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Abstract: This study describes the synthesis of novel amphiphilic linear-dendritic block copolymers
and their self-assembly in water to form supramolecular nanoreactors capable of catalyzing Suzuki-
Miyaura coupling reactions under “green” conditions. The block copolymers were formed through
copper(I)-catalyzed alkyne-azide cycloaddition between azide functionalized poly(benzyl ether)
dendrons as the perfectly branched blocks, as well as bis-alkyne modified poly(ethylene glycol),
PEG, as the linear block. A first-generation poly(benzyl ether) dendron (G1) was coupled to a bis-
alkyne modified PEG with molecular mass of 5 kDa, forming an ABA copolymer (G1)2-PEG5k-(G1)2

(yield 62%), while a second-generation dendron (G2) was coupled to a 11 kDa bis-alkyne modified
PEG to produce (G2)2-PEG11k-(G2)2 (yield 49%). The structural purity and low dispersity of the
linear-dendritic copolymers were verified by size-exclusion chromatography and matrix-assisted
laser desorption/ionization time-of-flight mass spectrometry. Their self-assembly was studied by
dynamic light scattering, showing that (G1)2-PEG5k-(G1)2 and (G2)2-PEG11k-(G2)2 formed single
populations of micelles (17 nm and 37 nm in diameter, respectively). The triazole rings located at the
boundaries between the core and the corona are efficient chelating groups for transition metals. The
ability of the micelles to complex Pd was confirmed by 1H NMR, transmission electron microscopy,
and inductively coupled plasma. The catalytic activity of the supramolecular linear-dendritic/Pd
complexes was tested in water by model Suzuki-Miyaura reactions in which quantitative yields were
achieved within 3 h at 40 ◦C, while, at 17 ◦C, a yield of more than 70% was attained after 17 h.

Keywords: linear-dendritic; block copolymer; self-assembly; “green” chemistry; Suzuki coupling

1. Introduction

Amphiphilic linear-dendritic copolymers are stimuli-responsive hybid macromolecules
that self-assemble in different nanostructures depending on the surronding block-selective
media [1–5]. Since their early inception, several publications have reported their ability
to accommodate significant amounts of small molecules that are insoluble in the solvent
chosen [6] or surface coat sizeable glycoproteins [7]. These properties facilitated the use
of linear-dendritic block copolymers as efficient nanoreactors for “green” Diels Alder re-
actions between fullerene and polyaromatic hydrocarbons [8] and the first oxidation of
fullerene mediated by an enzyme [9]. It should be emphasized that these unprecedented
reactions were performed in aqueous media at ambient or close to ambient temperatures.
Based on previous results, this study aims at the design and formation of novel linear-
dendritic block copolymers and their evaluation as catalytic nanoreactors for another
synthetically important process—the Suzuki-Miyaura (SM) reaction [10]. This method
involves palladium-catalyzed cross-coupling of aryl bromide and boronic acid derivatives
to yield a biaryl species. SM coupling is increasingly important in various applications,
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such as natural product synthesis [11], pharmaceuticals [12], and catalysis [13]. The process
has many advantages: organoboron compounds are commercially available and environ-
mentally safer than reactants used in other organic reactions. They are also easy to separate
from reactions mixtures [14].

Despite the advantages of SM coupling, there is still a need for improvement. The
reaction is normally conducted at high temperature in organic solvents [15], and thus
is not environmentally friendly. In a world with increasing emphasis on environmental
preservation, there is an interest to improve the process footprint by conducting this reaction
in an aqueous media at milder temperatures [16]. Several attempts have been reported
involving surfactants [17] and specifically designed micelles [18]. The elegant studies by
Lipshutz’ group [18] have demonstrated the viability of this concept and were further
extended by activation techniques [19] and dendrimers [20]. While there were previous
publications of palladium encapsulation within the interior of the dendrimers [21], in
most recent reports the catalyst was bound on complexation sites at their periphery [22]
or adjacent to their periphery [23], facilitating in this way a favorable contact with the SM
reagents involved. However, one problem with conducting the SM reaction in water is
the low solubility of a wide range of interesting, but hydrophobic reactants. Therefore, it
would be useful to develop a catalytic system that is soluble in water and can bind and
solubilize hydrophobic substrates.

As was already mentioned, amphiphilic linear-dendritic copolymers form micelles
in water and are capable of binding large amounts of hydrophobic substrates [6,8,9]. To
improve on these previously reported linear-dendritic copolymer systems, in this study we
have introduced a catalytic binding site at the junction between the linear hydrophilic block
as the solubilizing entity and the hydrophobic dendritic “wedge” as the reagents reservoir.
Triazole rings, formed throughout the dendrimer structure by copper(I)-catalyzed alkyne-
azide cycloaddition (CuAAC), have been shown to bind Pd that catalyzes SM coupling
reactions [24]. By introducing triazole rings into a linear-dendritic copolymer system, we
aim to couple the catalytic ability of Pd with the high binding capacity and water solubility
of the copolymer. In this manner, we hope to create a micellar catalytic system capable of
acting as a nanoreactor for SM coupling reactions for hydrophobic reagents in an aqueous
environment and under mild conditions.

