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Abstract: In this work, the mechanical behavior and energy absorption characteristics of flexible
fabric under hypervelocity impact (HVI) were investigated. Basalt fabric, ultra-high molecular
weight polyethylene (UHMWPE) fabric, and aluminum alloy (Al) plate were chosen to be the
sample materials for their excellent mechanical properties and applicative prospect in spacecraft
shielding. HVI experiments had been conducted with the help of a two-stage light-gas gun facility,
wherein Al projectile with 3.97 mm diameter was launched at velocities in the range 4.1~4.3 km/s.
Impact conditions and areal density were kept constant for all targets. The microstructural damage
morphology of fiber post-impact was characterized using a scanning electron microscope (SEM).
Analysis results show that a brittle fracture occurred for Basalt fiber during HVI. On the contrary, the
ductile fractures with large-scale plastic deformation and apparent thermal softening/melting of the
material had happened on the UHMWPE fiber when subjected to a projectile impact. According to
the HVI shielding performance and microstructural damage analysis results, it can be inferred that
ductile fractures and thermal softening/melting of the material were the prevailing energy absorption
behaviors of UHMWPE fabric, which leads to absorbing more impact energy than Basalt fabric and
eventually, contributes the superior shielding performance.

Keywords: micrometeoroid and space debris; hypervelocity impact; shielding performance; fabric;
microstructural damage; energy absorption

1. Introduction

High-performance fabrics are often used to resist hypervelocity impact (HVI) in the
protection structure of spacecrafts, due to their superior specific strength, specific modulus,
and energy-absorbing properties. In addition, the flexible fabrics could be folded and
deployed, are conducive to building inflatable structures for use in low earth orbit or lunar
bases, and provide protection from micrometeoroid and orbital debris (MMOD) impact.
The Stuffed Whipple shield which was used on the on-orbit spacecraft widely incorporates
a layer of fabric materials between a bumper and a back metallic plate [1–3]. Compared
with the metallic material of equal areal density, the intermediate stuffing layer with fabrics
could intercept and break the bulk fragments effectively, meanwhile slowing down the
velocity and consuming the kinetic energy of the debris cloud. Besides, the rear plate
of shielding configuration would not be damaged by the fragments produced by fiber
breaking, and the damage of the rear plate would be reduced significantly [4–8].

In the flexible multi-shock shield designed by Christiansen [9,10], multi-layers fabric
could consecutively disrupt the projectile to smaller debris and effectively dissipate the shock
energy generated by the projectile impact, and improve the shielding efficiency [11,12]. In
addition, flexible multi-shock shields could be compressed, folded, and packaged before
launch, and then, deploy as inflatable into a several-spaced shield configuration in orbit,
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thus resolving complications with the extended volume of rigid multi-shock shields [10,13].
Flexible multi-shock shields easily construct large size protective structures on orbit for
deployable structures, such as the “TransHab” inflatable module [10], a Model of a flexible
inflatable module RSC “Energia” [14], a Bigelow Expandable Activity Module [15].

Polymer and ceramic fabric were used on the spacecraft shielding configuration widely,
such as Aramid, ultra-high molecular weight polyethylene (UHMWPE), Basalt, and SiC
fabric. Besides the fiber material types, weaving patterns and material properties are
also important factors in HVI response and shielding performance. Rudolph et al. [13]
conducted HVI tests on different flexible materials and found that the most efficient pro-
jectile fragmentation and cloud dispersion were observed on the Kevlar fabric and Refrex
fabric target. Cha et al. [16] found that UHMWPE fabric ballistic performance at high
temperatures environment was slightly reduced, but in Whipple shield design, the ballistic
performance was better than Kevlar. Zhao et al. [17] found through numerical simulation
that plain weave fabric had the optimal space debris shielding performance compared with
other weave types. The fabric pulls out phenomenon is an important energy absorption
mechanism when fabric is impacted by projectiles. Moon et al. [18,19] proposed a new
hybrid composite shielding based on a yarn pull-out energy absorption mechanism, for
increasing the specific energy absorbing rate. The adhesion degree of Basalt and aramid
fabric influences their shielding performance. The over adhesion restricts the fabric layer
to absorb the kinetic energy of the debris cloud which causes the shielding performance
to degrade [6,7]. Shear Thickening Fluid (STF) impregnated fabric composites [20] and
directly curable composites [21] can be more effectively used as a bumper of a hypervelocity
shield than as pure fabric layers.

