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Abstract: Water is a resource that is essential to almost all phases of industrial and manufacturing
operations globally. It is important to handle the wastewater generated professionally. The textile
industry is one of the major global polluters, with textile producers responsible for one-fifth of all
industrial water pollution worldwide. In contrast, heavy metal contamination has developed into
a critical, expanding global environmental problem. Geopolymer is a cementitious constituent of
amorphous aluminosilicates derived from natural or industrial wastes. It is produced using the
polymerization of aluminosilicate raw ingredients in an alkaline atmosphere. The aim of this study
is to evaluate the application of eco-friendly geopolymer cement in the immobilization technique
for the treatment of wastewater including heavy metals and dyes. Geopolymer cement pastes were
organized using slag and fly ash as an aluminosilicate source, (1:1) sodium silicate and sodium
hydroxide 15 wt.% as an alkali activator in the presence of organic dye pollutant reactive red 195,
and Cu2+ ions (700 ppm) at different hydration times for up to 28 days. The physicochemical
and mechanical properties of the prepared geopolymer cement mixes were further examined in
relation to reactive dye pollutant and Cu2+ ions. The hydration characteristic was examined using
the compressive strength and % of total porosity tests, as well as FTIR and XRD studies. Our
findings support the 100% immobilization of both Cu2+ ions and organic dye pollutants in prepared
geopolymer pastes for up to 28 days of hydration. Additionally, adding both Cu2+ ions and dye
pollutants to the prepared geopolymer paste improves its mechanical properties, which is also
supported by FTIR data. XRD and FTIR studies showed that the Cu2+ ions and dying bath effluent
addition have no influence on the kind of hydration products that are produced. On the other hand,
the geopolymerization process is negatively impacted by the presence of Cu2+ ions alone in the
geopolymer paste.

Keywords: reactive red 195; Cu2+ ions; immobilization; geopolymer cement; slag; fly ash

1. Introduction

Water pollution has become a major threat to humans, animals, and plants in recent
years, leading to issues with decreased crop yields, diminished aquatic life, disturbed
ecological balance, contaminated drinking water, and other detrimental effects [1]. There
are many, different contaminants, including heavy metals, dyes, medicines, surfactants,
pesticides and personal care items. Heavy metals are regarded as a high-risk contaminant
that can endanger both human health and the environment. Inorganic elements with
densities more than 5 g/cm3 are referred to be heavy metals. They are primarily divided
into two groups, essential and nonessential heavy metals [1,2].

Heavy metals that are essential for numerous biological processes in living things,
such as Cu, Zn, Fe, Co, and Mn, are often safe at low concentrations. Heavy metals that
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are not necessary, nonetheless, such as Pb, Cd, Cr, As, and Hg, are widely regarded as
harmful even at low concentrations because of their high toxicity level and bioaccumula-
tion feature in food chains [2]. There are numerous methods for removing heavy metals,
dyes, and other pollutants from wastewater, each with their own benefits and drawbacks,
including ion exchange, supercritical fluid extraction, adsorption [3], filtration, electrocoag-
ulation, precipitation [4], microbiological systems, electrochemical processes [5], biological
treatment [6], coagulation–flocculation, chemical precipitation, floatation, and reverse os-
mosis [7,8]. The above-mentioned traditional techniques’ applicability is constrained by
their process effectiveness, environmental friendliness, and economic viability [9].

Adsorption is the method that is most frequently used to remove heavy metals,
dyes, and other contaminants from sewage because of its straightforward procedure,
effective regeneration, and reusability [10]. To remove heavy metals, dyes, and other
contaminants from wastewater, several different adsorbents are utilized, including zeolites,
activated carbon, resins, fly ash, chitosan, and others [11–14]. Due to its large surface
area, stability, and longevity, activated carbon is the most widely utilized adsorbent for the
removal of contaminants from wastewater [11]. The implementation of this technology for
large-scale treatment of wastewater is constrained by its costly synthesis and challenging
regeneration [15,16]. The need for highly effective, economical, and ecologically friendly
adsorbents is growing as a result. Geopolymers might be used for this as a potential
alternative.

