023, 15, x FOR PEER REVIEW 10 of 15 
 

 

The performance of the model on the test set is shown in Figure 9, and the average 
recognition accuracy of the damaged area is 95.83%. Moreover, it can be seen that the 
model has a higher prediction accuracy for the damaged area distributed in the center of 
the plate, but a lower prediction accuracy for the damaged area distributed at the edge. 
There are two reasons for this result: (1) the uncertainty of the experimental setup, and (2) 
the dispersion and edge reflection during elastic wave propagation. In addition, 20% of 
the composite laminate AE dataset was directly input into the pre-training model, and the 
damage area identification results are shown in Figure 10; the average recognition accu-
racy of the damaged area is 46.39%. The accuracy, precision, and recall indicators of the 
two test sets are shown in Table 1. It can be seen that the DL model trained by aluminum 
alloy data can still maintain a certain accuracy on composite material data. 

 
Figure 9. Identification accuracy of DL model on aluminum alloy test set. 

 
Figure 10. Identification accuracy of DL model on CFRP laminates test set. 

  

Senor 1 87.5 87.5 100 75 87.5 Senor 2

87.5 87.5 100 100 100 100 87.5

100 100 100 100 100 100 100

100 100 100 100 100 100 87.5

100 100 100 100 100 100 100

87.5 100 100 100 100 100 75

Senor 4 87.5 100 100 87.5 87.5 Senor 3 

10
0

15
0

20
0

25
0

30
0

35
0

40
0

100

150

200

250

300

350

400

Average accuracy:95.83%

Y(
m

m
)

X(mm)

75.00

80.00

85.00

90.00

95.00

100.0

Ac
cu

ra
cy

 ra
te

(%
)

Senor 1 25 37.5 37.5 25 25 Senor 2

37.5 50 75 62.5 62.5 50 25

37.5 62.5 75 75 62.5 37.5 37.5

37.5 62.5 75 75 75 37.5 25

25 62.5 75 62.5 50 50 25

25 50 37.5 50 50 50 25

Senor 4 37.5 37.5 25 25 37.5 Senor 3 

10
0

15
0

20
0

25
0

30
0

35
0

40
0

100

150

200

250

300

350

400

Y(
m

m
)

X(mm)

25.00

35.00

45.00

55.00

65.00

75.00

Ac
cu

ra
cy

 ra
te

(%
)

Average accuracy:46.39%

Figure 9. Identification accuracy of DL model on aluminum alloy test set.
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Figure 10. Identification accuracy of DL model on CFRP laminates test set.

Table 1. The accuracy, precision, and recall indicators of the two test sets.

Test Set Accuracy Precision Recall

Aluminum alloy 95.83% 95.83% 96.08%
CFRP laminate 46.39% 45.56% 46.48%
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Figure 11. The influence of transfer learning on the accuracy of damage area identification.

However, the training cost of the transfer learning model is significantly lower than
that of the direct training model. In terms of the amount of data required to train the
model, the accuracy rate (96.38%) of the transfer learning model trained with 900 training
samples is already comparable to that of the direct training model (96.94%) trained with
1800 samples. This shows that transfer learning can achieve excellent model performance
with a small amount of data. When the sample size reaches 1350, the accuracy of the
transfer learning model has stabilized at 96.94%, while the accuracy of the direct training
model is still rising, which indicates that the sample size of 1350 is not enough for the direct
training model. In addition, the accuracy obtained by the TOA method is 73.89%, which
is significantly lower than that of the deep learning model. In contrast, in terms of model
training time, when the accuracy rate is similar, the training time of the transfer learning
model (accuracy: 96.38%, dataset size: 900) is only 17.68% of that of the direct training
model (accuracy: 96.94%, dataset size: 1800), as shown in Figure 12.

Polymers 2023, 15, x FOR PEER REVIEW 12 of 15 
 

 

 
Figure 12. The influence of transfer learning on training efficiency. 

In order to verify the robustness of the transfer learning model, different levels of 
gaussian noise are added to the time–frequency images in the test set, which are input 
into the transfer model trained by 1800 samples. As shown in Figure 13, the influence of 
different noise levels on the recognition accuracy of the model is illustrated. When the 
noise variance reaches 0.05, the accuracy of the model only decreases from 97.22% to 95%, 
indicating that the model has good robustness. 

 
Figure 13. Recognition accuracy under different noise levels. 

4. Conclusions 
This study proposes a method based on deep CNN and transfer learning for damage 

area real-time localization of CFRP composite laminates. The deep transfer learning model 
is well able to identify the location of damaged areas in composite laminates in real time. 
Instead of manually extracting the discriminative features of the AE signal, this DL-based 
model can directly localize the damaged area of composite laminates by applying CWT 
to the original acoustic emission signal. By fine-tuning some parameters of the pre-trained 
model, the number of model parameters and samples that need to be updated is greatly 
reduced and the training efficiency of the model is improved. When the training sample 
size is 900, the prediction accuracy of the transfer learning model is equivalent to that of 

225 450 900 1350 1800
0

2,000

4,000

6,000

8,000

10,000

12,000

Ti
m

e 
co

st
 (s

)

Data set size

 TF-on
 TF-off

0 0.01 0.02 0.05 0.1
80

82

84

86

88

90

92

94

96

98

100

Av
er

ag
e 

ac
cu

ra
cy

 (%
)

Noise level

 Average accuracy

Figure 12. The influence of transfer learning on training efficiency.

In order to verify the robustness of the transfer learning model, different levels of
gaussian noise are added to the time–frequency images in the test set, which are input
into the transfer model trained by 1800 samples. As shown in Figure 13, the influence of



Polymers 2023, 15, 1520 12 of 14

different noise levels on the recognition accuracy of the model is illustrated. When the
noise variance reaches 0.05, the accuracy of the model only decreases from 97.22% to 95%,
indicating that the model has good robustness.
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4. Conclusions

This study proposes a method based on deep CNN and transfer learning for damage
area real-time localization of CFRP composite laminates. The deep transfer learning model
is well able to identify the location of damaged areas in composite laminates in real time.
Instead of manually extracting the discriminative features of the AE signal, this DL-based
model can directly localize the damaged area of composite laminates by applying CWT to
the original acoustic emission signal. By fine-tuning some parameters of the pre-trained
model, the number of model parameters and samples that need to be updated is greatly
reduced and the training efficiency of the model is improved. When the training sample
size is 900, the prediction accuracy of the transfer learning model is equivalent to that of the
model trained directly with 1800 samples. At the same time, the transfer learning model
can maintain high recognition accuracy under certain noise and has good robustness. The
wrong identification of damage area locations usually occurs near the edge of laminates and
sensors. There are two reasons for this result: (1) the uncertainty of the experimental setup,
and (2) dispersion and edge reflection during elastic wave propagation. The present study
demonstrated that the proposed damage area localization method can be easily adapted
to new composite structures and damage types using transfer learning and small sample
sizes. This study will provide a new idea for real-time structural health monitoring and the
intelligent perception of composite materials.

Due to the high cost of composite experiments, the acoustic emission signal from
the damaged source can only be simulated by non-destructive experiments, such as the
Hsu–Nielsen pencil lead break experiment used in this study. However, this is still different
from real composite damage. To overcome these limitations, two future research plans
have been established: (1) create a finite element model to simulate the propagation of
stress waves caused by impact and acoustic emission signals generated during composite
damage, which is desirable to locate the damaged area more efficiently; (2) use deep
learning algorithms to identify the relationship between acoustic emission signals and
failure modes of composites.
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