2. Materials and Methods
2.1. Materials

All reagents and solvents were used without additional purification unless specified
otherwise. Poly(ethylene glycol) with molecular mass 5000 Da (PEG5k, Mw/Mn = 1.02) and
11,000 Da (PEG11k, Mw/Mn = 1.04) were purchased from Polysciences, Inc. (Warrington,
PA, USA). 2,2-Bis(hydroxymethyl)propionic acid, bis-MPA, (99+%) sodium azide, and
NaN3 (98%, powder) were acquired from Acros. Sodium hydride, NaH, (95%, dry pow-
der), 4-di(methylamino)pyridine, DMAP, (≥99%), copper(I) bromide, CuBr, (98%), propar-
gyl bromide (80 wt.% in toluene), N,N′-dicyclohexylcarbodiimide, DCC, (99%), methyl
3,5-dihydroxybenzoate, 3,5-MDHB, (97%), 3,5-dihydroxybenzyl alcohol, 3,5-DHBA (98%),
benzyl bromide (98%), sodium ascorbate, Na-Asc (≥99%), potassium carbonate, K2CO3
(≥98%, powder), 18-crown-6 (99%), 2,5-dihydroxybenzoic acid, 2,5-DHBA, (98%), phenyl-
boronic acid, PBA, (95%), 4′-bromoacetophenone, 4′-BAcP, (99%), triethylamine, TEA
(99.5%), and tetrahydrofuran, THF (HPLC grade) were all purchased from Sigma-Aldrich
(Miwaukee, WI, USA). Dichloro-bis(benzonitrile) palladium, Pd(PhCN)2Cl2, (99%) was ob-
tained from Strem Chemicals (Newburyport, MA, USA); diethyl ether, ethyl acetate, EtOAc,
hexanes, and methanol (all reagent grade) were received from Pharmco, Inc. (Brookfield,
CT, USA), and dichloromethane, DCM, (spectrophotometric grade) was purchased from
Spectrum/Gleason Chemicals (Syracuse, NY, USA).
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2.2. Instrumentation
2.2.1. Size Exclusion Chromatography (SEC)

The analyses were completed on a line with M510 pump, U6K universal injector
(both from Waters Co. Milford, MA, USA), three 5 µm PL Gel columns (50 Å, 500 Å
and Mixed C, Agilent Tecgnologies, Inc. Santa Clara, CA, USA), and a Viscotek 250 dual
refractive index/viscometry detector (Malvern Panalytical Inc. Westborough, MA, USA).
The separation was achieved at 40 ◦C with THF (freshly distilled over KOH) eluting
at 1 mL/min. The apparent molecular masses and molecular mass distributions were
determined using 15 monodisperse poly(styrene) standards (162 Da–200 kDa, Polymer
Standards Service, Warwick, RI, USA) and Viscotek OmniSEC software ver. 5.0.

2.2.2. Matrix-Assisted Laser Desorption/Ionization—Time of Flight (MALDI-TOF)

The MALDI-TOF measurements were made on a Bruker Autoflex III MALDI-TOF
instrument (Bruker Co. Billerica, MA, USA) with Smartbeam ion source equipped with the
Nd-YAG laser (266, 355 nm). All spectra were recorded in a reflect-positive mode. A matrix
was prepared by dissolving recrystallized 2,5-DHBA in methanol at a concentration of
40 mg/mL. The samples were prepared in methanol at a concentration of 1 mg/mL.
Samples were spotted using the dried-droplet method with sample and matrix being
premixed at a ratio of 1:7. An amount of 1 µL of mixed solution was spotted on AnchorChip
target plate (MTP 384 polished steel, Bruker Daltonics).

2.2.3. Nuclear Magnetic Resonance (NMR)
1H NMR spectra were recorded at room temperature on a Bruker AVANCE 600 MHz

instrument (Bruker Co.) using 64 scanns and CDCl3 as the solvent and internal standard.

2.2.4. Fluorescence Spectroscopy

Analyses were performed on a Horiba Fluorolog-3 spectrofluorometer (FL3-12, Horiba
Jobin Yvon Inc. Edison, NJ, USA) equipped with a 450 W Xenon arc lamp. The emission
spectra of polymer solutions ranging from 350 to 500 nm were recorded in a 10 mm quartz
cuvette at an excitation wavelength of 334 nm and 1 mm slit width.