An inorganic polymer known as a geopolymer is made up of SiO4 and AlO4 tetra-
hedrons that are joined by exchanging oxygen atoms [17]. They can usually be created
by low-temperature polycondensation of silica- and alumina-rich raw materials’ natural
and byproducts, such as metakaolin, blast furnace slag, coal fly ash, and red mud [17–19].
Geopolymers may be essentially described as a three-dimensional, amorphous, or semicrys-
talline aluminosilicate framework. It has been regarded as a workable substitute for
Portland cement due to its superior mechanical characteristics, durability, low energy
requirements, and low greenhouse gas emissions [17]. In addition, geopolymers have
gained a lot of attention recently, particularly in wastewater treatment for the removal of
various organic and inorganic pollutants including heavy metals and dyes [17–27], using a
variety of methods, primarily adsorption as well as photodegradation, encapsulation, and
immobilization [17,28–32].

As geopolymers offer so many promising attributes as a cement substitute material in
terms of financial, environmental, and technological advantages, a sizable body of literature
has been devoted to their potential for usage in the building sector. Geopolymers have
increasingly garnered a lot of attention for the immobilization of harmful wastes in recent
years [17]. For the Solidification/Stablization of hazardous pollutants, which are classified
into heavy metals (cations and anions) and organic pollutants, geopolymers are currently
the topic of extensive several studies [17,33–42]. Particularly geopolymers have the poten-
tial to offer extraordinarily long-term storage for the safe disposal of radioactive waste with
high radioactivity [17]. The stabilization/solidification method is a unique technique that
has recently been investigated for the removal of dye-contaminated water [34,36,38].

Our most recent research [20,22] indicates that the best decolorization of the various
reactive dye effluents is achieved using a geopolymer made of fly ash and slag with a
mole ratio of 90:10 wt.%. This study’s goal is to develop a novel, environmentally safe,
practical technique for eliminating the color of the reactive red dye 195 remaining in the
dyeing bath in combination with heavy metals, rather than just disposing of this hazardous
waste without treatment. In our investigation, the solidification/stabilization technique
was used to treat a mixture of wastes from organic dyes (reactive red 195 dye) and heavy
metals (Cu2+ ions) by geopolymerization using cementitious materials. Three different
geopolymer mixes based on slag incorporated with fly ash (SF-RD, SF-RD-Cu2+, and SF-
Cu2+) were subjected to a solidification/stabilization test. The test was carried out for
different hydration periods from 1 day to 28 days. Our results indicate that the eco-friendly
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slag/fly ash geopolymer paste has superior stabilization behavior for Cu2+ ions and reactive
red 195 pollutants.

2. Materials and Methods
2.1. Materials

The raw materials and their chemical oxide composition used to prepare slag/fly-ash-
based geopolymer (SF) are the same as in our previous studies [20,22,34,38]. GGBFS, or
ground granulated blast furnace slag, was obtained from Egyptian Iron & Steel’s Helwan
Company, Cairo, Egypt. Slag has a Blaine surface area per gram of 4700 × 50 cm2. Class F
fly ash (FA) was provided by the Sika Chemical Company, located in Burg Al-Arab, Egypt.
Sodium hydroxide was supplied by the EL-Goumhouria Chemical Company in Cairo,
Egypt. The Silica Egypt Company in Alexandria, Egypt, provided industrial liquid sodium
silicate (LSS), with SiO2/Na2O of 2.80. The chemical oxide composition for raw materials
can be seen in Table 1. In addition, the copper chloride anhydrous used in this study was
provided by Merck (Darmstadt-Germany) with 99% purity.

Table 1. Chemical composition of starting materials by XRF, mass %.

