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Abstract: The problem of icing for surfaces of engineering structures requires attention more and
more every year. Active industrialization in permafrost zones is currently underway; marine transport
in Arctic areas targets new goals; the requirements for aerodynamically critical surfaces of wind
generators and aerospace products, serving at low temperatures, are increasing; and fiber-reinforced
polymer composites find wide applicability in these structural applications demanding the problem
of anti/de-icing to be addressed. The traditional manufacturing approaches are superimposed
with the new technologies, such as 3D printers and robotics for laying heat wires or cheap and
high-performance Thermal Sprayed methods for metallic cover manufacturing. Another next step in
developing heaters for polymer structures is nano and micro additives to create electrically conductive
heating networks within. In our study, we review and comparatively analyze the modern technologies
of structure heating, based on resistive heating composites.

Keywords: anti/de-icing; composites; nanoparticles; Joule heating; thermal conductivity; electro
conductivity; percolation threshold

1. Introduction

Fiber-reinforced polymer composites (FRPC) have found wide demand in structural
applications. Now, they are an integral part of many engineering solutions. In comparison
with metals, polymer composites have superior mechanical performance, and reduced
weight; they are less susceptible to fatigue and more corrosion resistant. The use of
composites allows for manufacturing products with complex shapes, which reduces the
number of parts, increases cost-effectiveness and reliability, and speeds up the assembly of
products. As only one example, the implementation of FRPC technologies for blades of
wind turbines has revolutionized the wind power industry, increasing the power output
from the range of 2–3 MW to more than 12 MW due to the increase in blades’ size [1].
Another example is the high-end applications of the carbon/epoxy FRPC, the so-called
“black aluminum”, in the aerospace industry [2]. Currently, the share of composite elements
in the design of a modern aircraft reaches up to 50% [3–5]. The third example comes
from marine vehicles where polymers find wide applicability [6]. The unique properties
including thermal conductivity [7], electrical conductivity [8], and transparency to various
types of radiation [9], are also highly demanded in various design applications.

Nowadays, new approaches in advanced structures and smart materials require
material to conduct not only its primary mechanical or functional role, but to be multi-
purpose, simultaneously addressing several demanded functionalities of the in-service
support for a structure. One such task is to provide de/anti-icing of the working structural
surfaces [10]. The formation of ice on hard surfaces can cause huge economic damage to
society and poses a great danger [11]. The ice crust formation on the surface of an aircraft
limits its performance [12], can significantly change the dynamic flight characteristics, and
even lead to flight accidents [13,14]. Ice accumulation on ocean-going ships can change
their balance and affect their safety [15]. The operation of wind turbines directly depends
on the condition of the surface of the blades [16].
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In general, ice formation can occur not only on FRPC, but on different surfaces,
and cause a number of problems in everyday life, such as ice formation on roads and
footpaths [17], on power line wires [18], and bridge cables [19], on systems of air recircula-
tion [10] and roofs [20], etc. In all these cases, the formation of ice creates a negative impact
on engineering structures or poses a danger to human life.

Thereby, it is important to develop effective heating methods that can protect working
surfaces from ice formation. De/anti-icing functionality can be integrated into a composite
part design. This problem is of special importance due to the necessity of operations in the
Arctic and Antarctic regions.

A lot of anti/de-icing technologies are available on the modern market. Some of them
can be widely used, whereas others are only for special applications. The most famous
solutions are electrothermal [21], photothermal [22], ultrasonic [23], hydrophobic [24], and
chemical [25]. Our research contains the review and comparative analysis of the modern
de/anti-icing technological solutions targeting FRPC-based electrical heaters.

These electrical heaters work on the principle of Joule heating. It is also known as
Ohmic or resistive heating as the heat generated during Joule heating depends on the
resistance and is calculated by Ohm’s law of P = I2 R, where P is power, I is current,
and R is resistance [26]. The phenomenon of Joule heating occurs when charge carriers,
typically electrons, interact with the conductive materials body. An electric field is created
by a voltage difference between two points in the conductor, which accelerates the charge
carriers in the direction of the electric field and gives them kinetic energy, Figure 1. As
these charged particles collide with the quasi-particles in the conductor, which are the ionic
lattice oscillations in a crystal’s harmonic approximation, energy is transferred from the
electrons to the lattice, creating further lattice oscillations. The radiation or thermal energy
measured in an experiment originates from these ion oscillations. This process serves as
the foundation for numerous practical uses of electric heating.
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2. Foreign-Object Heaters for FRPC
2.1. Metal Foils and Grids as FRPC Surface Heaters

The first steps in the implementation of the resistive heating of an FRPC part surface
to prevent ice formation were carried out by placing an electrothermal material (heater) on
the surface, with the heater being a type of functional electrical resistor that can convert
electrical energy into heat.

In one of the first industrial studies on anti/de-icing [27], several solutions were tested
as a heater: etched metal foil grid, sprayed metal grid, knitted metal wire/glass fabric, a
pierced expanded metal grid, and wires integrated into rubber. Different types of heaters
were placed between the erosion shield material (Nickel alloy) and FRPC blade structure.
Although this study demonstrated great future promise for the use of active ice removal
systems, it also identified the common polymer burnout problem arising from excessive
wire temperatures. Besides, the developed heaters, as external to the FRPC part, were likely
to short-circuit against the conductive protective erosion shield material. From the current
perspective, electrothermal anti/de-icing systems, which were used in the 70s in the form
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of thermal spacers, electrically heated foil, or electric heating elements made of metal or
carbon fiber on the surface of FRPC products, were bulky, expensive, and often degraded
the aerodynamic performance of the product.

The placement of a heater on a surface of an FRPC structure is possible either on the
internal side or on the external side. In [21], it was demonstrated that implementing an
electrical heating element on the internal side of a composite structure led to increased
power consumption due to the high temperature differences between the heat application
surface and de-icing surface, separated by the FRPC laminate, which made this approach
unprofitable. The metal foil heaters showed the best results when they were placed on the
external surface of an FRPC structure [28].

2.2. Metal Coatings as FRPC Surface Heaters

The early external heaters of FRPC structures were difficult to use and not effective.
Later, engineers found ways to increase their capabilities. Nowadays, one of the top ways
to create a cheap and repairable heating coating on an FRPC surface is by thermal spraying
technology [29].

In [30], the authors applied a flame-sprayed nickel-chromium (NiCr) coating on
the FRPC surface for use as a heating element. Application of the coating with high-
temperature thermal technology was shown not to destroy the integrity and mechanical
properties of the FRPC laminate due to the implementation of a protective sand-epoxy layer.
The resulting coating was found to provide uniform heating. Testing showed that when
cooled to −25 ◦C, the FRPC surface temperature maintained above 0 ◦C. The technology of
thermal spraying of metal films also allows for the application of coatings to FRPC surfaces
of complex geometries and the repair of damaged coatings [31]. The current system used
on Boeing 787, requires a steady state temperature of 6 ◦C for effective anti-icing under
−18 ◦C operational ambient conditions, expending 11.8 kW/m2, not taking into account the
energy absorbed by the composite structure itself [32]. Moreover, the deposition of metal
layers on the polymer can be conducted by other technologies including physical vapor
deposition [33], chemical vapor deposition [34], and plasma-enhanced chemical vapor
deposition [35]. These methods are relatively expensive and not suitable for manufacturing
thick metal coatings (over 100 µm) at high deposition rates [36]. Nevertheless, they allow for
obtaining layers from non-traditional materials, such as transparent and electroconductive
indium tin oxide or extra-thin metal films. However, for transparent applications, it is more
interesting to use systems based on thin layers of single-wall carbon nanotubes (CNT) [37].