2.2.5. Dynamic Light Scattering (DLS)

The DLS measurements were carried out on a Malvern Zetasizer ZS instrument
(Malvern Panalytical Inc.). The instrument was equipped with a 633 nm laser source and a
backscattering detector at 173◦. Data were analyzed using a CONTIN procedure.

2.2.6. Transmission Electron Microscopy (TEM)

TEM analyses were performed on JEOL JEM-2100F microscope (JEOL, Tokyo, Japan)
at an accelerating voltage of 200 kV. A drop of sample solution at a concentration of
0.5–1 mg/mL was placed on a carbon-coated 400 square mesh copper grid. The solution
excess was blotted with a lint-free filter paper after 1 min, and the grid was allowed to dry
at ambient temperature for 1 h, and then it was vacuum-dried for 24 h.

2.2.7. Inductively Coupled Plasma (ICP)

The palladium concentration in solution was determined on a Perkin Elmer Elan
DRC-e mass spectrometer (Perkin Elmer Co., Hopkinton, MA, USA).

2.3. Methods
2.3.1. Synthesis of 2,2-Bis(Propargyl) Propionic Acid (Bis-PPA)

This compound was synthesized from bis-MPA and propargyl bromide following a
previously published procedure (Scheme S1) [24]. Total yield: 32%.
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2.3.2. Synthesis of Bis-Alkyne PEGs

The general procedure is described as follows: bis-alkyne functionalized PEGs were
produced by coupling bis-PPA to PEG5k or 11k mediated by DCC. Predetermined quantities
of PEG, DMAP, and bis-PPA were placed in a round bottom flask and dissolved in DCM.
DCC was then added, and the solution was set to stir at room temperature for 18 h. The
process was followed by thin layer chromatography (TLC). Upon completion, the reaction
mixture was vacuum filtered to remove solids. The filtrate was precipitated drop wise in
60 mL of diethyl ether. Following precipitation, 20 mL more of diethyl ether were added,
and the precipitate was set aside to aggregate for 20 min. The white solid was collected by
vacuum filtration.

Bis-alkyne-PEG5k. PEG5k: 200 mg, bis-PPA: 174 mg, DCM: 2 mL, DCC: 160 mg,
DMAP: 17 mg. Yield: 181 mg (84%).

1H NMR (600 MHz, CDCl3) δ 4.29 (t, J = 8.41 Hz, 4H), 4.17 (s, 8H), 3.78 (s, 8H), 3.67 (m,
440H), 2.46 (s, 4H), 1.25 (s, 6H).

Bis-alkyne-PEG11k. PEG11k: 300 mg, bis-PPA: 130 mg, DCM: 3 mL, DCC: 160 mg,
DMAP: 16 mg. Yield: 245 mg (79%).

1H NMR (600 MHz, CDCl3) δ 4.20 (t, J = 8.27 Hz, 4H), 4.15 (s, 8H), 3.68 (s, 8H), 3.54 (m,
1000H), 2.32 (s, 4H), 1.28 (s, 6H).

2.3.3. Synthesis of First-Generation Poly(Benzyl Ether) Dendron Bromide (G1-Br)

G1-Br was prepared from benzyl bromide and methyl 3,5-MDHB following previously
published procedures, Scheme S2 [25,26]. Total yield: 74%.

2.3.4. Synthesis of Second-Generation Poly(Benzyl Ether) Dendron Bromide (G2-Br)

G2-Br was synthesized from G1-Br and 3,5-DHBA using the original Hawker-Fréchet
protocol [27]. Total yield: 19%.

2.3.5. Synthesis of G1-N3 and G2-N3

The dendron-azides were formed by the following general procedure: G1-Br or G2-Br
were dissolved in DMSO, and NaN3 was added, and the reaction was allowed to proceed
at room temperature with TLC monitoring. Upon completion, the reaction mixture was
extracted with three DCM portions. The solvent was evaporated, and the product was
purified by column chromatography using hexanes (DCM (2:1, v/v)) as eluent mixtures.
The solvents of the collected fractions wre removed to yield oily products.

G1-N3. G1-Br: 49 mg, NaN3: 57 mg, DMSO: 2 mL, DCM: 3× 10 mL. Yield: 41 mg (93%).
G2-N3. G2-Br: 102 mg, NaN3: 58 mg, DMSO: 3 mL, DCM: 3× 10 mL. Yield: 79 mg (81%).