Chemical Composition %
SiO2 Fe2O3 CaO Al2O3 Cl− MgO SO3 Na2O K2O L.O.I H2O

Slag 32.86 1.14 42.56 7.02 0 11.58 2.50 0.29 0.15 0.93 0
FA 63.10 5.40 2.33 26.54 0.85 0.52 0 0 0.09 0 0

LSS 32.8 0 0 0 0 0 0 11.7 0 0 55.5

2.1.1. Dyeing Procedures
A-Dyeing of Cotton Fabric

Amounts 60 g/L of sodium sulfate and then 20 g/L of sodium carbonate were applied
to reactive red 195 dye (2% shade, 0.8 mg). Sodium sulfate was used to dye 40 mg of cotton
fabrics for 30 min at 40 ◦C, followed by 60 min at 60 ◦C for fixation in sodium carbonate.
The colored sample was thoroughly rinsed and then allowed to air-dry. Figure 1 illustrates
the dyes’ structure.
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B-Dyeing of Wool Fabrics

Wool fabric was dyed conventionally using conventional heating at temperatures
of 80 ◦C for 60 min in a hydrolyzed reactive dye bath containing the remaining varied
amounts of dye with a liquor ratio of 50:1 (Figure 1). The samples that had been dyed were
rinsed in cold water and dried at room temperature. It is important to note that the dye
concentration used in the dyeing of cotton or wool fibers was 15%, while the remaining
dye proportion was 85%, or 0.68 mg/L. The color strengths of different dyed fabrics are
illustrated in Table 2.

Table 2. Color strengths of fabrics dyed with reactive red 195.

Fabrics Color Strength
K/S L * a * b *

Cotton 23.44 61.09 49.85 −6.17
Wool 20.69 59.14 48.65 −6.02

2.2. Methods
2.2.1. Preparation of Geopolymer Cement Samples

Dry components of 90% slag (GGBFS) and 10% fly ash (FA) must be carefully combined
to attain complete homogeneity when producing different geopolymer pastes. The various
alkaline activator solutions (in the absence and presence of reactive red dye effluent and
Cu2+ ions) were produced by mixing liquid sodium silicate and sodium hydroxide pellets
at a specific ratio of 15:15 wt.% from solid content until an uniform gel was formed [43].
The concentration of the copper chloride solution used in our investigation was 700 ppm.
Replace the mixing water added to prepare the alkaline activator with 100 mL from each of
the dye effluent and Cu2+ ion solutions separately and with 100 mL from the combination of
both. Geopolymer pastes were produced by combining dry constituents with appropriate
alkaline activator solutions until they create a homogeneous paste. The water consistency of
the geopolymer pastes was tested by standard Vicat equipment after complete mixing [44].
Table 3 provides the individual mixes’ constituents and the water/solid ratio that gave
standard consistency. The mixtures were then set in 1-inch stainless steel molds (cubic-
shaped molds). A thin-edged trowel was used to smooth the paste’s surface. Directly after
casting, the pastes were cured at room temperature at 100% relative humidity for 24 h.

Table 3. Mix composition of the examined mixture and liquid/solid (L/S) ratio.

Mixes
Name Slag FA

Reactive Red
Dye Effluent

mL

Cu2+

(700 ppm)
mL

NaOH wt.% Na2SiO3
wt.% L/S Ratio

SF 90 10 —— —— 15 15 0.47
SF-Cu2+ 90 10 —— 100 15 15 0.35

SF-RD-Cu2+ 90 10 100 15 15 0.48
SF-RD 90 10 100 ——- 15 15 0.42

2.2.2. Curing of the Slag-FA-Based Geopolymer Mixes

The cubes were taken out of the mold, and then six cubes from each geopolymer mix
were curing for 1, 3, 7, 14, and 28 days in 100 mL distilled water, to test their leachability
and mechanical properties. The cubes were taken out of their curing condition after each
hydration interval, and the compressive strength and total porosity% data were checked.

