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Abstract: Amorphic diatomaceous earth is derived from natural sources, and polyamide 11 (PA11) is
produced from materials of natural origin. Both of these materials show a low harmfulness to the
environment and a reduced carbon footprint. This is why the combination of these two constituents
is beneficial not only to improve the physicochemical and mechanical properties of polyamide 11 but
also to produce a biocomposite. For the purpose of this paper, the test biocomposite was produced
by combining polyamide 11, as well as basic and pre-fractionated diatomaceous earth, which had
been subjected to silanization. The produced composites were used to carry out rheological (melt
flow rate-MFR), mechanical (tensile strength, bending strength, impact strength), crystallographic
(X-ray Diffraction-XRD), thermal and thermo-mechanical (differential scanning calorimetry–DSC, dy-
namic mechanical thermal analysis–DMTA) analyses, as well as a study of hydrophobic–hydrophilic
properties of the material surface (wetting angle) and imaging of the surface of the composites and
the fractured specimens. The tests showed that the additive 3-aminopropyltriethoxysilane (APTES)
acted as an agent that improved the elasticity of composites and the melt flow rate. In addition,
the produced composites showed a hydrophilic surface profile compared to pure polylactide and
polyamide 11.

Keywords: polyamide 11; diatomaceous earth; diatoms; silanization; silanes; surface properties;
mechanical strength; hydrophilic composite system

1. Introduction

Filled polymer composites have been successfully applied for many years in various
sectors of the economy, such as automotive, aerospace and construction industries [1–3].
The most popular fillers include wood flour [4,5], carbon fibres [6,7], glass fibre [8,9],
clays [10,11], white titanium [12,13], cellulose [14,15], basalt [16,17] and flax fibre [18].
However, the most important vice of conventional polymer products is their harmful
impact on the natural environment, which is a result of ineffective waste management and
the growing consumer demand for new products. Even so, the marketing of new, advanced
materials based on biopolymers faces many obstacles and has been broadly discussed
in the literature by researchers with both academic and industrial backgrounds. It has
consistently been shown that an additive to mineral and fibrous fillers has a positive impact
on mechanical properties, thermal stability and abrasion resistance, and in many cases, it
helps considerably reduce production costs, which is important for many entrepreneurs.
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Such a cost-effective mineral filler is diatomaceous earth (EUR 0.80/kg on average). In
addition to the favourable impact on the mechanical or rheological properties of polymer
composites, diatomaceous earth is also used as a filtration medium to remove harmful
substances, and its porous structure makes it easy to modify its surface [19].

The use of inorganic fillers in polymer composites entails not only benefits but also
challenges. This is because the final properties of the designed materials depend on the
interaction (adhesion) at the interface between the filler and the polymer matrix. The
improved interactions at the filler–polymer interface are an important issue for researchers.

Silanization is a well-known method for improving adhesion between different ma-
terials, which is also well described in the literature. Silanes are hybrid compounds that
consist of the organic and inorganic parts with a general formula (X(CH2)nSiR3, with ‘n’
usually being 0–3, which makes them applicable as the promoters of adhesion between
materials dissimilar in terms of the chemical structure, such as ceramics–polymer and
polymer–metal [20–22]. The hybrid, inorganic and organic structures of silanes allow us to
form stable chemical bonds between organic and inorganic materials. The organic part of
silane consists of groups that are chemically reactive or compatible with organic materials
(depending on the choice of X substituent and the materials to be compatibilized), such as
polymers (e.g., amine, epoxy or vinyl groups). The R substituents are groups susceptible
to hydrolysis (alkoxy or chloride groups) responsible for forming siloxane links with the
surface of inorganic materials [23].

Silane-based couplers form a thin film between incompatible materials, thus improving
the interface interactions in composites, which in turn translates into improved mechanical
properties of the filled polymeric composites. When placed on an inorganic surface, silanol
oligomers react with one another to create branched hydrophobic siloxane bonds -Si-O-Si-.
They form metal–siloxane bonds -Si-O-M- (where M = metal) on the surface of the inorganic
matrix (for example, silica, diatomaceous earth or metal oxides containing hydroxyl groups,
–OH). Figure 1 shows a diagram representing the structure of a single diatom particle
comprising diatomite earth, while Figure 2 shows a diagram of its surface silanization
with APTES. More details on the microstructure of diatomite have been discussed in our
previous works [24], as well as the silanization thereof [25].
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Composites based on the PA11 matrix, loaded with silanized fillers for reinforce-
ment, are not commonly known. The literature has recorded few works devoted to PA11
with silanized fillers. We know the methods of strengthening polyamide 11 with organ-
ically modified clay [26], organically modified layered silicate (Cloisite 30B) [10], silane
(3-aminopropyltriethoxysilane (APTES)) grafted titanate nanotubes [27], and Palygorskite
nanofiber clay silanized by the same silane (APTES) [28]. Adding silanes is aimed mainly
at improving the interface interactions between the filler and polyamide 11. Additionally,
a natural filler is added to produce a biocomposite whose ingredients are derived from
renewable sources that can be strengthened and, consequently, we can improve its tensile
strength, impact strength or Young modulus. A key point in terms of the industrial applica-
tion of the PA11/filler composite is its weather resistance, which has been obtained in, for
example, the work of Cong et al., which used jute fibres silanized by vinyltrimethoxysilane
(VTMOS) [29].