2.3.6. Synthesis of (G1)2-PEG5k-(G1)2, (G2)2-PEG5k-(G2)2, (G2)2-PEG11k-(G2)2

The linear-dendritic block copolymers were synthesized by the following unified
method: A bis-alkyne-PEG and Gx-N3 were placed in a round-bottomed flask and dissolved
in 1 mL acetone. CuSO4 solution in water was then added to this flask, along with sodium
ascorbate. The mixture was stirred for 48 h at room temperature. At that time, the reaction
mixture was extracted with three 10 mL DCM portions. The organic fractions were collected,
and Na2SO4 was added to eliminate water traces. The resulting mixture was gravity filtered
to remove the salt. The filtrate was concentrated by rotary evaporation, dissolved in DCM,
and purified by column chromatography using increasing ratios of MeOH in DCM as
eluent mixture.

(G1)2-PEG5k-(G1)2. G1-N3: 52 mg, bis-alkyne PEG5k: 71 mg, CuSO4: 6.3 mg, water:
0.5 mL, sodium ascorbate: 10.7 mg. Yield: 55 mg (63%).

1H NMR (600 MHz, CDCl3) δ 7.63 (s, 4H), 7.5–7.3 (m, 40H), 6.6–6.2 (m, 12H), 5.48 (s, 8H),
5.03 (s, 16H), 4.61 (s, 8H), 4.17 (t, J = 6.75 Hz, 4H), 3.77 (t, J = 7.2 Hz, 4H), 3.66 (m, 440H),
1.15 (s, 6H).

(G2)2-PEG5k-(G2)2. G2-N3: 44 mg, bis-alkyne PEG5k: 50 mg, CuSO4: 6.5 mg, water:
0.25 mL, sodium ascorbate: 10 mg. Yield: 47 mg (60%).
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1H NMR (600 MHz, CDCl3) δ 7.69 (s, 4H), 7.38 (m, 80H), 6.66–6.5 (m, 36H), 5.39 (s, 8H),
5.0 (s, 32H), 4.92 (s, 16H), 4.65 (s, 8H), 4.11 (t, J = 6.9 Hz, 4H), 3.81 (t, J = 7.3 Hz, 4H),
3.6 (m, 440 H), 1.14 (s, 6H).

(G2)2-PEG11k-(G2)2. G2-N3: 120 mg, bis-alkyne PEG11k: 93 mg, CuSO4: 10 mg, water:
0.4 mL, sodium ascorbate: 14 mg. Yield: 58 mg (49%).

1H NMR (600 MHz, CDCl3) δ 7.72 (s, 4H), 7.4 (m, 80H), 6.64–6.52 (m, 36H), 5.44 (s, 8H),
5.01 (s, 32H), 4.9 (s, 16H), 4.62 (s, 8H), 4.17 (t, J = 6.8 Hz, 4H), 3.78 (t, J = 7.2 Hz, 4H),
3.66 (m, 1000 H), 1.15 (s, 6H).

2.3.7. Critical Micelle Concentration (CMC)

The self-assembly onset of the linear-dendritic block copolymers was determined by
fluorescence spectroscopy in deionized (DI) water (18.2 MΩ) with pyrene (99%, Aldrich)
as the fluorescent probe. The onset of sharp increase in the third vibronic band intensity
I383 was used to determine cmc [6]. CMC(G1)2-PEG5k-(G1)2 = 4.4 mg/mL (6.51 × 10−4 M);
CMC(G2)2-PEG11k-(G2)2 = 2.9 mg/mL (2.55 × 10−4 M).

2.3.8. Pd-Micelle Formation

(G1)2-PEG5k-(G1)2 stock solution in THF was made at a concentration of 4.4 mg/mL.
Appropriate volume (230 µL) of the stock solution was added to a small vial so that the
vial contained 1 mg of the copolymer (1.478 × 10−7 M) and the solvent was evaporated.
Fourfold excess (2 eq per binding site) of PdCl2(PhCN)2—227 mg (5.914 × 10−7 M) was
dissolved in 5 mL of THF, and 50 µL of that solution was added to the vial containing the
(G1)2-PEG5k-(G1)2, producing a slightly yellowish clear solution. The vial was capped over
night to prevent the THF from evaporating. An amount of 100 µL from this solution was
slowly injected into 1 mL of water, and THF was allowed to evaporate under air flow. The
resulting clear aqueous solution was then analyzed by DLS, TEM, and ICP. ICP revealed
that the solution contained 0.567 mg Pd, or 90% of the theoretical value (assuming 2 eq of
PdCl2 can be bound per 1 molecule of (G1)2-PEG5k-(G1)2).