2.3. Metal-Based Heaters Imbedded into FRPC

A large area of research in anti/de-icing was devoted to the placement of heating
elements embedded into an FRPC product. However, heater implantation into an FRPC
product may lead to the degradation of its functional or mechanical properties, especially
interlaminar. In [38], the authors demonstrated that the implantation of a foil as a heater
led to the development of delamination in the FRPC part under high loads. However,
in [39] this drawback was not observed for perforated metal foils as contact pads supplying
electrical current to other types of heating elements inside the FRPC. Authors in [40]
presented a numerical and experimental development of the concept of a thermoelement
based on NiCr wires to be embedded into FRPC profiles of wind turbine blades as an
active anti-icing system, Figure 2a. It was experimentally shown that the edge region of
the profile was the most susceptible to icing due to the maximal convective heat transfer
over this region and the fluid load, Figure 2b. For anti-icing in cold and dry conditions,
the temperature at the leading edge was kept at 60 ± 3 ◦C for low wind speed. The
minimum surface temperature of the rest of the FRPC profile was maintained at 26 ◦C. The
power consumption of the system was 8.3 kW/m2, which is lower than 9.2 kW/m2—the
power consumption for a similar aluminum profile with outside heaters put to the same
icing conditions.
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Figure 2. (a) Schematic of a composite with integrated thermal elements, (b) De-icing behavior of the
composite in icing test. (Reprinted with permission from Elsevier, copyright 2013) [40].

Another interesting case is to combine embedded heating elements with electrically
conductive fibers in a fiber metal laminate (FML) as an FRPC structure [41]. The FML
systems are widely used, and their production technologies are well studied. The use of
such a combined anti-icing system can lead to a decrease in product weight, especially for
outdoor structures. In [42], heated glass laminate aluminum-reinforced epoxy composite
structure (GLARE) was studied as one of the most widely utilized FMLs. Since in [38] it was
shown that metal foil embedded into an FRPC can cause delamination, for the GLARE as a
serial product it was necessary to demonstrate that an embedded heater does not worsen
mechanical properties; in particular, the absence of linear viscoelastic creep. Authors of [42]
showed that the metal layers and glass fibers in GLARE offset the effect of interlaminar
creep in the heated state. Continuous physical aging slows down this process in long-term
temperature and stress loading. The overall creep effect is thereby limited, which leads to
applications of heated GLARE in FRPC structures [43,44].

In studies [40–44] discussed above, the process of embedding the heating elements
into the FRPC structures was time- and effort-consuming. It can suffer from manufacturing
inconsistencies and human errors. [45] proposed to introduce 3D printing to automate
the manufacturing process. The authors used continuous NiCr wire and thermoplastic as
3D printing material to create a heater embedded into an FRPC plate. The NiCr-heaters
in thermoplastic volume were printed by a meander pattern without a gap (i.e., as a
continuous filament). A meander pattern was chosen as providing an evenly distributed
heat flux on the surface of the FRPC plate. Then, heating plates were covered with a layer
of Kapton film for electrical insulation. The assembled heater was placed between two
sheets of carbon fiber prepregs and cured in a vacuum bag in an oven at 100 ◦C, Figure 3a.
Obtained FRPC plates were field-tested onboard a marine vessel at subzero temperatures
in the sea. The heater effectively kept the surface of the FRPC panel free of ice. Temperature
distribution across the FRPC panel was uniform and stable in time: P2 and P3 curves in
Figure 3b. Experimental studies at an ambient temperature of −20 ◦C showed anti-icing
protection at the power consumption of this system of 10 kW/m2.

The application of metal-based heaters integrated into FRPC looks promising. More-
over, optimization of the manufacturing process, thanks to the possibility of 3D printing
to lay the wire inside the product, allows for reducing the risks of malfunction. Never-
theless, embedded metal heaters have a big disadvantage—they are nearly impossible to
be repaired.
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2.4. Carbon-Based Heaters Imbedded into FRPC

As an alternative to embedding foreign materials as heating elements into FRPC, the
possibility is often present to imbed FRPC-related materials, for example, FRPC reinforcing
elements, as heat sources. Historically, this approach was developed in parallel with
external heaters. One of the pioneering works in this area confirmed the possibility of
using carbon fibers as heaters. In [39], the authors manufactured an FRPC heater based
on industrial carbon fibers and resin; in this case, the mesh from nickel was used as
electrical contact pads. However, the developed heater possessed low efficiency and high
heterogeneity of the generated heat field on the surface of the FRPC. On a 10 cm segment,
the temperature drop was 15 ◦C. Moreover, the authors had to overcome the difficulty
of making electrical contacts with carbon fibers. Currently, these problems are solved by
functionalizing the surface of carbon fibers using the electroconductive sizing of Ni, Cu,
Zn, Pt, Ag, or their alloys [46–50]. A modern study of carbon fibers showed their excellent
properties as heaters [51]. On samples from carbon fiber mats, heating up to 140 ◦C has
been achieved, at an applied voltage of 6.5 kW/m2, d-curve in Figure 4a.
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Figure 4. (a) Changes of Tmax for pure carbon fibers mat at (a) 4 V, (b) 8 V, (c) 12 V and (d) 17 V
(Reprinted with permission from Elsevier, copyright 2003) [51], (b) changes of Tmax of the MCF as a
function of heat treatment temperature, at 12 V (Reprinted with permission from Elsevier, copyright
2019) [52].

In [52], the researchers investigated the dependence of the electrical conductivity on
the post-annealing temperature of metalized carbon fiber (MCF). The effect of the annealing
temperature of MCF on the heating properties of FRPC is shown in Figure 4b. The existence
of temperature dependence makes it possible to expand the field of application of carbon
fibers as heaters and allows more precise tuning of the characteristics of the FRPC composite.
Comparing the graphs in Figure 4, we can suggest that the heating systems based on pure
carbon fibers are better for scenarios where the high heating temperature is more important
than the heating rate, and the MCF system is better for scenarios with a high heating rate.
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Some studies considered the possibility of using electrically conductive carbon textiles
as a heating layer in FRPC [53–56]. In [55], a commercially available electro-conductive
carbon-based textile (ECT) by “Gorix” was used for FRPC heater manufacturing. The
aim of the work was to investigate how the low-velocity impact on the FRPC heater
influences the anti/de-icing properties. The FRPC heater based on ECT material was
damaged at two locations, Figure 5a, but it continued to function and demonstrated a good
heating performance after impact, comparable to 90 % of heat flow from the non-damaged
counterpart. In the anti-icing test at a chamber temperature of −20 ◦C, it showed low
energy consumption, only 0.9 kW/m2 (Figure 5b), and the ice melting time at the same
power in the de-icing test was 40 min.
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Figure 5. (a) Thermal imaging before and after impact on ECT panel, (b) change in temperature as a
function of power density for anti-icing studies (reprinted with permission from Elsevier, copyright
2015) [55], and (c) de-icing test graph at −5 ◦C and wind speed of 7 m/s (Reprinted with permission
from John Wiley and Sons, copyright 2017) [57].