The above works on the HVI characteristics of fabric are mainly focused on the
structure design and evaluation of shielding performance. Nonetheless, there is relatively
little research conducted on microstructure damage and the energy absorption behavior
of fiber under HVI. Moreover, a woven yarn in the fabric is a collection of a bundle of
fiber that has a diameter of only several micrometers, and the fabric properties strongly
depend on fiber properties and microstructure. To better understand the fundamental
energy absorption mechanisms during impact, microstructure damage of fiber materials
has been investigated in this work in detail.

It is confirmed from previous investigations [8,16] that Basalt and UHMWPE fabrics
have a favorable application prospect in spacecraft shielding due to the excellent mechanical
properties and shielding performance. In this work, the HVI experiments of the Basalt
fabric, UHMWPE fabric, and 5A06 aluminum alloy (Al) plate, were carried out by using a
two-stage light gas gun. Specially, the 5A06 Al plate is selected for comparison of shielding
performance, for this material is commonly used to manufacture spacecraft bulkheads [22].
The projectile is a 2017-T4 Al sphere with a diameter of 3.97 mm toward replacing irregular
space debris, and the impact velocity range is 4.1~4.3 km/s. Shielding performance was
evaluated in terms of energy absorption performance and damage status of witness plate,
and the fracture modes and thermal effects of Basalt and UHMWPE fiber were analyzed by
utilizing scanning electron microscopy (SEM). The investigation provides useful insights
into the energy absorption behaviors of fiber material under HVI.

2. Material and Hypervelocity Impact Experiment

HVI experiments were performed on Basalt and UHMWPE fabrics, as well as Al plate. The
properties of materials used in this work are described in Section 2.1. The shield configuration
and targets used to conduct the HVI experiments are outlined in Sections 2.2 and 2.3.

2.1. Materials

In this study, UHMWPE and Basalt plain woven fabrics were used as experimental ma-
terials. Meanwhile, the 5A06 Al plate is selected for comparison of shielding performance.
Basalt and UHMWPE plain woven fabrics used in experiments are shown in Figure 1.
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Figure 1. Basalt and UHMWPE fabrics were used in experiments. (a) Basalt fabric. (b) UHMWPE fabric.

Table 1 shows the material properties of the Basalt and UHMWPE fabrics as well as
the 5A06 aluminum alloy. The values are obtained from material performance tests or data
sheets provided by the manufacturer.

Table 1. Experimental material properties.

Material Density
(g/cm3)

Tensile
Strength

(MPa)

Young’s
Modulus

(GPa)

Breaking
Elongation

(%)

Melting
Temperature

(◦C)

1-Layer
AD

(g/cm2)

Number
of

Layers

Total AD
(g/m2) Ref.

Basalt 2.65 3800 93~110 3.1 1050 339.8 32 10,873.6 [8]

5A06 2.64 339 71 25 660 2727.0 4 10,908.0 [22]

UHMWPE 0.96 2470 99 3.7 120 302.8 35 10,598.0 test

In order to compare the impact resistance of fabric targets and Al plate, the areal
densities of all targets were made as close to each other for comparison. Considering
the application background of orbital debris shielding, the areal density is an important
factor in evaluating the performance of the structures, as the highest performance per areal
density can be used as a comparison reference unit for various systems. As the application
of fabrics to hypervelocity impact cases intends to take advantage of the flexibility and
mobility that such a configuration provides, the performance comparisons were conducted
with an interest in the areal density.

From Table 1, the tensile strength of Basalt fiber is approximately 1.5 times that of
UHMWPE, but breaking elongation is only about 0.8 times. Young’s modulus for Basalt
fiber is approximately consistent with UHMWPE. The thermal properties of the two fabric
materials are significantly different. The melting temperature for Basalt and UHMWPE
was 1050 ◦C and 120 ◦C, respectively. UHMWPE fiber is more likely to soften and melt
under the same heating process. Knowledge of the melting temperature can be used to
infer the temperatures experienced in materials by post-HVI forensic analysis.