2.3.9. Suzuki-Miyaura Catalysis

Phenylboronic acid (2.5 mg, 2.05× 10−5 M), 4′-bromoacetophenone (1.99 mg, 1× 10−5 M)
and triethylamine, TEA (4.14 µL, 3 mg, 2.97× 10−5 M), were added to a small round bottom
flask. An amount of 1 mL of (G1)2-PEG5k-(G1)2 water solution with 90% Pd (0.567 mg)
was added to the flask. The reaction mixture was stirred at 40 ◦C for 3 h and was then
extracted three times with 3 mL diethyl ether. The organic fractions were collected and
dried over Na2SO4. The clear supernatant was decanted, and, after solvent evaporation, a
white solid was obtained. Yield: 1.95 mg (99.5%). The product was dissolved in deuterated
chloroform and analyzed by NMR.

1H NMR (600 MHz, CDCl3) δ 8.04 (d, J = 8.27 Hz, 2H), 7.69 (d, J = 8.22 Hz, 2H),
7.63 (d, J = 7.54 Hz, 2H), 7.48 (t, J = 7.83 Hz, 2H), 7.41 (t, J = 7.53 Hz, 1H), 2.63 (s, 3H), Figure S1B.

3. Results and Discussion
3.1. Synthesis of Linear Dendritic Block Copolymers

The synthetic sequence is shown in Scheme 1. Firstly, the bis-alkyne PEGs were
formed by coupling of bis-PPA to PEG 5k (Scheme 1, n = 97) or PEG11k (Scheme 1, n = 233)
catalyzed by DCC/DMAP. Following the coupling, the reaction mixture turned brown
and produced a white solid after precipitation in diethyl ether. The yields were relatively
high—84% with PEG5k and 79% with PEG11k. Signals typical for the addition of bis-
PPA—4.29 ppm -OCH2C≡CH, 4.17 ppm -CH2CH2-OC(O)-, 3.78 ppm -C(CH3)-CH2-O-;
2.46 ppm -C≡CH, and 1.25 ppm -C-CH3—appeared along with the methylene PEG protons
(3.67 ppm) in the 1H NMR spectra, Figure 1B. The desired linear-dendritic block copolymers
were then obtained by a CuAAC “click” reaction between azide functionalized G1 (not
shown) and G2 (Scheme 1) dendrons and bis-alkyne terminated PEGs. A total of three
products were created: (G1)2-PEG5k-(G1)2, (G2)2-PEG5k-(G2)2, and (G2)2-PEG11k-(G2)2.
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At the start, the reaction mixtures were cloudy due to G1-N3 and G2-N3 insolubility in
water, but they gradually cleared as the reaction progressed. The copolymer yields were as
follows: (G1)2-PEG5k-(G1)2: 63%; (G2)2-PEG5k-(G2)2: 60%, and (G2)2-PEG11k-(G2)2: 49%.
The starting PEGs, the intermediates, and the final products of each synthetic sequence
were analyzed by 1H NMR (Figure 1C for PEG5k), as well as by SEC and MALDI -TOF, to
confirm their structural purity. An example is shown in Figure 2.
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Figure 1. 1H NMR spectra of PEG5k (A), bis-alkyne PEG5k (B), (G1)2−PEG5k−(G1)2 (C) and
(G1)2−PEG5k−(G1)2/Pd complex (D). Blue labels: PEG protons, orange labels: bis-PPA protons,
purple labels: methine/triazole protons, red labels: poly(benzyl ether) dendron protons. ×—solvent
protons. See Section 2.2.3. in ‘Materials and Methods’ for analysis conditions.

Polymers 2023, 15, x FOR PEER REVIEW 7 of 14 
 

 

  

Figure 1. 1H NMR spectra of PEG5k (A), bis-alkyne PEG5k (B), (G1)2−PEG5k−(G1)2 (C) and 

(G1)2−PEG5k−(G1)2/Pd complex (D). Blue labels: PEG protons, orange labels: bis-PPA protons, pur-

ple labels: methine/triazole protons, red labels: poly(benzyl ether) dendron protons. ×—solvent pro-

tons. See Section 2.2.3. in ‘Materials and Methods’ for analysis conditions. 

 
 

(a) (b) 

Figure 2. Analysis of starting material PEG 5k, A, intermediate (alkyne)-PEG5k-(alkyne), B, and final 

products (G1)2−PEG5k−(G1)2, C, (G2)2−PEG5k−(G2)2, D: (a) Overlay of SEC eluograms; (b) Overlay 

of MALDI-TOF spectra. See Sections 2.2.1 and 2.2.2. in Materials and Methods for analysis condi-

tions. 

The SEC overlay of the starting PEG5k, bis-alkyne PEG5k, (G1)2-PEG5k-(G1)2, and 

(G2)2-PEG5k-(G2)2 revealed unimodal peaks with no trace of the starting reagents (Figure 

2a). The decreasing elution volume observed for each peak confirmed the increase in the 

hydrodynamic volume (i.e., the molecular mass) after each synthetic step, while the dis-

persity Ð of each polymer product remained narrow (Table S1). 