Besides fibrous carbon materials, electrically conductive carbonaceous nanofillers in
the form of a mat were also utilized for FRPC heaters. In [57], the authors proposed using
a multi-walled carbon nanotube (MWCNT) mat as an active heat element of an FRPC
heater. For mat manufacturing, MWCNTs were typed into a non-woven textile substrate by
rotary screen-printing. CNTs in the mat did not possess an orderly structure and presented
isotropic and homogeneous 3D mesh. MWCNT mat was embedded into an FRPC wind
turbine blade manufactured by vacuum infusion technology. The FRPC wind turbine blade
was tested for de-icing in the climatic chamber at −5 ◦C with a simulated wind speed of
7 m/s. For this case, the FRPC heating elements melted in 25 min a layer of ice with an
energy consumption of 1.33 kW/m2; the process dynamics are shown in Figure 5c.

Thin carbon nanotube films with entanglement keeping CNTs in place are commer-
cially available and are called carbon nanotube paper or buckypaper. Their utilization
allows for solving the problem of CNTs dispersion during vacuum infusion [58]. Thanks to
the use of buckypaper, CNTs as integrated heaters have become even more widespread
today [58–60] as no additional complex operations, such as on-ply printing, are involved in
manufacturing. Moreover, the absence of additional operations at CNTs allows for preserv-
ing their high physical and mechanical characteristics [61]. Additionally, the structure of
the buckypaper is porous, and this is very convenient for impregnation with a polymer.



Polymers 2023, 15, 1573 7 of 27

The possibility to utilize buckypaper as a heated element of an FRPC heater was studied
in [60], Figure 6a. The de-icing test showed the possibility of effectively using the FRPC
structure at −22 ◦C and strong wind, up to 14 m/s. The ice melting time was 7 min at a
power consumption of 11 kW/m2, Figure 6b,c.
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Figure 6. (a) SEM image of the cross-section of the buckypaper-FRPC heater, and (b) image of
buckypaper-FRPC heater before (c) and after de-icing at −22 ◦C and wind speed 14 m/s (Reprinted
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The efficiency of an FRPC heater based on buckypaper was compared with the effi-
ciency of an FRPC heater based on carbon fibers at identical conditions [62]. The buckypaper
was produced by pulling CNTs from a nano-forest (aligned array of MWCNTs), synthesized
by the chemical vapor deposition process. The authors claimed that using buckypaper
layers as heating sources made it possible to obtain up to four times lighter FRPC heaters
than their carbon fiber analogs, Figure 7a. The experimental study showed that the heaters
based on 40 buckypaper layers were capable of effective de-icing. In the test at an environ-
mental temperature of −12 ◦C, the de-icing process took 15 s. with an FRPC heater power
up to 4.9 kW/m2 vs. 25 s and 6.5 kW/m2 for 16 carbon fibers layers, Figure 7b.

Polymers 2023, 15, x FOR PEER REVIEW 7 of 28 
 

 

The possibility to utilize buckypaper as a heated element of an FRPC heater was studied 
in [60], Figure 6a. The de-icing test showed the possibility of effectively using the FRPC 
structure at −22 °C and strong wind, up to 14 m/s. The ice melting time was 7 min at a 
power consumption of 11 kW/m2, Figure 6b,c. 

 
Figure 6. (a) SEM image of the cross-section of the buckypaper-FRPC heater, and (b) image of 
buckypaper-FRPC heater before (c) and after de-icing at −22 °C and wind speed 14 m/s (Reprinted 
with permission from Elsevier, copyright 2014) [60]. 

The efficiency of an FRPC heater based on buckypaper was compared with the effi-
ciency of an FRPC heater based on carbon fibers at identical conditions [62]. The buckypa-
per was produced by pulling CNTs from a nano-forest (aligned array of MWCNTs), syn-
thesized by the chemical vapor deposition process. The authors claimed that using 
buckypaper layers as heating sources made it possible to obtain up to four times lighter 
FRPC heaters than their carbon fiber analogs, Figure 7a. The experimental study showed 
that the heaters based on 40 buckypaper layers were capable of effective de-icing. In the 
test at an environmental temperature of −12 °C, the de-icing process took 15 sec. with an 
FRPC heater power up to 4.9 kW/m2 vs. 25 sec and 6.5 kW/m2 for 16 carbon fibers layers, 
Figure 7b. 

 
Figure 7. (a) Properties of samples with CNT and CF plies, (b) de-icing test graph at 16 V (Reprinted 
with permission from Elsevier, copyright 2018) [62]. 

As a competitor to buckypaper, carbonaceous sheets based on graphene (graphene 
paper) and graphite (graphite paper) were also studied, Figure 8a. In [63], the FRPC heater 
was assembled on the base of a graphene paper, Figure 8b. It performed the de-icing task 
successfully and heated the surface from −32 to 0 °C in 4 min at power up to 1.6 kW/m2. 
This power allowed the FRPC surface to heat up to 37 °C during the next 40 min. 

Figure 7. (a) Properties of samples with CNT and CF plies, (b) de-icing test graph at 16 V (Reprinted
with permission from Elsevier, copyright 2018) [62].

As a competitor to buckypaper, carbonaceous sheets based on graphene (graphene
paper) and graphite (graphite paper) were also studied, Figure 8a. In [63], the FRPC heater
was assembled on the base of a graphene paper, Figure 8b. It performed the de-icing task
successfully and heated the surface from −32 to 0 ◦C in 4 min at power up to 1.6 kW/m2.
This power allowed the FRPC surface to heat up to 37 ◦C during the next 40 min.
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Figure 8. (a) SEM images of the graphene paper, (b) the temperature profile during the de-icing
process, at an environmental temperature of −32 ◦C (Reprinted from Elsevier, copyright 2019) [63].