UHMWPE fiber is made up of extremely high molecular weight and long polymeric
chains of polyethylene (monomer unit > 250,000 per molecule) aligned in the same direction.
The molecular chain rotates through the C-C bond to form a folding chain, forming a regular
structure locally, resulting in a highly crystalline and oriented chain of molecules along
the fiber direction [23,24]. The degree of crystallinity of commercial fiber varies between
70% and 85%. Such a crystal structure enables UHMWPE fiber to offer a combination of
low density, high strength, and high stiffness [25,26]. Basalt fiber is a novel fiber that has
appeared in recent years. The average diameter of Basalt fiber was 13 µm. They have high
chemical stability and mechanical properties and could be widely applied to many fields.
Basalt fiber were previously investigated in shielding configurations [8]. The whole Basalt
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fiber existed in an amorphous form and remained in a metastable state [27]. Basalt fiber is
composed of 52.73 wt% SiO2, 15.15 wt% Al2O3, 5.93 wt% FeO, 4.17 wt% Fe2O3, 8.61 wt%
CaO, 6.37 wt% MgO, and 7.04 wt% Other components [28]. Chemical composition of 5A06
Al are 0.032 wt% Cu, 0.258 wt% Fe, 6.42 wt% Mg, 0.555 wt% Mn, 0.422 wt% Si, 0.0495 wt%
Ti, 0.0331 wt% V, 0.0216 wt% Zn, and residual components is Al [29].

2.2. Experimental Configuration

The schematic of the single shield of fabric for HVI experiments is shown in Figure 2.
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Figure 2. Configuration of the experimental setup.

The fabric target is made of multi-layers fabric, based on the areal density of a 4 mm
thick 5A06 Al plate. All targets have a similar areal density (AD) of about 10,800 ± 200 g/m3,
with a planar dimension of 200 mm × 200 mm. The detailed parameters of the fabric target,
such as the areal density of single layer fabric, the number of layers, the total areal density,
and the thickness are shown in Table 1.

The witness plate is installed behind the fabric target, with an approximately 100 mm
stand-off distance. The witness plate is composed of 4 layers of 1 mm thickness and
200 mm × 200 mm size 5A06 Al plate, which is convenient to analyze the penetration of the
target and the characteristics of fragments generated by the projectile impact. All targets
were impacted with 3.97 mm 2017-T4 Al sphere spheres (nominal mass: 0.09 ± 0.002 g)
with velocities of 4.1~4.3 km/s.

2.3. HVI Experiments

The production and installation process of the UHMWPE fabric target is shown in
Figure 3.
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The fabric was stacked along the thickness direction and glued on the edge of the
fabric, effectively preventing the yarn from pulling off and clamping the edge of the fabric.
The target assembly, consisting of the two steel plates and the fabric specimen, was held
together by fasteners located around the target, effectively inducing clamped boundary
conditions on targets. The target and witness plate are combined by a long bolt to form
the single shield structure Figure 3a. A two-stage light–gas gun was used to perform HVI
tests in this stud. The installation position of the target in the chamber room is shown in
Figure 3b. The chamber room pressure would be lower than 200 Pa when the hypervelocity
impact test on shielding configuration was carried out, to provide an approximate vacuum
environment for the impact process. The velocity of the projectile was recorded by the laser
velocimeter system.

3. Results and Discussion

The shielding performance of targets was evaluated in terms of energy absorption
performance and damage status of witness plate. Furthermore, the fracture modes and
thermal effects of Basalt and UHMWPE fiber were analyzed by the microstructural damage
characterization with SEM, to understand the reasons for the difference in energy absorption
behaviors and shielding performance.

3.1. Shielding Performance Analysis

All the experimental results are summarized in Table 2, which includes measured
projectile velocity, target perforation, the volume and maximum depth of the impact crater
in the witness plate.

Table 2. Impact test results.