As we had no references in the bibliographical references regarding the use of silanized
diatomaceous earth as a filler for polyamide 11, we attempted to produce such composites.
In our previous work, we also performed the silanization of diatomaceous earth and exam-
ined the impact of the modification on the physicochemical and mechanical properties of
composites on the polylactide matrix [25]. Tests have shown that, depending on the silane
applied, it is possible to modify individual parameters; for instance, methyltrimethoxysi-
lane causes the greatest growth in processing properties (MFR), n-octyltriethoxysilane
reduces the composite degradation, and (3-glycidyloxypropyl)trimethoxysilane helps in-
hibit the penetration of UV rays into the composite, so the degradation progresses only
down to a specified depth. The use of 3-aminopropyltriethoxysilane as a diatomaceous
earth modifier may further improve the physicochemical parameters of composites, but
this time, for a broader analysis, the composite matrix was polyamide 11 acquired from
renewable sources.

In this work, we carried out a chemical modification (silanization) of basic diatoma-
ceous earth pre-fractionated with the use of sedimentation. The prepared material was
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used as a filler for polyamide 11 to produce composites with a diatomaceous earth content
of 2.5, 5, 10 and 20% by weight with a 1% addition of APTES. The produced composites
were tested for the impact of silanization on their mechanical and processing characteristics.
Furthermore, we compared the thermal and thermomechanical properties of the composites
(DSC and DMTA) and tested their surfaces and fractures with an optical microscope. The
degree of dispersion of a filler in a polymer was determined using a scanning electron
microscope. Our reference systems were the composites produced in a previous work [30],
which made it possible to fully specify the impact of both the diatomaceous earth alone
and the silanized diatomaceous earth on the characteristics of the obtained composites.

2. Materials and Methods

Polyamide 11 (Rilsan® RE31840 Natural) was purchased from Arkema (Colombes,
France). Diatomaceous earth (Perma-Guard, Bountiful, UT, USA) was derived from di-
atomite deposits. Silane APTES (3-Aminopropylotriethoxysilane) was purchased from
Sigma-Aldrich (Saint Louis, MO, USA).

2.1. Preparation of Diatomite

The fractionation of amorphic diatomaceous earth was performed using the hydraulic
method, according to the procedure presented in previous works [30,31], with the use of
gravitational sedimentation. Fifteen kilograms of amorphic diatomaceous earth (particle
size between 1 µm and 100 µm) was washed with demineralised water in order to separate
particles of different sizes. We obtained three fractions of diatomaceous earth with disparate
particle size distributions. In further testing, we used a fraction with a medium particle
size (Fraction 2, particle size between 4 and 35 µm), where we eliminated the content of the
smallest diatomite particles.

2.2. Preparation of Modified Diatomaceous Earth

We placed 1 kg of diatomaceous earth in a 14-L glass reactor equipped with a me-
chanical stirrer. Then, we added to the reactor 4 L of isopropanol, 10 mL of demineralised
water, and 1% by weight of APTES (3-aminopropyl)trimethoxysilane, and we left it for 24 h,
stirring continuously (300 rpm). Then, the mixture was poured into a separate container
and left for sedimentation. Once the liquid was poured out from above the sediment, the
diatomaceous earth was washed with demineralised water and put into a dryer at 60 ◦C
for 24 h.

2.3. Extrusion of the Biocomposite

The biocomposite extrusion process was performed on a RHEO DRIVE 16 process
line made by Haake PolyLab OS (Thermo Scientific) (Waltham, MA, USA). The process
was carried out using a double-screw extruder. We added to the charge the mixture of
PA 11 with basic diatomaceous earth, in portions (50 g), modified with the APTES at
four concentrations of 2.5%, 5%, 10% and 20%, in that particular order. The materials
became plasticised and mixed at the screws. The extruded substance was dried for 24 h at
70 ◦C and then milled in a plastics mill WANNER C17.26 sv (Łódź, Poland). We obtained
4 compositions of polyamide 11 with diatomaceous earth at concentrations of 2.5%, 5%,
10% and 20%. Other composites were extruded in a similar way. The extrusion parameters
are shown in Table 1.

Table 1. Extrusion parameters.

Temperature at Heating Zones (◦C)
Nozzle TS6 TS5 TS4 TS3 TS2 TS1

235 250 250 255 255 250 250

Torque, M (Nm) Nozzle Pressure, P50 (bar) Revolutions per Minute, N (1/min)
20–78 0.6 14
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2.4. Injection Moulding–The Production of Standardised Measuring Paddles

The injection moulding procedure was performed on an e-victory 170/80 made by En-
gel (Schwertberg, Austria). Table 2 shows the process parameters. The mould temperature
was maintained at 80 ◦C. We obtained standardised type 1A measuring profiles according
to ISO 527 [32]. Finally, we produced 4 types of composites and a reference system (Table 3).

Table 2. Injection moulding parameters.

Temperature [◦C]
Nozzle Zone 3 Zone 2 Zone 1 Traverse

215 220 215 210 40

Mold Closing Force (kN) Clamping Time (s) Cooling Down Time (s) Screw Diameter (mm)
800 4 30 25

Table 3. Composites obtained for testing.

Biocomposite Type Filler Concentration Abbreviation

PA11 + original diatoms + 1% wt. APTES[a]

2.5% 2.5OBS
5% 5OBS
10% 10OBS
20% 20OBS

PA11 + fractionated diatoms + 1% wt. APTES[a]

2.5% 2.5OFS
5% 5OFS
10% 10OFS
20% 20OFS

PA11 - PA11
a—APTES was applied in 1 wt% ratio of the diatomite.

2.5. Characterisation Methods

For the mechanical analysis, we used dumbbell-shaped samples prepared according
to EN ISO 527-1: 2020 [32] and EN ISO 178: 2010 [33] norms. The test was conducted
on a universal testing machine INSTRON 5969 with a maximum loading force of 50 kN
(Instron, Norwood, MA, USA). The transverse travel speed for tensile and flexural strength
measurements was set at 5 mm/min.