Authors in [64] developed a more complex design: they manufactured a flexible FRPC
from several graphene nanosheet papers (CNSs) and styrene-butadiene rubber (SBR) layers,
Figure 9a. The SBR polymer is flexible and possesses both high thermal conductivity and
adhesive properties. The heating temperature of FRPC heaters based on CNSs@SBR reached
142.9 ◦C at a bias voltage of 6 V with low power of around 2.1 W and was stable after fatigue
loading of 4000 folds. The de-icing tests proved that the flexible FRPC heater is efficient and
competitive for de-icing applications when a high de-icing rate is required. At an ambient
temperature of −20 ◦C, the ice melt time was 210 s, Figure 9b, and the power consumption
was 3.6 kW/m2. The flexibility of the FRPC heater based on CNSs@SBR allows for its use
on flexible as well as complex shape surfaces with huge areas for anti/de-icing tasks.
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2.5. Comparative Analysis of the Foreign-Object Heater Technologies

The comparison of different heaters technologies is presented in Figure 10 and in
Table 1. The analysis of six main criteria shows that in the case of heaters on FRPC surfaces,
Figure 10a, the thermal sprayed technology allows for obtaining the best solution. For
the case of embedded heaters, Figure 10b shows that carbon textiles, CNT, and graphene
buckypapers allow for obtaining heaters with the best properties and low cost. The
carbonaceous nanofiller mat heaters have several advantages: high thermal- and electro-
conductivities, sustainability, simplicity of implementation, and improved mechanical
properties of FRPC. However, heaters based on these materials have low maintainability:
the impossibility of easy repairs due to embedment.
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Table 1. Properties of FRPC heaters.

Type Tech Position Material
Power

Density,
kW/m2

De-Icing
time Anti -Icing Test

Condition Comments Ref.

Metal film Flame-
spraying Surface NiCr 11.8 - yes T = −18 ◦C Used on

Boeing 787 [32]

Metal Wire

Hand
layout

Embedded
depth 0.7 mm

UD NiCr
wires 8.3 - yes

T = −17 ◦C,
wind speed

27.7 m/s,
water flow
0.2 kg/min

Max
applies power

118 W
[40]

3D printing Embedded
depth 0.6 mm

NiCr wires
square

meander
10 5 min yes

T = −20 ◦C
Field study

at sea

Max applies
power 78 W [45]

Metal tape Hand
layout

Embedded
depth 1 mm

Cu ribbon
inside

GLARE
26 - - At room

Shows
interlayers
creep effect

[42]

Carbon
textile

Hand
layout

Embedded
depth

0.15 mm

UD
brominated

graphite fibers
46.5 - yes At room

textile
resistance

50 µΩ/cm2 [39]

Hand
layout Embedded Non-woven

pure CFMat 6.5 - yes At room

Max
T = 134 ◦C

after
38 min

[51]

Hand
layout Embedded

Non-woven
CFMat with

NiCuNi
coating

3.2 - yes At room

Max
T = 79 ◦C

after
37 min

[51]
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Table 1. Cont.

Type Tech Position Material
Power

Density,
kW/m2

De-Icing
time Anti -Icing Test

Condition Comments Ref.

Hand
layout Embedded CFs with NiP

coating 16.8 - yes At room 40 s to
100 C [52]

Hand
layout

Embedded
depth

0.15 mm
CF prepreg 6.5 25 s yes T = −12 ◦C Study at

16 V [62]

Hand
layout

Embedded
depth 2 mm

ECT by
“Gorix”

0.854/
0.929 20 min yes T = −20◦C

+ water fog

9.1 V
anti/9.9 V
de-icing

[55]

Spray
coating Surface Non-woven

SWCNT mat 7.6 - yes At room
Max

T = 160 ◦C
after 18 h

[65]

CNT

Roll-to-roll
printing Surface Non-woven

MWCNT mat 1.33 25 min yes

T = −20 ◦C
and wind

speed
7 m/s

Study at
70 V [57]

Buckypaper
by filtration

Embedded
depth 0.5 mm

Non-woven
from SWCNT 11 4 min yes

T = −22 ◦C
and wind

speed
0–14 m/s

Study at
22 V [60]

Buckypaper
by pulling

Embedded
depth

0.15 mm

UD from
CNT forest 4.9 15 s yes T = −12 ◦C Study at

16 V [62]

Graphene

Buckypaper
by filtration

Embedded
depth

1.115 mm

Non-woven
from

exfoliated
graphite

1.6 4 min yes T = −32 ◦C Study at
0.8 A [63]

Buckypaper
by filtration Embedded

Non-woven
from

graphene
3.6 210 s yes T = −20 ◦C

Tensile and
elastic

modulus
are growing

[64]

Spray
coating Surface

Made using
graphene

nanoribbon
3.88 3 min yes T = −20 ◦C Study at

177 V [66]

Spin
coating Surface Non-woven

from GO 20 30 s yes T = −10 ◦C Study at
60 V [67]

From this point of view, nowadays thermal sprayed technology is considered the most
applicable option for mass production since these heaters for FRPC have high maintainabil-
ity due to accessible surface coating, are easily manufactured, and allow for obtaining good
thermal characteristics at low cost.

The foreign-object heaters have been around for a while and come in various types.
However, existing solutions became widely applied in FRPC heaters production only
recently. Early solutions had low efficiency, were difficult to manufacture, and had a
high cost. Modern technologies, efficient and commercially viable, to produce metal alloy
surface heaters for FRPC have been developed with the help of advanced manufacturing
technologies based on robotic systems. Currently, the main disadvantages of metal alloy
surface heaters are that they create an additional load on the FRPC and are prone to the
risk of electric shock. We expect that the next step in the development of heaters for
FRPC surfaces will be based on the implementation of self-heating polymer compositions.
Compared to metal coatings, the technologies for the application of polymer coatings on
the FRPC are cheaper and easier. In some cases, polymer coatings improve the mechanical
properties of FRPC and give additional functionality. Self-heating coatings are discussed in
more detail in Section 4.
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The main disadvantage of embedded heaters for FRPC, unlike surface ones, has always
been the complexity or even impossibility of their repair. This fact greatly hindered their
development. However, a large amount of research and development of technologies
to produce nanoscale materials has opened new opportunities in this approach. The
main advantage of using heating elements manufactured from nanoscale materials is the
extremely high reliability, since even with significant damage they continue to remain
operational. Moreover, embedded nanoscale heaters are integrated into FRPC and do not
add extra weight or load, instead, they enhance the material’s mechanical properties, unlike
metal alloy surface heaters. However, new technologies obtaining heating elements from
nanoscale materials with given characteristics have just started developing. Manufacturing
heaters based on nanoscale materials for large-area RFPC is expensive and not scalable
so far. This area of research is actively developing and has great prospects, especially in
improving the physical properties of heating elements from nanomaterials.

An important parameter of FRPC is the thermal conductivity of the matrix since the
efficiency of heat depends on it. The increase in the thermal conductivity of the matrix
can be achieved by adding nanosized materials to its FRPC composition. The influence of
various additives on the thermal conductivity polymer matrix is discussed in more detail
in the next chapter.

3. Thermally Conductive Polymers for FRPC Matrix

Improvement of the heat conductivity of polymers by nanofillers can also play an
important role in enhancing heater performance. The matrix in composite materials en-
sures the solidity of the material, and the transmission and distribution of stress in the
reinforcement determine the heat, moisture, fire, and chemical resistances [68]. The rate of
transfer of thermal energy from the internal heater to the outer surface of the composite
product directly depends on the thermal conductivity of the matrix material.