The MALDI-TOF overlay, shown in Figure 2b, provided additional evidence for the 

structural purity. Upon addition of the small bis-alkyne moieties, all of the molecular 

peaks were shifted by approximately 400 Da, corresponding to the addition of two bis-

alkyne groups (M = 210 Da each) to both PEG chain ends. Similarly, upon addition of four 

G1 dendrons (M = 345 Da each) to the PEG chains, the molecular ion peaks were seen to 

shift by ~1300 Da. Finally, the addition of four G2 dendrons (M = 769 Da each) caused the 

peaks of the bis-alkyne modified PEG to shift simultaneously by ~3000 Da. The increasing 

loss of resolution at higher molecular weights (Figure 2b, C and D) has been previously 

A

B

C

D

 

 

 

 

a
a a b

a

a

b

b

b

b

c

c c

c

d

d

d

e

e’

e’

f

f

f

g

g g

g

h h

h

hi

i

i

i

j

j

j

j

j

j

j

j

e’

e

i

j

j

j

j

h
f

f g

g

a aa b

b

b
e’ f

g

h

i

j

j

j

j

j

j

j

j

d

δ, ppm234 15678

 

 

 

15 17 2119

Elution Volume, mL

A

B

C

D

d
R

I
S

ig
n
a
l,
 m

V

0

30

60

 

Figure 2. Analysis of starting material PEG 5k, A, intermediate (alkyne)-PEG5k-(alkyne), B, and
final products (G1)2−PEG5k−(G1)2, C, (G2)2−PEG5k−(G2)2, D: (a) Overlay of SEC eluograms;
(b) Overlay of MALDI-TOF spectra. See Sections 2.2.1 and 2.2.2 in Materials and Methods for
analysis conditions.

The SEC overlay of the starting PEG5k, bis-alkyne PEG5k, (G1)2-PEG5k-(G1)2, and
(G2)2-PEG5k-(G2)2 revealed unimodal peaks with no trace of the starting reagents (Figure 2a).
The decreasing elution volume observed for each peak confirmed the increase in the hydro-
dynamic volume (i.e., the molecular mass) after each synthetic step, while the dispersity Ð
of each polymer product remained narrow (Table S1).

The MALDI-TOF overlay, shown in Figure 2b, provided additional evidence for
the structural purity. Upon addition of the small bis-alkyne moieties, all of the molec-
ular peaks were shifted by approximately 400 Da, corresponding to the addition of
two bis-alkyne groups (M = 210 Da each) to both PEG chain ends. Similarly, upon ad-
dition of four G1 dendrons (M = 345 Da each) to the PEG chains, the molecular ion peaks
were seen to shift by ~1300 Da. Finally, the addition of four G2 dendrons (M = 769 Da each)
caused the peaks of the bis-alkyne modified PEG to shift simultaneously by ~3000 Da. The
increasing loss of resolution at higher molecular weights (Figure 2b, C and D) has been pre-
viously observed with other ethylene glycol macromolecules [24]. It should be mentioned,
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however, that both the SEC traces and the MALDI-TOF spectra showed no presence of the
starting material after purification at each synthetic step. The 1H NMR spectra of the initial
PEG5k, the intermediates, and the final product are shown in Figure 1A–C.

In contrast to the PEG5k copolymers, the yield of (G2)2-PEG11k-(G2)2 was notably
lower (49%). The low yield is likely due to a combination of incomplete coupling and
loss of product during purification. After separation of the reaction products by column
chromatography, several of the isolated fractions showed presence of unreacted (alkyne)-
PEG11k-(alkyne), necessitating repeated fractionation. The likely reason for the separation
difficulty might be the insignificant change in the molecular mass after the addition of the
(G2) dendrons to the (alkyne)-PEG11k-(alkyne) in distinction to the PEG5k based block
copolymers. The SEC and MALDI-TOF analyses are presented in Figure 3. Both overlays
showed similar trends—each addition caused an increase in hydrodynamic volume (SEC,
Figure 3a) and an increase in the values of molecular ion peaks (MALDI-TOF, Figure 3b).
Again, traces of starting reagents were not observed after each synthetic step, while the
loss of resultion in the MALDI-TOF spectra is even more pronounced due to the reasons
already discussed. The molecular masses and molecular mass distributions of the PEG11k
based products are summarized in Table S1.
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Figure 3. Analysis of starting material PEG11k, A, intermediate (alkyne)−PEG11k−(alkyne), B, and
final product (G2)2−PEG11k−(G2)2, C: (a) Overlay of SEC eluograms; (b) Overlay of MALDI-TOF
spectra. See Sections 2.2.1 and 2.2.2 in Materials and Methods for analysis conditions.