The Charpy impact test with a notch was performed on an impact testing device,
Instron Ceast 9050 (Instron, Norwood, MA, USA), according to ISO 179-1: 2010 [34]. The
impact test was carried out according to PN-EN ISO 178-1 [33]. The notch was made by
machining in the centre of the test sample according to ISO 179-1/1 eA [35]. The V-notch
was angled at 45◦ and 2 mm deep. The side impact direction was applied in the line axis
normal to the sample plane.

Dynamic mechanical thermal analysis (DMTA) was performed using a Q800 DMA
(TA Instruments, USA) in dual cantilever mode according to ASTM D4065-01. From each
composite, three rectangular specimens 60 mm in length and 10 mm in width were cut
and used in the test. The analysis was conducted from 0 ◦C to 130 ◦C with a heating
rate of 3 ◦C/min at a frequency of 1 Hz and an amplitude of 30 µm. The glass transition
temperature (Tg) was determined from the peak value in the storage modulus using V4.5A
TA Universal Analysis software.

Powder morphology was characterised by a scanning electron microscope (SEM, TM
1000 Hitachi, Tokyo, Japan) operating at an applied voltage of 5 kV. Before observations via
SEM, the sample surfaces were sputtered with a gold-palladium layer for 90 s at an electric
current of 10 mA and voltage of 2 kV.

The melt flow rate (MFR) was measured using the Instron CEAST MF20 melt flow
tester, which accords with EN ISO 1133 [36], at 235 ◦C for a load of 2.16 kg.

Thermal properties of materials were studied by the DSC (differential scanning
calorimetry) technique, using a Q1000 Differential Scanning Calorimeter (TA Instruments,
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New Castle, DE, USA). Samples with a weight of 8.0± 0.2 mg were placed in an aluminium
hermetic pan. First, the samples were equilibrated at −90 ◦C, then heated to 230 ◦C with a
scan rate of 10 ◦C/min, and cooled to −90 ◦C with a scan rate of 10 ◦C/min. Finally, they
were heated again to 230 ◦C with a scan rate of 10 ◦C/min. The process was conducted in a
nitrogen atmosphere. Using Universal V4.5A TA software, the glass transition temperature
(Tg) was determined as the midpoint of the glass transition temperature range. The melt-
ing temperature was taken as the peak temperatures of cold crystallisation and melting,
respectively. For the calculation of the composite crystallinity, the following formula was
used, which is in accordance with the general methodology for DSC analysis of polymer
composites [37].

X =
H0

m
H0
· 100
100− a

a—filler loading [wt%]
Hm—measured melting enthalpy [J/g]
H0—melting enthalpy of fully crystalline PA11, 206 J/g [30].

The viscosity of the composites was determined with a capillary method, using a cap-
illary rheometer Instron CEAST SR10 Smart RHEO 1000. The measurement was performed
at 235 ◦C, and the capillary tube used was 1 mm in diameter and 20 mm in length. The
viscosity was determined for 6 shear velocities: 10, 30, 100, 500 and 1000 [1/s].

The images of surfaces and fractures were made with a digital microscope KEYENCE
VHX-7000 (KEYENCE INTERNATIONAL (BELGIUM) NV/SA) with a wide-angle zoom
lens VH-Z100R with 100-fold magnification. The images were made using depth composi-
tion and 3D imaging features. We used full coaxial illumination.

Contact angle analyses were performed by the sessile drop technique (5 µL) at room
temperature and atmospheric pressure with a Krüss DSA100 goniometer.

Surface gloss measurements were recorded at 23 ◦C according to the ISO 2813 [38]
standard using a compact gloss meter (GM38, 3Color®, Narama, Poland) using 20◦, 60◦

and 85◦ geometry. The device was calibrated between various specimen measurements
using dedicated standard black glass. Three gloss unit (GU) values were recorded from
each specimen and averaged. Before the measurements, the samples were stored in the
same lighting conditions to prevent possible colour changes.

The phase identification and the relationship between the sediment fraction depth and
its composition were determined using an X-ray diffraction (XRD) powder diffractometer
Bruker AXS D8 Advance (Bruker, Karlsruhe, Germany) using CuKα lamp radiation and an
Ni filter. X-ray diffractograms were recorded in the angular range of 5–80◦ (2Θ).

The measurements for hiding power were performed by placing samples of the
prepared resin systems into the optical path between the light source (LED) and the UV-
NIR spectrophotometer AvaSpec-Mini2048CL (Avantes, Louisville, CO, USA).

Fourier Transform-Infrared (FT-IR) spectra were recorded on a Nicolet iS50 Fourier
transform spectrophotometer (Thermo Fisher Scientific, manufacturer Madison, WI, USA)
equipped with an ATR unit (5000–80 cm−1).

For the washability test, two types of markers were used: a water-resistant permanent
marker (green) and removable board markers in two colours (black, blue). Having applied
a thin layer of each of the tested markers, the following test steps were planned:

• One-time wiping of the surface with a clean, dry cotton cloth,
• One-time wiping of the surface with a clean cotton cloth soaked with tap water,
• One-time wiping of the surface with a clean cotton cloth soaked with methanol,
• One-time wiping of the surface with a clean cotton cloth soaked with acetone.

The last step was not carried out as all traces of the markers had been removed
previously by methanol.

The measurements for hiding power were performed by placing samples of the
composites into the optical path between the light source (LED) and the UV-NIR spec-
trophotometer, an AvaSpec-Mini2048CL (Avantes, Louisville, CO, USA).
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The size of the diatoms used to prepare the composites was measured with a Master-
sizer 3000 (Malvern Instruments Ltd., Malvern, UK). The measurements were taken for
samples in water suspension (Hydro EV attachment). The parameters of the measurements
for the wet samples were a stirrer revolution speed of 2330 RPM and an ultrasound power
of 70%. The tensile, bending and impact strength tests, rheological tests (MFR, viscosity),
thermal tests (DSC, DMTA) and microscope observations were compared to the compos-
ites produced by direct injection moulding, which are described in a previous paper [30].
Additionally, the tests were complemented with a surface analysis, that is, the analysis of
wetting angle and the test of gloss at the composite surface for all samples, whether or not
they were modified by the APTES.