Experimental Bumper Material Vproj/(km/s) Penetration Maximum Depth of
Impact Crater (mm)

Impact Crater
Volume (mm3)

S1 Basalt 4.190 Yes 511 5.19

S2 5A06 4.266 Yes 1311 71.76

S3 UHMWPE 4.250 No 0 0

The results are considerably different, although impact conditions and areal density
were kept constant for all targets. Except for UHMWPE fabrics target, other targets were
penetrated by projectiles. The impact holes of target and structural damage to witness plate
are shown in Figure 4.
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Figure 4. Results of HVI experiment for (a) UHMWPE fabric (S3, 4.250 km/s); (b) Basalt fabric (S1,
4.190 km/s); (c) Al plate (S2, 4.266 km/s).

The impact results of Basalt fabric target and Al plates are shown in Figure 4b,c,
respectively. The Basalt fabric target was penetrated by hypervelocity projectiles. There are
several impact craters by projectile debris and fiber debris on the witness plate, which are
distributed radially. The back of the witness plate was intact. For the Al plate, the target
plate is penetrated by a projectile. There are many impact pits on the front of the witness
plate, while the back of the witness plate is intact.

The volume and depth of the impact crater on the witness plate were measured by
a 3D measuring laser microscope. The impact crater 3D shape images were shown in
Figure 5.
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Figure 5. Microscopic morphology of the witness plate. (a) Impact crater in witness plate of Al
plate. (b) Microscopic appearance of impact crater. (c) Impact crater in witness plate of Basalt fabric.
(d) Microscopic appearance of impact crater.

The depth of the impact crater is measured by altitude intercept between the bottom
of the impact crater and the non-impact surface. It can be seen from Figure 5b,d that the
maximum crater depth of the Basalt fabric and Al plate witness plate were 511 µm and
1311 µm, respectively. It can be inferred that the fragments generated by the projectile
impacting the Basalt fabric have smaller kinetic energy and are less destructive. Therefore,
compared with the Al plate, the Basalt fabric has a better shielding performance.

The HVI experiment results of the UHMWPE fabric target are shown in Figure 4a. The
UHMWPE fabric target was not penetrated and the witness plate is intact. The two layers
of fabric in the critical state of penetration are shown in Figure 6.
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Figure 6. UHMWPE fabrics and projectile fragments. (a) 27th layer. (b) 28th layer. (c) Fragments
remaining in fabric.

There are 35 layers in the UHMWPE fabric target, of which 27 layers are penetrated
by projectiles (Figure 6a), and the remaining 8 layers are not penetrated (Figure 6b). The
remaining quality accounts for 22.86% of the total quality. The projectile fragments remain-
ing in the fabric between 27th and 28th are shown in Figure 6c, right side, and their mass is
0.017 g. The left side is the original projectile, with a diameter of 3.97 mm and a mass of
0.090 g.



Polymers 2023, 15, 1547 8 of 14

The specific absorbed energy (SAE) Es, which is the absorbed energy divided by the
areal density of the penetrated fabric layers, was used to characterize energy absorption
performance [30]. It is described as Equation (1):

Es =
1
2

mp
(
v2

I − v2
R
)

ADp
(1)

in which vI and vR represent the velocity of projectile before and after impact, respectively;
mp is the projectile mass; ADp is the total areal density of the penetrated fabric layers in
target, which is defined as the mass of the total penetrated fabric layers mtp divided by the
area of the impact plane St. Thus, the unit of Es is J/(kg/m2).

In experiments S1 and S2, the initial kinetic energies of the projectiles were 790.0 J and
819 J, respectively. The remaining kinetic energy of the projectile and fragments could be
calculated by the relationship between the kinetic energy and the volume of the crater [31].

Vc = 713 E1.09 (2)

The Vc is the volume of impact crater, and E is kinetic energy of fragments. It may be
noticed that Equation (2) is an empirical formula for Al 2017 projectiles and Al 5056 targets.
The chemical composition and material properties of Al 5056 and 5A06 Al plates are similar.
Young’s modulus of both materials is 71 GPa, and the tensile strengths are 290 and 339 MPa,
respectively. Therefore, it is assumed that Equation (2) is suitable for the current situation.