Standard polymers used in the manufacture of FRPC products have low thermal
conductivity k, usually in the range from 0.18 to 0.44 W/mK [69,70]. The addition of
high-k nanoparticles (boron nitride, CNT, graphene, etc.) to polymers improves the thermal
conductivity of the matrix by several times [71,72]. However, electrically conductive
nanoparticles, such as CNTs or graphene, cannot be used in combination with embedded
heaters as they transform the whole composite into an electrical conductor and lead to a
short circuit inside the structure. Thereby, only dielectric nanofillers are considered in this
section. The electrically conductive additives will be reviewed in the following section.

The use of nanoparticles depends on the possibility of uniform dispersion and dis-
tribution of the filler on a submicron scale [73], which is an essential requirement for
fiber-reinforced composites where typical fiber diameters and the gap in between them are
in the range of microns. The limitations of nanoadditive utilization include agglomeration,
bundling, anisotropic orientation distribution, entanglement, filtration on fibrous reinforce-
ment [74], provoking stress concentrations, and degradation of target characteristics. The
review of the results of experimental works on improving the thermal conductivity of a
polymer by adding dielectric nanoparticles is presented in Figure 11. The nanofillers are
divided into three groups: spherical particles (0D materials)—mainly oxides nanocrys-
tals; materials with a high aspect ratio (1D materials)—structures such as nanowires; and
nanoplates (2D materials).

Figure 11 shows that the smallest increase in k is in general achieved by nanocrystals
(rhombus markers), for which the maximal investigated ∆k of the nanocomposite rarely
exceeds 1 W/mK. This agrees with the low ability to form a percolation network for a partic-
ulate composite [75]. Nanowires are expected to be more prone to percolate than nanoplates.
Trend lines plotted for each group (Figure 11) show that nanoplates (squares markers) have
the same behavior of dependence thermal conductivity from filler, as nanowires (asterisk
markers). However, in the case of nanowires, the thermal conductivity starts to increase
earlier. According to Figure 11, nanowires and nanoplates are the best fillers for ther-
mally conductive nanocomposites since their ∆k ranges largely overlap. However, liquid
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composite molding technologies for the production of polymer composites with fibrous
reinforcement impose restrictions on the use of 1D and 2D nanomaterials due to the filtra-
tion effect that occurs during the impregnation of reinforcing elements [76,77]. In [78–80]
the use of more than 10 wt.% additives was shown to lead to entrained air, aggregation of
nanoparticles, and poor interfacial contact between the polymer and particles, limiting the
additional improvement in thermal conductivity. Moreover, this high wt.% of additives
leads to significant changes in other material properties or causes their degradation.
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Taking into account the above factors, the use of nanoadditives for polymer matrix
in FRPC is typically limited to 10 wt.% and excludes particles with high aspect ratios. As
presented in the zoomed region in Figure 11, ceramic fillers such as alumina, aluminum
nitride, silicon carbide, and boron nitride are most often used as fillers for making FRPC
that possess both high electrically insulating properties and increased thermal conductivity.
Further, we will discuss this class of materials in detail.

Alumina (Al2O3) is widely used in electrical engineering due to its excellent electrical
insulation, ideal thermal conductivity of up to 25 W/mK, and low cost [101]. Authors
in [93] showed that by adding 10 wt.% Al2O3 nanoparticles, the k value of the Al2O3/epoxy
resin composite was increased from 0.2 to 0.39 W/mK (by 95%). Further, the addition of
70 vol.% of Al2O3 nanoparticles increased the value of k to 13.46 W/mK in [102].

Aluminum nitride (AlN) is widely used as an electronic ceramic substrate and ther-
mally conductive sealing material because of its high thermal conductivity of up to
230 W/mK, excellent heat resistance, good electrical insulation, and high permittivity
for ceramics [103]. At low concentrations, up to 10 wt.%, AlN showed weaker result than
Al2O3, increasing k by nearly 10% on 0.02 W/mK [99]. In [104], the authors considered a
hybrid nano-filler approach with the possibility of using AlN nanoparticles as bricks for
building a 3D network from boron nitride (BN) nanorods, Figure 12a–c. A 3D network of
BN allows for increasing the thermal conductivity of epoxy resins, delivering a maximum
value of 8.0 W/mK with a 1:1 ratio and 80 vol.% (resin only 20 vol.%), due to the orientation
of BN nanoplates perpendicular to each other (Figure 12b).
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Silicon carbide (SiC) has a low price, high thermal conductivity of up to 200 W/mK,
and high wear resistance [100]. The k value of the SiC/epoxy composite was increased to
0.33 W/mK due to the addition of 3.0 wt.% SiC, thereby increasing the thermal conductivity
of the SiC/epoxy composite by 50% [95]. SiC/polystyrene composites were prepared
by hot pressing [105] while increasing k by 300% from 0.182 to 0.566 W/mK by adding
32.8 vol.% SiC.

Boron nitride has a huge thermal conductivity of up to 2000 W/mK, resistance to high-
temperature oxidation, and its permittivity value is the lowest among ceramic fillers [106].
In Figure 12d, BN provided the highest increase in k up to 1300% from 0.22 to 3.22 W/mK,
achieved by highly oriented BN nanoplates [87] (black triangles in Figure 12d). For com-
posites with a homogeneous distribution of BN nanoplates (black squares in Figure 13),
the gain in k is several times lower, only 60%, from 0.22 to 0.35 W/mK. However, it is still
a better result compared to other nanofillers, being at the level of the best Al2O3 samples.
However, if we consider spherical BN nanoparticles [81], then the increase in thermal
conductivity will be even lower, up to 55%, from 0.27 to 0.42 W/mK.

In [107], the effect on k was investigated for a mixture of fillers, BN, and MWCNTs.
A synergistic improvement in thermal conductivity values for them was observed due
to the creation of three-dimensional heat transfer paths between BN and MWCNT, and
the maximum k value was increased from 0.22 to 1.74 W/mK. However, the presence of
MWCNTs can cause a drop in electrical resistivity, with the material losing its dielectric
properties. The using of BN additives in 3D structures such as polymer aerogels allows
it to reach high thermal conductivity [108,109]. In [110], the authors showed excellent
in-plane and out-of-plane thermal conductivities of 0.76 W/mK and 0.61 W/mK with a
ratio of BN/PVA of (2:1) in comparison with 0.15 W/mK for the pure polyvinyl alcohol
(PVA) matrix.

The functionalization or sizing of the surface of nanoparticles is of special importance
when dielectric properties are considered [111]. The addition of an organic coating around
Barium Titanate nanoparticles reduced agglomeration in polyvinylidene fluoride and
caused a decrease in the dielectric constant in comparison with the untreated analog [112].
As another example, the functionalization of the alumina surface makes it electrically
conductive [113].