The particle size distribution of the filler was performed by Dynamic Light Scattering
(DLS) on a Mastersizer 3000 instrument (Malvern Panalytical, Malvern, UK) with a Hydro
EV measuring attachment.

3. Results and Discussion
3.1. Infrared Spectroscopy (FT-IR)

Figure 3 shows the FTIR spectra of unmodified diatomaceous earth and fractionated
diatomaceous earth silanized with APTES, used for modifying polyamide 11.
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Figure 3. FT-IR spectra of neat, base diatomaceous earth (OB) and silanized diatomaceous earth (OBS).

Both modified and unmodified diatomaceous earth are characterised by the presence
of bands at 3622, 3540–3100, 1645, 1050, 800 and 450 cm−1. The silanization process did
not produce new bands in the FT-IR spectrum, while a change in the intensity and peak
maximum shift of the bands after the silanization process was observed.
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The presence of a broad band in the range of 3540–3100 cm−1 is related to the presence
of stretching vibrations of surface -OH groups, and a band at 1645 cm−1 being -OH bending
vibrations of coordinated H2O molecules [39] or Si-OH silanol groups [40], while the band
present at 3622 cm−1 is related to the O-H vibrations of adjacent SiOH groups forming
intermolecular hydrogen bonds [41]. Silanization of diatomite resulted in a significant
reduction of the O-H bands, both the main, broad one, and the sharp one at 3622 cm−1.
The band present at 450 cm−1 is related to the muscovite present in the samples. The bands
present at 1050 cm−1 and 800 cm−1 come from Si-O bond vibrations, as in the band in [42].

3.2. Particle Size Distribution

Particle size distribution analysis was performed by Dynamic Light Scattering (DLS)
for diatomaceous earth before and after the sedimentation fractionation process. The
fractionation process allowed for the removal of the smallest diatomaceous earth particles,
i.e., less than 4 µm, as shown in Figure 4. In addition, the effect of the sedimentation
fractionation process on the tendency to form agglomerates is also observed, which can be
seen as an increased proportion of particles with sizes in the 50–200 µm range. It is also
observed that the largest amount of diatomaceous earth particles with a size of 7–12 µm is
present, which is the main fraction of the material.
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3.3. Crystallinity Analysis (XRD)

XRD analysis of all studied materials was performed in order to investigate the effect of
the diatomite filler on the crystallisation of the polymer matrix and to study the crystalline
structure of neat PA11 processed under the same conditions. It is known that PA11 and
other polyamide types are characterised by polymorphism, resulting in overlapping XRD
reflexes, making the crystallographic analysis of composites based thereof a challenging
task. Common polymorphs observed are α, γ, δ’ (smectic) and amorphous phases, and
a high temperature δ phase forming above 95 ◦C (known as Brill transition temperature)
in a reversible transition of α phase [43]. In addition, various crystalline phases have
been reported in diatomite, including quartz, cristobalite, calcite, feldspar, kaolinite and
vermiculite [44–46]. Analysis of neat PA11 (Figure 5) showed that the commonly observed
α phase is present, as a reflex at 2θ of 7.3 is visible, corresponding to the (001) lattice,
which is in agreement with available reports [43]. For a diffraction pattern of neat PA11
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α phase, additional reflexes in 2θ of 20.0–20.5 and 22.9–23.5 ranges should be present,
corresponding to the (200) and (010) + (210) lattices, respectively. In the studied case, a
right-side broadened reflex at 2θ of 21.1 with another smaller maximum at 2θ ~22.3 is
visible. This shift can be explained by the presence of an additional metastable γ phase,
which is reported to give reflexes at 2θ of 21.6 and 22.4 [47]. The presence of some amounts
of the δ’ smectic phase was also plausible, but the obtained data did not allow for its
unambiguous confirmation.
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(D)—samples with fractionated diatomite and APTES.

In the case of non-silanized filler composites, both fractionated and non-fractionated
diatomite, strong and well-pronounced reflexes of the δ’ smectic phase, were observed in
each system, with the maximum at 2θ ~20.6. The presence of a coexisting α phase was
confirmed by the still visible reflex at ~7.2; however, the abundance thereof decreased
together with increasing filler content. It was initially thought that the application of the
filler could have also caused changes in polymer crystallinity; however, DSC analysis
(Section 3.6) revealed that the differences in the crystallinity index (CI) of the produced
samples was barely noticeable. Therefore, the filler presence affects the selectivity of the
PA11 α phase nucleation, while the obtained CI levels are comparable and, rather, the
result of the injection moulding parameters kept constant for all the produced materials.
The analysis of composites filled with APTES-silanized diatomite allowed us to draw
the same conclusions, showing no particular effect of the filler surface treatment on its
nucleation-inducing behaviour.
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3.4. Test of the Composites’ Mechanical Characteristics

The notch impact test was conducted for the composites both with the addition of
silane and, comparatively, without silane, which was presented previously in [30]. Neat
polyamide was characterised by the highest impact strength amongst the tested samples,
7 kJ/m2 (Figure 6). The relatively low impact strength values arose from the high elasticity of
the composites and from the requirement to test samples that were previously notched. For
this reason, the impact strength values are lower than those recorded in the literature [48].
As in the previous work, we observed an impact of the size of diatomaceous earth particles
on the composite impact strength. Composites containing fractionated diatomaceous earth
showed a higher impact strength, but the differences were not too big. The silanization of
PA11/DE composites in most cases caused a slight reduction in impact strength; a greater
decline was recorded for the fractionated diatomaceous earth, while most of the modified
composites showed a lower standard deviation, which means that the addition of silane had
a positive impact on this aspect, i.e., probably on the filler dispersion in the polymer matrix,
while for higher filling levels it could affect the secondary agglomeration of particles in the
composite, which caused the slight reduction in impact strength.
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Figure 6. Impact strength of the composites after injection moulding: comparison of the composites
containing diatomite filler with and without APTES silanization.