Without considering the surface scratches of the witness plate, the total volume of all
the impact craters is 5.19 mm3 and 71.76 mm3 for Basalt fabric and Al plate witness plate,
respectively. Thus, the remaining kinetic energy of the fragments in experiments S1 and
S2 are 11 J and 120 J, respectively. Therefore, the SAE of Basalt and aluminum plates is
71.65 J · m2 · kg−1 and 64.10 J · m2 · kg−1.

In experiment S3, the UHMWPE target intercepted the projectile and debris cloud
effectively and absorbed all the projectile kinetic energy of 812.8 J. The total areal density
of the penetrated fabric layers in target ADp is 8.18 kg/m2, Thus, the SAE of UHMWPE
target was 99.36 J · m2 · kg−1. The comparison of the SAE performance of three materials is
shown in the Figure 7.
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It can be seen from the Figure 7 that the energy absorption efficiency of UHMWPE is
greater than that of Basalt and Al plate.

According to the contrast experiments, the UHMWPE fabrics target could be effectively
resisting the impact of hypervelocity projectile, while the Basalt fabric target and Al plate
were penetrated by the projectile. UHMWPE fabrics exhibited superior energy absorption
efficiency and shielding performance than the Basalt fabric and Al plate under the same
areal density.

3.2. Microstructural Damage Analysis

The fabrics possess a hierarchical multi-scale architecture from fiber to yarns to multi-
layer fabrics. Macroscopic response of fabric under HVI strongly depends on the mi-
crostructure damage and energy absorption behavior of the fiber. To better understand
the fundamental energy absorption mechanisms during impact, microstructure damage of
fiber materials, such as fracture modes and thermal effects, requires further investigation.

Preliminary fractography analyses of the fiber damage surfaces using scanning electron
microscopy (SEM) reveal distinct differences in fracture modes and energy absorption
characteristics in each fiber material.

Typical impact features of Basalt and UHMWPE yarns located at the edge of the hole
can be seen in Figures 8 and 9.
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Figure 8. Typical impact feature in Basalt fiber. (a) The hole in Basalt fabric. (b) Broken Basalt fiber
yarn. (c) The damaged Basalt fiber. (d) Basalt fiber fracture cross-section.

In the Figure 8b, the fracture morphology of several Basalt fibers after HVI was
approximately consistent. These are exhibited slender cylindrical shapes the same as
before impact, and no permanent deformation along the fiber direction. With an increase
in the magnifications, the fractographic at fiber-level resolution is shown in Figure 8c,d.
The lateral surface of the Basalt fiber exhibits a relatively smooth surface, and a few fiber
fragments could be observed scattered on the fiber surfaces. The fracture cross-section
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for Basalt fiber is fairly rough and wedge-shaped in appearance. The cross-section is
oblique with an angle of about 45◦, which is the typical brittle fracture pattern. Permanent
plastic deformation, such as necking, distortion, and bending, was not found in fracture
cross-sections. The fracture morphology characteristics of Basalt fiber accord with the shear
failure mode of brittle materials, indicating that brittle fracture occurs during the impact.
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Figure 9. Typical impact feature in UHMWPE yarns. (a) The hole in UHMWPE fabric. (b) Melting
UHMWPE fiber yarn. (c) The plastic deformation UHMWPE fiber. (d) The broken UHMWPE fiber
cross-section.

Figure 9b,c depict the UHMWPE fiber yarn located at the impact hole of the 22nd layer
fabric (Figure 9a). The SEM micrographs show that UHMWPE fiber displays apparent bulk
softening and melting of the material and large-scale plastic deformation, such as fibrillation
fractures and permanent transverse compressive deformation. Melting fiber at the end of
the yarn is entangled and condensed, and eventually, fused (as Figure 9b), possibly as a
result of extreme adiabatic heating during impact and lower melting temperature (120 ◦C)
of UHMWPE fiber.

With an increase in the magnifications, the fracture morphology at fiber-level resolu-
tion is shown in Figure 10.

UHMWPE fiber with a nominal fiber of approximately 17 mm is used in this investiga-
tion. Different forms of UHMWPE fiber fracture morphology are clearly shown in Figure 10,
such as inelastic transverse deformation, necking, twisting damage, and fibrillating. When
examining the higher magnification image (Figure 10a–c), the inelastic transverse com-
pression deformation features were observed clearly in the fiber axial. Fractured fiber was
flattened into thin slices and separated into fibrils comparing intact fiber, which may be
caused by the extreme impact pressure.
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separation of fiber. (c) Bending and fibrillating of fiber. (d) Cracking of fiber. (e) Entanglement of
fiber. (f) Melting and condensation of fiber.