3.2. Self-Assembly of Linear Dendritic Block Copolymers

(G1)2-PEG5k-(G1)2 and (G2)2-PEG11k-(G2)2 were soluble in water and self assembled
to form micelles. Interestingly, they contained the same amount of poly(benzyl ether) den-
drons attached to the same PEG block as those previously investigated (Figure 4), but they
self-assembled at notably higher concentrations—(G1)2-PEG5k-(G1)2 CMC = 6.51 × 10−4 M vs.
[G-2]-PEG5k-[G-2] CMC = 2.0× 10−5 M, as well as (G2)2-PEG11k-(G2)2 CMC = 2.6× 10−4 M
vs. [G-3]-PEG11k[G-3] CMC = 7.1 × 10−6 M. [6] The difference was in the connecting
unit in the two families: a more flexible bis-PPA (Figure 4a) vs. a more stiff 3,5-dihydroxy
benzyl (Figure 4b). The flexibility of the bis-PPA enables better accommodation of the
hydrophobic G1 and G2 dendrons in the micellar core, resulting in a single population of
supramolecular assemblies with smaller sizes than the ones previously reported—17 nm
vs. 32 nm for the PEG5k copolymers and 37 nm vs. 44 nm for the PEG 11k copolymers,
Figure 5ab, A [6]. In analogy with previously synthesized [G-3]-PEG5k-[G-3] ([1]), the
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newly formed (G2)2-PEG5k-(G2)2 did not dissolve in water forming transparent physical
networks, which were not further investigated.
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Figure 4. Structures of linear dendritic block copolymers containing the same amount of poly(benzyl
ether) dendrons attached to the same PEG block (n = 233): (a) (G2)2−PEG11k−(G2)2, this work;
(b) [G-3]−PEG11k−[G-3], [1,6].
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Figure 5. Dynamic light scattering of aqueous solutions before (A) and after addition of
PdCl2(PhCN)2 (B): (a) (G1)2−PEG5k−(G1)2 micelles; (b) (G2)2−PEG11k−(G2)2 micelles. See
Sections 2.2.5, 2.3.7 and 2.3.8 in ‘Materials and Methods’ for analysis conditions.

It has been shown previously that triazole rings attached to bis-MPA dendritic branch-
ing are able to efficiently bind Pd salts [24]. A simple experiment was used to test the
binding ability of the newly synthesized materials by adding bis(benzonitrile)palladium(II)
chloride to water with and without the novel linear-dendritic block copolymers, Figure 6.
In pure water, the Pd salt precipitated (orange solid on the bottom of the vial, Figure 6a),
while the copolymer solution became clear after vortex stirring for 30 s, Figure 6b. The
complexation of the palladium(II) chloride was manifested by distinct chemical shifts in the
1H NMR spectra, Figure 1D. The positions of the protons in the poly(benzyl ether) dendrons
remained unchanged, but the protons associated with the bis-PPA moiety and triazole
rings shifted, Figure 1C,D. The DLS scans of the linear dendritic copolymer micelles with
molecularly bound PdCl2 differed from the pure linear-dendritic micelles, Figure 5ab, B.
The Pd-containing (G1)2-PEG5k-(G1)2 micelles existed as two species, one with a diame-
ter of 10 nm and one with a diameter of 120 nm (Figure 5a, B). The (G2)2-PEG11k-(G2)2
micelles bound to Pd seemed to form three populations, with diameters of approximately
19, 90 and 300 nm (Figure 5b, B). The multiplicity of sizes observed after the addition of
PdCl2(PhCN)2 indicated a different mechanism of self-assembly, which was seemingly
influenced by the Pd complexation. In all probability, the fractions with the smallest sizes
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consisted of monomolecular micelles (at 1 mg/mL both copolymers concentrations were
below cmc), while the large size fractions contained multimolecular micelles assembled
through the formation of hydrophobic intramolecular Pd complexes. Both structures are
shown in Figure 7.
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Figure 7. Schematic cross-section representation of Pd loaded micelles formed in water by solvent
displacement: (a) Monomolecular (G1)2−PEG5k−(G1)2 micellar Pd complex; (b) Multimolecular
(G1)2−PEG5k−(G1)2 micellar Pd complex.