The silanization of diatomaceous earth had a very significant impact on the composites’
mechanical properties, in particular on the elongation at the yield point, which is shown in
Figure 7. Composites containing pure diatomaceous earth show elongation at a yield point
of around 5%, whereas, in particular for the low filling with silanized diatomaceous earth,
we recorded an over 4-fold growth in that parameter irrespective of the pre-fractionation of
the filler. The higher the diatomaceous earth concentration, the smaller the differences. The
relationships presented above indicate that the addition of APTES increased the elasticity
of the composites. That relationship might be associated with the fact that, if the level
of filling the composite with diatomaceous earth is low (2.5%) and the content of the
silane-based modifier is stable, the effect of silanization alone prevails over the effect of
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increased brittleness caused by the diatomaceous earth. As the filler concentration grows,
the filler starts to prevail over the silanization effect, which consequently causes a decline
of elongation at break. In contrast, the yield point was reduced after silanizing the filler,
being lowest for systems with 10% concentration, whereas further filling of the composites
caused the growth of the yield point.
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Composites that contain the silanized filler show somewhat lower values of Young’s
modulus, tensile strength, flexural modulus or maximum flexural stress, but these parame-
ters remain acceptable, particularly for high concentrations (Figures 8 and 9). High-filled
samples show values that are higher than those for the reference polyamide 11, and thus
we can conclude that a high filling level (20%) is beneficial not only due to reduced costs
of production of the composites but also due to the fact that they maintain acceptable me-
chanical parameters. Lower results, e.g., for the yield point of the composites, particularly
those highly filled, may result from the fact that diatom agglomerates are formed in the
composite, where the accumulation of APTES is higher, so there may also occur local cross
bonds between the silane particles inoculated on diatomaceous earth [28]. Although it was
tempting to correlate the observed differences between the mechanical properties and the
crystalline polymorphism of neat PA11 and composite samples thereof, the literature data
on the mechanical properties of the PA11 polymorphs was found insufficient to discuss
the phenomenon of filler-induced crystallisation of PA11. The reports covered the XRD
analysis of PA11-based composites; however, either no correlation between polymorphism
and mechanical properties was discussed, or it was explained that the data did not allow
us to discuss such a relationship [49,50].
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3.5. Rheology—Melt Flow Rate (MFR) and Viscosity

Silanization of diatomaceous earth positively affected the melt flow rate of PA11/DE
composites. We observed considerable growth in processing parameters, especially at
the lowest concentrations. As the filler concentration grows, the MFR reduction effect
starts to prevail, which arises from the nature of the filler; however, we still recorded
a twofold growth in MFR compared to the composites without silane (Figure 10). In
earlier research [25], where the polymer matrix was formed by a polylactide, a similar
effect was observed, where the MFR index grew even higher once silane was introduced
to the system. The apparent dynamic viscosity of polyamide 11 was around 60–65 Pa·s
regardless of the range of shear velocity (Figure 11), whereas the introduction of silanized
diatomaceous earth to the systems caused a growth of that value along with increasing
concentration, but at low DE concentrations the viscosity curve was similar to that of the
reference sample. Upon exceeding 10% by weight of the filler, the viscosity at the initial
values of shear velocity grew approximately twofold, particularly for the system containing
basic diatomaceous earth. The functioning of diatomite and the filling of the composite
with diatomaceous earth with a limited particle size distribution resulted in somewhat
lower values of apparent dynamic viscosity. The added (3-Aminopropyl)trimethoxysilane
acts as an agent that increases the melt flow rate (MFR), especially for low filling levels, and
increases the viscosity of composites at high concentrations. The viscosity grew to around
50 Pa·s, depending on the shear velocity.
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3.6. Thermal Analysis (DSC, DMTA)

DSC analysis was performed to investigate the thermal behaviour of the PA11 and
PA11/diatomite composites. Figures 12–15 show the DSC thermograms of PA11 and
PA11/diatomite composites during the first and second heating cycles for 5% and 20% load-
ing, respectively, and Tables 4 and 5 present thermal characteristics of the materials with
and without silane treatment obtained during two heating cycles. With increasing tempera-
ture, DSC curves show two thermal events: a glass transition (Tg) near 50 ◦C, and a single
endothermic melting event near 190 ◦C. It was found that the addition of diatomite did not
affect Tg or Tm to any significant extent. On the other hand, in the previous work [30], a
more significant drop in Tg was observed upon the addition of diatomite, showing that
untreated diatomite presence causes formation of a filler–matrix interphase of weak interac-
tion, with additional polymer freedom, while the filler treatment with APTES increases this
interaction. The addition of diatomite caused a slight increase in the crystallisation tempera-
ture, showing some nucleation properties of the filler; however, silanization thereof caused
no difference in this matter. Therefore, silanization does not affect the diatomite efficacy of
PA11 nucleation, although it significantly affects the selectivity of nucleating the polymer
towards either α or γ polymorph, as proven by XRD (see Section 3.3). For the second heat-
ing cycle, significant differences in PA11 behaviour were observed, mainly the reduction in
Tg slope to the point where its exact determination was unfeasible. Additionally, both the
unmodified PA11 and all 5% composites showed two melting peaks (Tm1 and Tm2) during
the second heating cycle, and for 20% composites this double melting effect was still visible
for all the materials by broadening and left-side shouldering of the endotherm signal, while
being much better resolved for 20OFU13. While the main (larger) melting event was still
observed at around 189 ◦C, the additional melting peaks were characterised by a maximum
of around 182 ◦C, which was a result of formation of the abovementioned γ crystalline
phase (smectic phase), accompanying the α phase melting at ~189 ◦C [47]. Depending
on the processing conditions, PA11 may crystallise into different polymorphs that can be
transformed from one to another. This double peak corresponded to the melt-crystallisation
process of the γ phase to the α’ crystalline form of PA11. The secondary peak seemed to
decrease when the additive content was increased in the composite material [51–53]. In
addition, the glass transition temperature peak broadened considerably, and it was difficult
to determine Tg from the DSC curves during the second heating. We did not observe a
significant impact of the added (3-aminopropyl)tririmethoxysilane on thermal stability
of the composites; however, as noted also in a previous work [30], the size of diatomite
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particles did have a slight importance and, for the fractionated diatoms, we observed an
increase in temperature Tg by around 1 ◦C for the first heating cycle.
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Table 4. Thermal characteristics of PA11 and composites with silane.