When a projectile impacts the fiber transversely and causes large transverse defor-
mation, the fiber can still maintain its load-bearing capability in its longitudinal direction
and spread the impact loads. Inelastic transverse deformation of UHMWPE fiber is readily
observed from the inspection of the fiber fractographic [32]. UHMWPE fiber can sustain a
large amount of transverse compressive strain, likely due to their fibril interactions and
the deformation of a mesoscale fibril network [25,33,34]. Transverse compression can be a
significant energy absorption mechanism in HVI applications.

In Figure 10a, the fractured fiber shows an obvious necking phenomenon, and the fiber
section in necking region decreases gradually, which may be caused by tensile failure. Inter-
fibrillar cracks and fibrillating caused by separation of fibrils were observed in Figure 10b–d,
and the cracks in fiber surface propagate along the fiber direction. In addition, irreversible
plastic deformation such as bending and twisting of fiber was also found in Figure 10b,c.
The damage behavior of the fiber discussed above shows that the ductile fracture had
happened on UHMWPE fiber during HVI.

The SEM images of the damaged fiber provide valuable insight into the fracture modes
and energy absorption mechanism at the fiber level. The crack propagation and fibrillation
on the fiber increase the fracture surface area, thereby increasing the energy absorption. In
addition, the energy absorbed was further enhanced by irreversible plastic deformation,
such as bending, twisting, and transverse compression deformation.

The Basalt fibers are broken into fragments, due to stronger shock pressures dur-
ing HVI process. The fiber fragments scattered on the witness plate were sampled and
photographed. The SEM images of fiber fragments are shown in Figure 11a,b.

Basalt fiber fragments contain short fiber and fiber powder. The length of Basalt short
fiber is about 40~60 µm. Each fiber or fragment did not adhere to each other, and no traces
of melting or phase transformation appeared like in UHMWPE fiber. The fragments of
UHMWPE fiber are shown in Figure 11c,d. Among the fiber fragments, there are some
un-melted and deformed fiber in transverse, and others are rough and obvious melting
traces. The melted fiber fragments are bonded together to form a massive fragment.
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The comparison results show that Basalt fiber was not subject to a dramatic phase
transition during impact as UHMWPE fiber is. It is inferred that the kinetic energy absorbed
through phase transformation, such as thermal softening or melting, was little few for Basalt
fiber materials. The differences in HVI response for Basalt and UHMWPE fiber material
might be depending on the materials’ microstructures (glass network and chain-folded
Polyethylene crystals, respectively), chemical composition (aluminosilicate and polymer
material, respectively), melt temperature, etc.

4. Conclusions

In this study, hypervelocity impact behavior and energy absorption characteristics of
Basalt and UHMWPE fabric were analyzed. Basalt and UHMWPE fabrics, and Al plate
with equal areal density, were subjected to normal HVI by 3.97 mm diameter Al-2017
aluminum spheres at velocities in the range of 4.1~4.3 km/s. Post-impact analyses of
the target specimens were used to provide insight into the microstructural damage and
shielding performance of each material, including a 3D laser scanning microscope (LSM),
and scanning electron microscope (SEM).

1. Basalt and UHMWPE fiber show different fracture failure modes after HVI with
Al projectile. Microstructural damage analysis shows that UHMWPE fiber exhibits
ductile fracture and apparent bulk softening/melting of the material, while the Basalt
fiber exhibits a typical brittle fracture mode.

2. The UHMWPE fabric target exhibited superior energy absorption efficiency and shield-
ing performance than Basalt fabric and Al plates, while the areal density, projectile
size and velocity were similar in the HVI experiments.

3. In summary, the HVI experimental results combined with microstructural damage
analysis of fiber materials suggest that ductile fractures with large-scale plastic de-
formation and apparent thermal softening/melting of fiber are significant energy
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absorption behavior, which could improve the energy absorption efficiency and the
shielding performance.
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