The DLS data were supported by the TEM analyses of both Pd-containig (G1)2-PEG5k-
(G1)2 and (G2)2-PEG11k-(G2)2, as shown in Figure 8. The coexistence of particles with
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different dimensions seen in the DLS scans appeared also in the TEM images. The numerical
difference between DLS and TEM sizes where larger structures seemed to appear should be
attributed to the flattening of the micelles upon deposition on the TEM grid. The existence
of interconected (G2)2-PEG11k-(G2)2 supermolecules was a notable difference frequently
observed in the TEM images, Figure 8b. Most probably, the sufficiently long PEG11k chain
enables the dendrons of some free floating linear-dendritic block copolymers to anchor in
two or more neighboring micelles and “stitch” them together. A schematic representation
of this process with TEM images of previously synthesized individual [G3]-PEG11k-[G3]
micelles and their “stitched” derivatives are shown in Figure S1.
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Figure 8. TEM micrographs of Pd-loaded linear dendritic block copolymers.: (a) (G1)2−PEG5k−(G1)2

micellar Pd complex; (b) (G2)2−PEG11k−(G2)2 micellar Pd complex. Scale bar: 50 nm. Red arrows
mark possible Pd monomolecular micelle complexes. See Sections 2.2.6 and 2.3.8 in ‘Materials and
Methods’ for analysis conditions.

3.3. Evaluation of Catalytic Activity

The model Suzuki-Miyaura coupling reaction, shown in Scheme 2, was used to char-
acterize the catalytic activity of the Pd linear-dendritic micelles. The reactants used in
this reaction, 4′-bromoacetophenone and phenyl boronic acid, were chosen due to their
hydrophobicity and ease of separation. The (G1)2-PEG5k-(G1)2 micelle was used because
of its relatively better size uniformity. The reaction was performed in water at two sets of
conditions: 40 ◦C/3 h and 17 ◦C/17 h. Following the time allocated for the catalysis, the re-
action mixture was extracted in diethyl ether. The micelles were insoluble in ether, and thus
remained in the aqueous phase, while the catalysis reactants and products were separated
to the organic phase. The NMR spectra of the reaction mixture after 3 h at 40 ◦C (Figure S2B)
showed no peaks corresponding to 4′-bromoacetophenone, the limiting reagent, and thus
the catalysis was determined to produce 100% conversion (yield of isolated product 99.5%).
The yield of pure product isolated after 17 h at 17 ◦C. was 72%. When (G2)2-PEG11k-(G2)2
Pd complex was used with identical reagent ratios and 17 ◦C/20 h, the yield of the isolated
product was 62%. After the reaction was performed with pure PdCl2(PhCN)2 in water and
the same reagent ratios, but without the copolymers, no 4-acetylbiphenyl could be isolated,
with only traces visible in the 1H NMR spectrum.
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4. Conclusions

The results obtained in this study showed that amphiphilic linear-dendritic block
copolymers could be successfully produced by a “click” reaction between PEGs and
poly(benzyl ether) dendrons with complimentary designed coupling sites. Compared
with the previously reported Williamson ether syntheses using the same linear and den-
dritic blocks [1], the yields were lower. The two most probable reasons for the lower yields
were (1) the steric hindrance experienced by the dendrons approaching the two alkyne
groups on each bis-PPA moiety and (2) the rather complex mechanism of the CuAAC
reaction proceeding through a sterically demanding intermediates [28]. However, what
was lost in yield was compensated by a dual gain-of-function. Firstly, the insertion of
the bis-PPA ester group between the linear and the dendritic blocks would enable the
controllable split of the hydrophilic PEG corona from the hydrophobic dendritic core under
acid-, base-, or enzymatic action, thus opening interesting avenues towards promising
medical applications [29]. Secondly, the site-selective positioning of metal binding tria-
zole pairs at the interface between the core and the corona of the linear-dendritic micelles
(Figure 7) would facilitate the complexation of metals with biomedical or catalytic functions.
The pilot experiments performed in this study indicated that Pd-loaded micelles made
of (G1)2-PEG5k-(G1)2 were able to efficiently bind hydrophobic substrates and expedite
their chemical transformation under the Suzuki-Miyaura mechanism. The advantageous
complexation of the Pd catalyst at the interface between the core and the corona of the
supramolecular formations (Figure 7) possibly enabled an intimate contact between the
participating SM reagents. While the achieved ~100% yield at 40 ◦C was a laudable ac-
complishment, the yields at 17 ◦C were lower for both copolymers tested. There are still
many ways to improve this system. Possibly greener conditions for the synthesis of the
linear-dendritic block copolymers or their greener analogues could be found. Current
experiments suggested that the micellar/Pd complex can be recovered after one catalytic
reaction. Future trials will expand the range of aromatic halides, explore Pd complexa-
tion within (G2)2-PEG5k-(G2)2 physical networks, and investigate the catalytic activity of
recycled catalysts (micelles and physical hydrogels).
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Figure S2: 1H NMR spectra of 4-bromoacetophenone (A) and S-M coupling product with phenyl
boronic acid (B).
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