1st Heating Cooling 2nd Heating
Sample Tg (◦C) Tm (◦C) Hm (J/g) X (%) Tc (◦C) Tm1 (◦C) Tm2 (◦C) Hm (J/g) X (%)

PA11 48.7 190.0 56.9 27.6 163.9 181.4 189.0 51.6 25.0
5OBS 47.9 189.4 52.0 26.6 167.8 183.4 188.5 50.5 25.8
5OFS 49.8 188.7 48.8 24.9 167.8 182.7 188.5 51.7 26.4

20OBS20OBU13 46.9 188.9 44.3 26.9 169.5 - 188.5 45.7 27.7
20OFS 48.2 188.5 34.6 21.0 169.2 - 188.6 32.1 19.5
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Figure 15. DSC curves of unmodified PA11 and composites, second heating; samples with 20%
of diatoms.

Table 5. Thermal characteristics of composites without silane obtained in a previous work [32].

1st Heating Cooling 2nd Heating
Sample Tg (◦C) Tm (◦C) Hm (J/g) X (%) Tc (◦C) Tm1 (◦C) Tm2 (◦C) Hm (J/g) X (%)

PA11 48.7 190.0 56.9 27.6 163.9 181.4 189.0 51.6 25.0
5OB 46.8 189.5 44.6 22.8 167.6 182.6 189.0 45.0 23.0
5OF 44.0 189.5 48.7 24.9 167.1 182.8 188.6 50.3 25.7

20OB 44.6 187.6 36.4 22.1 167.8 - 186.6 44.1 26.8
20OF 46.6 188.7 39.2 23.8 169.7 - 188.4 44.7 27.1

The effect of the diatom concentration and addition of (3-aminopropyl)tririmethoxysilane
silane on the viscoelastic behaviour of composites was studied by DMTA. The curves of the
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storage modulus (E′) and tan δ as the temperature’s function are shown in Figures 16 and 17,
while the obtained results are summarised in Table 6. The storage modulus or viscoelastic
modulus corresponds to the elastic response of the material and is associated with the
energy absorbed (stored) by the material and recovered in each load cycle. Generally, the
increase in storage modulus is caused by mechanical viscoelastic stiffness raise [54]. The
glass transition temperature (Tg) was determined from the tan δ curve, which is defined as
the ratio of the loss modulus E” to the storage modulus E′. The peak of the tan δ curve oc-
curs as a result of the relaxation of the polymer chains, and the glass transition temperature
is attributed to it [55].
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Table 6. Summary of the determined values of the glass transition temperature from tan δ curves and
storage modulus E′ curves.

Sample Tg (◦C) E′ (MPa) tan δ

PA11 59.6 1409 0.194
5OB 66.4 1649 0.214

5OBS 63.2 1291 0.219
5OF 64.2 1534 0.227

5OFS 64.2 1560 0.214
20OB 63.4 2222 0.196

20OBS 64.0 2340 0.196
20OF 65.8 2062 0.196

20OFS 66.9 2190 0.187

It can be seen that for neat PA11 the glass temperature was under 60 ◦C. In the presence
of 20 wt% diatoms and (3-aminopropyl)tririmethoxysilane, Tg increased to 66.9 ◦C. It was
found that the addition of diatoms with different sized frustules and silane shifted the Tg
peak towards higher values of about 5 ◦C. This confirms a good dispersion of diatoms in the
PA11 matrix, which limits the polymer chains’ mobility and causes mechanical viscoelastic
stiffness to increase. A similar tendency was confirmed by other researchers [54]. The
addition of APTES silane did not change the glass temperature much, which was related
to not affecting the polymer chains’ movement. These results were correlated with the
obtained mechanical parameters. The addition of silane did not increase Young’s modulus
and tensile strength composites relative to chemical unmodified materials.

Looking into the presented curves, it should also be noted that the addition of diatoms
into the PA11 polymer allowed for obtaining stiffer material with higher values of storage
moduli investigated at room temperature and tan δ value due to the stiffening effect of the
reinforcement. As observed, the increase of the diatom content tends to increase the value
of E′ from 1409 MPa to 2340 MPa, suggesting an improvement in the material’s mechanical
viscoelastic performance. At the same time, tan δ presented a slight increase for composites
with 20 wt% of the diatom concentration, probably due to reducing the polymer’s relaxation
caused by the reinforcing effect of diatoms that hinders the mobility of the PA11 molecular
chains [54]. In comparison, Stoclet et al. indicated that the increase in the clay content and
improvement of its dispersion involves an enhancement of thermomechanical properties
of polyamide 11 nanocomposites [51].