To summarize, dielectric nanoadditives significantly increase the thermal conduc-
tivity of the FRPC matrix, leading to better heater performance, with the boron nitride
providing the best results. However, the technology has restrictions in the process of FRPC
manufacturing—one cannot use more than 10% of the filler caring not to degrade other
properties. Bypassing this challenge is possible thanks to using hybrid additives from
different fillers and creating 3D thermally conductive networks. The future perspective
research should probably focus on hybrid nano additives and 3D network self-assembly
and synthesis as applied to heaters for FRPC.
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4. Self-Heating Polymers

In the previous section, we considered the increase in thermal conductivity of the
polymer surrounding the heater, and, to avoid effects such as short-circuiting, electrically
conductive nanoadditives were not discussed. However, an increase in the electrical
conductivity of a polymer is not always undesirable since in this case the polymer itself can
serve as a heating element, and composite products based on such nanoparticles present a
separate class of self-heating polymer nanocomposites (PNC) for anti/de-icing.

Electrically conductive nano additives are expected to have high thermal conduc-
tivity as well, which is consistent with the Wiedemann–Franz law [114]. Therefore, we
generally say that PNCs with electrically conductive nanoadditives shall also possess high
thermal conductivity.

A distinctive feature of this type of PNC heater is the ability to apply them as a self-
heating coating on the surface of the already manufactured and operating FRPC structure.
Since the primary function is heating while the mechanical properties of the coating are
assigned a secondary role, there is typically no restriction on the mass percentage of nano
additives for PNCs with typical values being well above the percolation threshold.

In Table 2, we compare values of the percolation threshold, electrical conductivity,
filler content, and thermal conductivity for the most common polymer nanocomposites
with electrically conductive nanoparticles.

Table 2. Properties of polymers with electrically conductive nanofillers.

Filler Type Matrix ρ at Max %,
S/cm

Filler Content,
Max %

Experimental
Percolation

Threshold %

k at Max VF,
W/mK Ref.

Wt. Vol.

Carbon black
powder

EMA 10−3 50 - 18.1 - [115]

Epoxol 2004 10−9 10 - 5.26 - [116]

ED-20 Epoxy 10−7 29 - 8 - [117]

Carbon black
nanopowder

PLLA + PDLA 0.1 5 - 2.7 - [118]

TPU 0.5 - 10 10.2 wt./6.93 vol - [119]

TPU + COPA 0.3 - 20 5.5 wt./3.68 vol - [119]

Latex + PP + SDBS 0.007 10 - 4.5 - [120]

Isotactic PP 0.003 15 - 2 - [121]

Carbon fiber
CMC 0.014 10 - 4 - [122]

YDF-170 Epoxy 0.02 5 - - - [123]

Carbon Nanofiber

Epoxy LY 1564 1.9 × 0−5 5 - - - [124]

Epoxy LY 1564 + BMIMBF4 1.74 × 10−5 3 - - - [124]

DGEBA 5.5 × 10−4 1.5 - 0.33 - [125]

DGEBA + Gelatin 2 × 10−5 1.5 - 0.21 - [125]

PDMS 2.1 40 - - - [126]

CPE 10−6 10 - 3 - [127]

Polycarbonate 10−5 10 - 0.5 - [128]

MWCNT

Epoxol 2004 10−4 10 - 4.71 - [116]

Latex + PP + SDBS 0.015 1 - 0.3 - [120]

IROGRAN PS 455-203 2. 98 × 10−2 40 - 0.2 - [129]

PDMS 1 - 4 0.045 0.5 at 1.4% [130]

EPOLAM 2031 10−4 2 - - - [131]

TPU 0.1 1 - 0.2 - [132]
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Table 2. Cont.

Filler Type Matrix ρ at Max %,
S/cm

Filler Content,
Max %

Experimental
Percolation

Threshold %

k at Max VF,
W/mK Ref.

Wt. Vol.

EPON 828 - 25 - 0.06 - [133]

IN2 Epoxy 5.2 × 10−4 2.5 - 0.25 - [134]

Isotactic PP 8 × 10−3 15 - - - [121]

EPOLAM 2031 5 × 10−4 2 - - 0.22 [135]

Polypropylene 0.1 - 3 0.8 - [136]

SWCNTs

EPOLAM 2031 0.5 2 - - - [131]

Araldite LY 1564 SP 103 10 - 0.08 0.8 [137]

EPOLAM 2031 0.8 2 - - 0.5 [135]

Graphite

Latex + PP + SDBS 1.2 × 10−3 10 - 7 - [120]

EPON 828 - 25 - 12 - [133]

PEO 2 × 10−6 2 - - - [138]

Graphite
nanoplates Epoxol 2004 10−13 10 - - - [116]

Graphene oxide
PVA + PDMS 0.4 1 - 0.42 - [139]

PEO 3 × 10−6 2 - - - [138]

N2 doped
graphene EPOLAM 2031 6 × 10−12 2 - - - [131]

Reduced
graphene oxide

Latex + PP + SDBS 9.2 × 10−3 3.5 - 1.2 - [120]

EPOLAM 2031 8 × 10−12 2 - - - [131]

PEO 7 × 10−5 2 - - - [138]

Graphene
nanosheets

EPON 828 10−6 25 - 3.37 - [133]

Isotactic PP 2 × 10−5 15 - 7 - [121]

Araldite F CI 4.63 × 10−5 - 2.8 0.8 - [140]

Polyethylene 1.3 × 10−4 20.9 8.9 8.4 wt/3.8 vol - [141]

E51 epoxy 6 × 10−6 - 2 0.63 2.17 at 6% [142]

Graphene
nanosheets Polyimide (3Dnetwork) 0.94 - 5 0.03 - [143]

Ag particles EPON 8281 0.012 - 8 5 0.5082 at 8% [144]

Ag flakes Polyurethane 2.9 × 10−5 80 30 9 - [145]

Ag dendrites Polyurethane 1.8 × 10−4 70 20 3 - [145]

Ag nanoparticles

EPON 8281 0.3 - 8 6 0.366 at 8% [144]

PDMS 0.6 - 24 10 1.61 at 24% [146]

PVDF 22.9 - 20 6 - [147]

Ag nanowires

EP/PEI - 3 - 3 0.3 [148]

Polystyrene 0.1 30 - 2.4 - [149]

DGEBA 4.1 - 8 0.7 1 [150]

Cu nanoparticles PDMS 0.3 - 24 10 1.34 at 24% [146]

Cu micro sheets E51 Epoxy 6 × 10−3 80 - 20 - [151]

Cu nanowires
Polystyrene (3Dnetwork) 80 - 2.8 0.24 - [152]

Polypropylene 5 - 3 1.7 - [136]

Graphene and SiC
nanowires PVDF (3Dnetwork) 0.02 9.5 - 1.5 2.13 at 9.5% [153]

Ag & Cu particles PDMS 1.8 - 24 10 1.68 at 14% [146]

Ag @ Cu flakes DGEBF 600 70 - 40 - [154]
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Table 2. Cont.

Filler Type Matrix ρ at Max %,
S/cm

Filler Content,
Max %

Experimental
Percolation

Threshold %

k at Max VF,
W/mK Ref.

Wt. Vol.