2.2.3. Physicochemical and Mechanical Tests of Prepared Geopolymer Cement Samples’
(A) Compressive Strength and Stopping of Hydration Tests

Using a set of three cubes, the compressive strength of each hardened paste was
calculated. As the average of the three values, the results are given in kg/cm2. Compressive
strength in this study was assessed using a manually operated compression testing machine
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(D550 control type, Milano-Italy). The stopping of hydration was performed on the crushed
cubic specimens after the compressive strength test. The crushed samples were collected,
mixed with a stopping mixture of alcohol and acetone (1:1) to stop further hydration, and
dried at 50 ◦C for 24 h before being kept for further analysis (XRD, FTIR).

(B) Total Porosity Measurement

Total porosity examinations were carried out by weighing samples of dry pastes
suspended in water and air, designated W1 and W2, for three separate cubes. Then, for
around 24 h, these cubes were dried at 100 ◦C to calculate their weight in the atmosphere,
W3. The total porosity percentage (P%) was calculated using the following Equation (1):

P% = [(W1 − W3)/ (W1 − W2)] ×100 (1)

(C) X-ray Diffraction Analysis (XRD)

The phase composition of the hydration products of various geopolymer mix samples
was analyzed using X-ray diffraction analysis. Cu-K radiation with a wavelength of
=1.5418 A and a pixel detector set to 40 kV and 40 mA was used for XRD analysis with a
Ni-filtered diffractometer (Empyrean diffractometer, Holland).

(D) Fourier Transform Infrared Spectroscopy (FTIR)

The functional groups of the generated hydration products were identified using
FTIR measurements. It was carried out on an infrared spectrophotometer using pellets
of potassium bromide (KBr) (PerkinElmer 1430 infrared spectrophotometer, USA). Wave
numbers in infrared spectra ranged from 400 to 4000 cm−1.

2.2.4. Leaching Test for Curing Solutions after Different Hydration Periods

The concentration of copper ions in the leachate solution was evaluated using an
atomic absorption spectrophotometer (Savant AA-GBC Scientific Equipment, Australia).
Moreover, a spectrophotometer (V-670) was used to measure the amount of reactive red
195 dye effluent present in the leachates after each hydration time.

In order to estimate the leaching percentage (% L), Equations (2) and (3) were ap-
plied [36]:

Leaching % = (CL/CT) × 100 (2)

where CL is the concentration of the dye or copper ions leached out (mg/L) of the geopoly-
mer mix cube, and CT is the total concentration (mg/L) of the organic dye effluent or Cu2+

ions incorporated in the geopolymer mix [34].

Leaching % = (X/Original wt.) 100 (3)

(X (grams in L) = Concentration (ppm) × 10−3, original weight of metal ion = wt. of
cube × original concentration × total leachate volume)

Equation (4) [34,37] can be used to calculate how much copper ions and organic dye
effluent are immobilized in the hardened geopolymer pastes

Immobilization = 100 − Leaching % (4)

2.2.5. pH Measurements

An Adwa AD1000 pH meter (Szeged-Hungary) was used to measure the pH of
leaching solutions across time (0, 1, 3, 7, 14, and 28 days) for each geopolymer paste.
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3. Results and Discussion
3.1. Physicochemical and Mechanical Characteristics of Various Geopolymer Mixes
3.1.1. Visual Appearance

Figure 2A,B show the physical observations for slag incorporated with FA geopolymer
specimens (SF) in the presence of copper (II) ions and organic dye effluent curing for
different hydration times. The results of a leaching test for copper (II) ions mixed with
reactive red 195 dyeing bath effluent using an SF geopolymer mix after curing in water for
7 days are shown in Figure 3. The presence of dyeing bath effluent and copper (II) ions has
an effect on the color of the geopolymer cubes, as can be seen in Figures 2 and 3.
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Figure 3. Solidification of a mixture from copper (II) ions and reactive red 195 dyeing bath effluent
with slag-FA-based geopolymer mix after 7 days of curing condition.