3.7. Surface Properties

Composite fracture imaging showed a relationship between both the method of prepar-
ing the filler and the tendency for secondary agglomeration of particles and between its
concentration and the distribution of agglomerates in the polymer matrix (Figure 18).
The higher the filler concentration, the more clusters of diatom particles were present,
which was observed for both the basic and the fractionated diatomaceous earth. Basic
diatomaceous earth showed a greater tendency towards secondary agglomeration than
fractionated diatomaceous earth, which was due to the presence of particles of various
sizes. Based on the comparison of SEM images showing the fractures of composites without
silane, we found that it had an impact on the structure of the surface. The silanization of
diatomaceous earth made the composite surface smoother, regardless of the fraction used
and of its concentration. In addition, the share of grooves visible at the fracture declined.

Images of the surfaces and fractures of the composites with an optical microscope
were made (Figures 19 and 20). Along with the growing filler concentration on the surface
of the composites, we observed an increasing non-uniformity in colour due to the presence
of hydrophilic centres (black spots) on the composite surface, which was in turn directly
attributable to the values of the wetting angle and the hydrophobic-hydrophilic properties
of the composites (Figure 21 wetting angle). In addition, there were differences in colour
between the composites filled with basic and fractionated diatomaceous earth. This was
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caused by eliminating the systems of the smallest DE particles, which gave the composite
an even, uniform colour, whereas larger, agglomerated particles were visible, as the dark
spots discussed above. That effect was also slightly visible in the images of the composite
fractures, while much larger differences were noticed on the surface of the samples. For the
fractures, it was easier to see the colour difference arising from the mere concentration of
the filler, so as the concentration grew, the colour of the composite changed towards that of
diatomaceous earth alone, with a gentle difference due to the filler particle size.
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The gloss tests were carried out both for the composites modified with silanized di-
atomaceous earth and for the composites without U-13 to make a comparison, as presented
in Table 7. The test was carried out at 60◦ geometry. Neat polyamide 11 is characterised
by a surface gloss of 31.5 GU, which makes it a medium gloss system. The addition of
diatomaceous earth reduced the gloss, which decreased linearly along with the growing
concentration of the filler having the form of basic diatomaceous earth. The modification
of base systems with silane further reduced the gloss and, for the high-filled samples, the
formation of systems with a near-matte surface. An exception is the system filled in 5%,
subjected to silanization, as in this case we can observe a slight growth in gloss value, which
is also visible for the fractionated sample 5OF. In this case, at the initial abrupt increase of
gloss and achieving the limit for system 5OF, the values start declining along with further
growth of the filler. It is similar after modification with APTES, but in this case the limit
filling value turned out to be 10%, and each addition of silane caused a gloss reduction and
the formation of systems with surfaces approaching matte.

Table 7. Gloss on the composite surface measured at 60◦ geometry.

Gloss 60◦

[GU]
SD

[GU]
Gloss 60◦

[GU]
SD

[GU]
Gloss 60◦

[GU]
SD

[GU]
Gloss 60◦

[GU]
SD

[GU]

2.5OB 24.53 0.50 2.5OBS 22.20 0.36 2.5OF 23.00 0.08 2.5OFS 22.97 1.13
5OB 21.90 0.54 5OBS 22.30 1.12 5OF 35.70 1.13 5OFS 20.70 0.36

10OB 17.50 2.12 10OBS 21.30 1.45 10OF 26.10 0.75 10OFS 27.03 0.62
20OB 15.07 0.74 20OBS 12.47 0.17 20OF 16.57 0.12 20OFS 15.47 0.42

PA11 31.50 1.93

The addition of APTES enabled us to obtain a hydrophilic composite system. The tests
of hydrophobic–hydrophilic properties (Figure 21) showed that neat polyamide 11 had a
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wetting angle of around 84◦, making it hydrophilic. This was similar to composites filled
with diatomaceous earth, whose surfaces were also hydrophilic. Those based on polylactide
were hydrophilic systems. The addition of base, silanized diatomaceous earth in most cases
(except 2.5% loading), caused a slight growth in surface hydrophobicity, which might have
been due to the presence of smaller filler particles, which do not exist in fractionated DE,
and to the combination with APTES, which is likely to interact more effectively with smaller
particles. The silanization of fractionated diatomaceous earth and the elimination of the
smallest particles allowed us to obtain a more hydrophilic composite system compared to
the others, but we found no relationship between the filler concentration and the wetting
angle values.