Cu nanowires
@GO, 3D network Epon 862 1.2 6 - - 0.5 at 6% Cu

and 1.2% Go [155]

Graphite + SP +
Al2O3

TPU + PES 0.1 20 - 14.8 - [156]

The dependence of the experimentally observed percolation thresholds, as of the point
where the nanocomposite becomes electroconductive, on the filler type and the matrix
material is presented in Table 2 (% value of percolation threshold is either wt. or vol.
depending on the value position in the column to the left). The distribution of values
agrees with the theoretical predictions by the type of particles and their aspect ratios [157].
According to Table 2, in the sense of increasing nanofiller fraction, the percolation threshold
is observed first for 1D filler materials, then for 2D additives, and finally for 0D nanopar-
ticles. However, aligned graphene being a 2D material shows an unrealistic percolation
threshold value of 0.03 vol%. This effect is achieved due to the creation of a highly ordered
graphene 3D structure using additional additives. In the 3D network graphene case, the
percolation threshold is reached by extra-oriented graphene plates [143]. Some authors
used electroconductive polymers, such as PDMS [126,130,146], as a matrix. In these cases,
the highest value of electrical conductivity is shown, but these polymers are expensive, and
it is unprofitable to use them for manufacturing large FRPC.

The dependence from the filler form was also observed for electro and thermal conduc-
tivity. Table 2 presents many examples with high and low electro and thermal conductivities,
and dependence is the same as for percolation threshold: 1D materials in the first place,
then 2D, and finally, 0D, corresponding to the theory described in [157]. This cannot be
applied to a 3D network, since in these cases an ordered structure with oriented additives
with anisotropic properties is often created. The best results were demonstrated by samples
with hybrid fillers from several additive materials [153,155]. The synergy of properties
achieves the fusion of multiple effects. The interaction of two or more components in PNC
looks very relevant and has great perspectives.

Several PNC compositions are already applied for FRPC heating in practice. In [158]
authors studied the application of a PNC heater, based on MWCNTs and acrylic resin,
coated onto an FRPC fan blade. When an electrical current was applied, the PNC itself
heated up to a heat flux density of 3500 W/m2, Figure 13a, and de-icing of the surface of
the FRPC blade happened in 300 s working at a rotation of 100 rpm, Figure 13b.
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Figure 13. The application of the coating on rotating blade surface. (a) Infrared image of the blade
coated with an electric heating coating (S-EC) supplied by direct current voltage. (b) The images
after anti-icing test; DR represents the direction of rotation (Reprinted with permission from Elsevier,
copyright 2018) [158].
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The applicability of short carbon fibers as heaters was demonstrated in [159]. Carbon
fibers, chopped at 6 mm, were annealed (graphitized). The change in the structure led
to a significant increase in their thermal conductivity and electrical conductivity from
9.8 W/mK and 705.8 S/cm to 153.8 W/mK and 1314.9 S/cm, respectively. Then, PNC
heaters were made from the annealed (CF2700) and parent fibers (CFs) with the same fiber
content. These heaters were compared to a commercial NiCr heating source, Figure 14.
At a voltage of 5 V, the CF2700 heater showed the most uniform heating, the same high
temperature (105 ◦C), and the highest heating rate (400 deg/min).

Polymers 2023, 15, x FOR PEER REVIEW 17 of 28 
 

 

a significant increase in their thermal conductivity and electrical conductivity from 9.8 
W/mK and 705.8 S/cm to 153.8 W/mK and 1314.9 S/cm, respectively. Then, PNC heaters 
were made from the annealed (CF2700) and parent fibers (CFs) with the same fiber con-
tent. These heaters were compared to a commercial NiCr heating source, Figure 14. At a 
voltage of 5 V, the CF2700 heater showed the most uniform heating, the same high tem-
perature (105 °C), and the highest heating rate (400 deg/min). 

 
Figure 14. Infrared images of (a) NiCr, (b) CFs, and (c) CFP-2700 heating elements (Reprinted with 
permission from Elsevier, copyright 2020) [159]. 

One study [160] demonstrated the possibility of creating carbon nanotube buckypa-
per heaters (CNP) based on MWCNTs/epoxy nanocomposite. The samples were manu-
factured by resin impregnation technology in a vacuum (RV-CNP) and resin impregna-
tion under pressure 0.4 MPa (RP-CNP). When tested for heating, the samples showed the 
maximal temperature of 110 °C and 130 °C, respectively, which corresponds to a thermal 
power of 2 kW/m2. Tests for de-icing showed high efficiency of RV-CNP, where de-icing 
took only 120 s. 

Another study showed the possibility of manufacturing flexible self-heating tapes 
based on commercially available graphene-coated carbon fiber (G-CF35) in a polydime-
thylsiloxane (PDMS) matrix [161]. The G-CF35/PDMS heater was obtained by spray-coat-
ing the part, and tests showed stable results for both not deformed and twisted states with 
temperatures up to 190 °C and 197 °C, respectively, Figure 15. The maximal reached op-
erating temperature was 297 °C, which corresponded to 11.1 kW/m2 of heat flux density. 

 
Figure 15. Temperature distribution of G-CF35/PDMS at different times at 35 V voltage not de-
formed and twisted states (Reprinted from Elsevier, copyright 2019) [161]. 

The synergy of polymer and nanoparticles allows self-heating composites to be pro-
duced even in the form of foams. Thus, in [162] a PNC foam was obtained based on a 
multicomponent composite graphene/polydopamine/3-aminopropyltriethoxysilane/pol-
ydimethylsiloxane. The thermal conductivity was found to be highly anisotropic, with 
28.77 W/mK in-plane and 1.62 W/mK out-of-plane at 11.62 wt.% graphene loading. The 

Figure 14. Infrared images of (a) NiCr, (b) CFs, and (c) CFP-2700 heating elements (Reprinted with
permission from Elsevier, copyright 2020) [159].

One study [160] demonstrated the possibility of creating carbon nanotube buckypaper
heaters (CNP) based on MWCNTs/epoxy nanocomposite. The samples were manufactured by
resin impregnation technology in a vacuum (RV-CNP) and resin impregnation under pressure
0.4 MPa (RP-CNP). When tested for heating, the samples showed the maximal temperature of
110 ◦C and 130 ◦C, respectively, which corresponds to a thermal power of 2 kW/m2. Tests for
de-icing showed high efficiency of RV-CNP, where de-icing took only 120 s.

Another study showed the possibility of manufacturing flexible self-heating tapes
based on commercially available graphene-coated carbon fiber (G-CF35) in a polydimethyl-
siloxane (PDMS) matrix [161]. The G-CF35/PDMS heater was obtained by spray-coating
the part, and tests showed stable results for both not deformed and twisted states with
temperatures up to 190 ◦C and 197 ◦C, respectively, Figure 15. The maximal reached
operating temperature was 297 ◦C, which corresponded to 11.1 kW/m2 of heat flux density.
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Figure 15. Temperature distribution of G-CF35/PDMS at different times at 35 V voltage not deformed
and twisted states (Reprinted from Elsevier, copyright 2019) [161].

The synergy of polymer and nanoparticles allows self-heating composites to be produced
even in the form of foams. Thus, in [162] a PNC foam was obtained based on a multicomponent
composite graphene/polydopamine/3-aminopropyltriethoxysilane/polydimethylsiloxane. The
thermal conductivity was found to be highly anisotropic, with 28.77 W/mK in-plane
and 1.62 W/mK out-of-plane at 11.62 wt.% graphene loading. The absence of heater
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degradation was also demonstrated during the cyclic operation of the composite at 40 ◦C
for 200 heating-cooling cycles, Figure 16.
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Summarizing, a number of combinations of polymers and electrically conductive
nanoadditives have been considered. However, this is only the “tip of the iceberg” when
we are considering nanoscale technologies, leaving tremendous potential for future research.
The limitation factor here is again the mentioned above the limit of 10% maximum filler
content in the matrix.

As we saw before, the optimal performance is provided on one side by coatings, and
on another side by PNC solutions. Combining these two technologies into one, polymer
nanocomposite coatings allow for the combined benefits of both. For PNC coating, there
are no restrictions on filler mass content in comparison to additives in FRPC matrix, and
due to the wide range of used materials, almost any functionality can be achieved. So,
simultaneously with the heating function, such coatings can provide shielding, be coating
condition sensors, have hydrophobic properties, self-healing, etc. This multifunctionality
is impossible for metal coatings, even if they are used in conjunction with supporting
solutions, presented in the next chapter. We assume that PNC coatings can replace metal
coatings in the future. Currently, the factor limiting PNC mass production applications is
the high price of most fillers and polymers, but with the development of manufacturing
technologies, this problem can be solved in the future.

5. Passive Anti/De-Icing Support Solutions

The solutions presented in this chapter can be used both individually and in conjunc-
tion with most types of anti/de-icing systems. They were developed long before active
systems but are still widely used today. Some of them allow for obtaining good results but
unfortunately quickly lose their performance in time. Others have low efficiency but are
durable and inexpensive.

5.1. Application of Hydrophobic Coatings

Hydrophobic liquids are widely used as materials for passive thin-film coatings
for anti/de-icing on the FRPC surface [24,163,164]. Although hydrophobic coatings are
convenient to apply and typically not expensive, it is generally not recommended to rely
only on a hydrophobic coating alone for anti/de-icing [165]. Moreover, the hydrophobic
coating can be destroyed by falling ice, snow, rain, etc. [166].

In [158,167] authors presented a combined multilayer anti/de-icing effect by applying
a superhydrophobic thin-film coating over a PNC heater. Figure 17 compares the results
of a de-icing test under identical environmental conditions for three surfaces: the PNC
heater combined with a superhydrophobic coating (S-EC), the PNC heater without the
superhydrophobic layer (EC), and a polyimide heating film (HF) as a traditional heater. As
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a result, the S-EC coating coped with the task at a lower energy cost than the EC and HF
heaters: 0.41, 0.56, and 0.98 W/cm2, respectively.
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Moreover, hydrophobic properties can be obtained from the surface, which mimics
nature, where hydrophobic properties are often encountered, e.g., lotus leaves, rice, roses,
etc. [168,169]. However, these coatings are also not perfect: they are very difficult to obtain
in large areas, they have a high cost, and their hydrophobic properties disappear under
harsh operating conditions [170].

5.2. Chemical Removal

Chemicals preventing water from freezing are used as a treatment in aircraft services.
However, when using chemical substances, it is necessary to take into account the pollution
of the environment [171] as well as the fact of corrosion. Thereby, for example, this method
is not currently used in the operation of turbine blades of wind turbines [172].

5.3. Absorbing Sun Radiation

The application of black paint absorbs solar radiation and, thereby, increases the
surface temperature, which negatively affects the formation of ice. Black paint is typically
used in conjunction with a hydrophobic coating. Black paint heat absorption is not easy to
control and can quickly overheat the surface resulting in premature decommissioning of
FRPC [173].

6. Conclusions

Since the middle of the 20th century, a number of studies have been carried out, aimed
at studying the processes of preventing and removing an ice crust from the surface of
FRPC products. This area began to develop especially actively with the discovery of new
nanosized additives and highly effective hydrophobic compounds. Our study provides
an overview of a large number of heating solutions for anti/de-icing on the surface of
FRPC products. They can be divided into two groups: external heating systems—located
outside the composite product, and internal heating systems—located inside the composite
product. However, this division is only formal; for example, the heater based on PNC,
an internal heater, can be applied on an FRPC surface and this solution will be named an
external heating system. For PNC systems, the percolation threshold is very important.
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The value of the percolation threshold depends on the aspect ratio of the filler particle [149],
the particle’s size [144], the structure of the particles [157], the functionalization of the
particle surface [154], and also on their ordering [119]. The FRPC and PNC heaters work
more efficiently when accompanied by hydrophobic coatings. The synergistic effect always
exceeds the impact of heating and hydrophobic separately [174–176].

In general, the effect of the interaction of two or more components in the process of
obtaining effective solutions is very relevant. Based on the review, we can conclude that the
solutions with the best technical indicators were obtained using multicomponent systems.
Thus, the high thermal conductivity of an electrically conductive nanoparticle-polymer
composite was obtained with the synergy of graphene and SiC nanowires, 2.13 W/mK
at 9.5 wt.% [153]. As for the dielectric case, high-performance k was demonstrated by the
cellulose nanofiber/NB/epoxy composite, 3 W/mK at 10 wt.%, whereas the thermal con-
ductivity of graphene/epoxy, cellulose nanofiber/epoxy, and NB/epoxy is below 1 W/mK
at 10 wt% [87,142]. Similar effects are shown for electrical conductivity and reaching the
percolation threshold. In most cases, these phenomena are anisotropic.

To select a technical solution for anti/de-icing the surface of an FRPC product, there is
no standard answer; each case requires an individual approach. It is necessary to take into
account the characteristics of the used polymer, environment, and reinforcement. When
using nano-sized additives, we need to consider their aspect ratio, size, structure, surface
functionalization technologies, and peculiarities of interaction with other additives.
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Abbreviations

0D Zero dimensional
1D One dimensional
2D Two dimensional
3D Three dimensional
Al2O3 Alumina
AlN Aluminum nitride
BMIMBF4 1-n-Butyl-3-methylimidazolium tetrafluoroborate
BN Boron nitride
CMC Carboxymethyl cellulose
CNT Carbon nanotubes
COPA Copolyamide
CPE Chlorinated polyethylene
DGEBA Bisphenol A
EMA Ethylene methyl acrylate
ECT Electro-conductive carbon-based textile
FML Fiber metal laminate
FRPC Fiber-reinforced polymer composites
GLARE Glass laminate aluminum reinforced epoxy composite structure
MCF Metalized carbon fiber
MWCNT Multi-wall carbon nanotubes
NiCr Nickel-chromium
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PEO Polyethylene glycol
PES Polyethersulfone
PDLA Polylactide
PDMS Polydimethylsiloxane
PLLA Poly(L-lactide)
PNC Polymer nanocomposites
PP Polypropylene
PVA Polyvinyl alcohol
PVDF Polyvinylidene fluoride
SBR Styrene-butadiene rubber
SiC Silicon carbide
SDBS Sodium dodecyl benzene sulfonate
TPU Thermoplastic polyurethane
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