Washability tests were conducted (Figure 22) to determine whether PA11/diatoms
are useful in industrial applications, for example in the overprinting of foils and pack-
aging materials. We selected a composite characterised by the lowest degree of surface
hydrophobicity (2.5OFS) and, for reference, a corresponding composite without silaniza-
tion (2.5OF) and pure Polyamide 11 (PA11). The test showed that, after the first step of
the washability test conducted on the surface of composite 2.5OF (without silanization),
the green (permanent) marker was partially removed, which did not occur for the other
samples; additionally, for that composite, we also found that the removable board marker
(blue) remained on the surface to the greatest extent. Despite the much lower wetting angle
for the silanized sample compared to pure polyamide 11, after using water, the trace of the
permanent marker remained unchanged and had a similar intensity. Only methanol used
to clean the surface completely removed each type of marker used. Based on the described
tests, we concluded that a silanized composite showed higher resistance to surface washing
than a composite containing pure diatomaceous earth, despite the difference in wetting
angle, which was 16◦ on average, whereas pure polyamide 11 and composite 2.5OF, despite
the nearly identical hydrophobicity level (~84◦ and 83◦, respectively), showed significant
differences in the behaviour of their surfaces when coloured.
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The relative hiding power tests (Figure 23) of the composites indirectly permitted
us to determine the composites’ colouring degree and transmittance. The relative hiding
power increased along with the growing filler concentration, but that increase was not so
significant up to 10% DE. In the case of composites modified with basic DE, the maximum
recorded relative hiding power was around 5%, and 3% for fractionated DE, which indicates
that the elimination of the smallest particles (<3 µm) increased the transmittance of the
composites (Figure 4), implying a change in colour in this case. Composites filled with
base diatomaceous earth at 20% showed the lowest relative hiding power values, while
for fractionated DE, they were lower by half, which means that the effect of absence of the
smallest particles was visible considerably better at higher concentrations. Figure 24 shows
an SEM image of a composite containing 20% basic diatomaceous earth without silanization,
which was made in a random location at the fracture of the sample. We observed large
amounts of agglomerated diatomaceous earth containing broken and unbroken frustules.
The filler agglomeration in the polymer matrix had a direct impact on the very high values
of relative hiding power due to the hindered permeation of rays through the sample. Each
modification of the systems with APTES reduced the relative hiding power, which was
best visible for systems 20OF. The SEM images presented in Figure 25 show composites
containing 20% of the filler. We observed a considerably higher dispersion of the filler in
the polymer matrix, implying a lower hiding power for composite surfaces, which applies
in particular to the systems with fractionated diatomaceous earth.

Polymers 2023, 14, x FOR PEER REVIEW 27 of 31 
 

 

 

Figure 23. Relative hiding power. 

 

Figure 24. An SEM image of a composite containing 20% of basic diatomaceous earth. 

Figure 23. Relative hiding power.



Polymers 2023, 15, 1563 25 of 28

Polymers 2023, 14, x FOR PEER REVIEW 27 of 31 
 

 

 

Figure 23. Relative hiding power. 

 

Figure 24. An SEM image of a composite containing 20% of basic diatomaceous earth. Figure 24. An SEM image of a composite containing 20% of basic diatomaceous earth.

Polymers 2023, 14, x FOR PEER REVIEW 28 of 31 
 

 

 

Figure 25. SEM images of composites containing 20% silanized and non-silanized diatomaceous 

earth. 

4. Conclusions 

The tests allowed us to make conclusions on the effect of diatomaceous earth’s 

introduction into PA11 on the number of properties of such fabricated composites, as well 

as the impact of diatomite hydraulic fractionation and silanization. The addition of the 

diatomite filler results changed the crystalline structure of PA11 and the formation of δ’ 

smectic phase, as opposed to α + γ phases for neat PA11. The modification of 

diatomaceous earth favourably affected the elongation at the break of PA11/DE 

composites; we observed a significant improvement in their elasticity, particularly at low 

filler concentrations. The addition of APTES also contributed to a considerable 

improvement in the composites’ processing capacity, particularly at low filler 

concentrations, whereas, along with the growing content of DE, the effect brought by the 

characteristics of diatomaceous earth started to prevail. With the silanization of 

fractionated diatomaceous earth, we obtained a hydrophilic composite system, while the 

addition of APTES to basic diatomaceous earth increased the hydrophobic–hydrophilic 

properties of the surface. Depending on the desired parameters of the composite, the 

system properties were controlled by silanizing fillers of various particle sizes. On the 

surface of the composites, many hydrophilic centres were visible, the amount of which 

grew along with the increasing filler concentration. The centres had a direct impact on 

both the morphology of the surface of the composite and its hydrophobic–hydrophilic 

properties. 

Author Contributions: Conceptualisation, R.E.P., R.D. and M.D.; methodology, R.E.P. and M.D.; 

formal analysis, R.D.; investigation, M.D., P.K., E.G. and A.M; data curation, M.D., P.K., E.G. and 

A.M.; writing—original draft preparation, M.D. and D.B.; writing—review and editing, M.D., D.B., 

R.E.P. and R.D.; visualisation, M.D.; supervision, R.E.P., R.D. and K.J.K.; project administration, R.D. 

and K.J.K.; funding acquisition, R.D. All authors have read and agreed to the published version of 

the manuscript. 

Funding: This work was financially supported in the frame of the project “Advanced Biocomposites 

for Tomorrow’s Economy BIOG-NET”, FNP POIR.04.04.00-00-1792/18-00. The project was carried 

Figure 25. SEM images of composites containing 20% silanized and non-silanized diatomaceous
earth.

4. Conclusions

The tests allowed us to make conclusions on the effect of diatomaceous earth’s in-
troduction into PA11 on the number of properties of such fabricated composites, as well
as the impact of diatomite hydraulic fractionation and silanization. The addition of the
diatomite filler results changed the crystalline structure of PA11 and the formation of δ’
smectic phase, as opposed to α + γ phases for neat PA11. The modification of diatoma-
ceous earth favourably affected the elongation at the break of PA11/DE composites; we
observed a significant improvement in their elasticity, particularly at low filler concen-
trations. The addition of APTES also contributed to a considerable improvement in the



Polymers 2023, 15, 1563 26 of 28

composites’ processing capacity, particularly at low filler concentrations, whereas, along
with the growing content of DE, the effect brought by the characteristics of diatomaceous
earth started to prevail. With the silanization of fractionated diatomaceous earth, we ob-
tained a hydrophilic composite system, while the addition of APTES to basic diatomaceous
earth increased the hydrophobic–hydrophilic properties of the surface. Depending on the
desired parameters of the composite, the system properties were controlled by silanizing
fillers of various particle sizes. On the surface of the composites, many hydrophilic centres
were visible, the amount of which grew along with the increasing filler concentration. The
centres had a direct impact on both the morphology of the surface of the composite and its
hydrophobic–hydrophilic properties.
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