3.1.2. Compressive Strength

Figure 4 illustrates the compressive strength properties of hardened slag/fly-ash-
based geopolymer mixes (SF, SF-D, SF-RD-Cu2+, and SF-Cu2+) cured in water for variable
hydration durations of 1, 3, 7, 14, and 28 days. The compressive strength values, of all
geopolymer mixes as shown in Figure 4, rise with increasing curing time. This is explained
by the fact that the presence of a high alkali medium increases the dissolution rate of slag
and fly ash, providing the system with silicate and aluminate species, which complete
the geopolymerization process. In contrast, this led to an increased hydrating rate and
the production of additional hydration products, such as CSH, CASH, and N-(C)ASH gel,
that precipitated in the open pores, enhancing the compressive strength [17]. Compared
with other mixes, the values for compressive strength for SF-RD-Cu2+ mixes exhibited the
highest values, which might be explained by the incorporation of dyeing bath effluent
and copper (II) ions into the slag-based geopolymer matrix, which reduced the pore size.
Figure 4 also reveals that the compressive strength values for the SF-Cu2+ mix were the
lowest, which, in accordance with the most recent study [35,37], may be explained by the
retardation effect of heavy-metal-ion-induced hydration processes.
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3.1.3. Total Porosity (P%)

The total porosity of specimens of hardened SF, SF-Cu2+, SF-RD, and SF-RD-Cu2+ that
were cured for 1, 3, 7, 14, and 28 days is shown in Figure 5. For all geopolymer mixes, it
has been demonstrated that total porosity% decreases with curing time. These findings
provide an indication as to how the polymerization process is progressing and how much
more amorphous silicate gel is forming inside the matrix [17,34,38]. In contrast with other
geopolymer mixes, the addition of both copper ions and reactive red 95 dyeing bath effluent
in the geopolymer mix SF-RD-Cu2+ reduces the total porosity% values at all hydration
time (Figure 5). This could be because the alkaline activator’s hydroxyl ions react with
copper (II) ions to form Cu(OH)2, which precipitates inside the geopolymer matrix and
reduces the size of the pores. Additionally, the presence of dyeing bath effluent accelerates
the geopolymerization process, which may be attributed to the change in the dye structure
after fiber treatment into hydroxyl form. This may cause the pH of the medium to rise,
accelerating the formation of more hydration gel products and filling open pores. The
geopolymer mix SF-Cu2+, on the other hand, demonstrated the highest values of total
porosity% after all hydration periods. It can be attributed to the consumption of hydroxyl
ions by the formation of Cu(OH)2, which resulted in a delay in the geopolymerization
process and the formation of less hydrated products, leading to an increase in the size of
pores [17,35].
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combination with copper (II) ions on the geopolymerization process and production of 
additional hydration products. As we notice from Figure 7, the decrease in the intensity 
of the main absorption band related to νas of Si-O-T (at 1005 cm−1) in the case of the 
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3.1.4. Fourier Transform Infrared Spectroscopy (FTIR)

Figure 6 illustrates the FTIR of slag/fly-ash-based geopolymer mixes in the presence
of reactive red 195 dye effluent as well as both dyeing bath effluent and Cu2+ ions (SF-
RD and SF-RD-Cu2+) after various hydration periods. Figure 7, in contrast, shows the
IR bands related to SF and SF-Cu2+ geopolymer composites curing in H2O for different
hydration ages. The FTIR spectra, for all geopolymer mixes, exhibit absorption bands
related to both the stretching and bending vibration modes of the O-H group and the
H-O-H group, respectively, in the ranges of 3440–3218 cm−1 and 1643–1648 cm−1. This
demonstrates the dissolution and condensation of slag and fly ash species by applying
an alkaline activator solution, resulting in the creation of excessive amounts of hydration
products inside the geopolymer matrix [45–47]. The spectra also show the appearance of
two absorption bands related to the CO group, which is formed during the carbonation
process of calcium hydroxide; these bands are around 1405–1445 cm−1, which are related to
the stretching vibration of the C-O bond, and 870–875 cm−1, which are related to the out-of-
plane bending vibration of CO2. Figure 3 shows that applying reactive red 195 dyeing bath
effluent, either alone or in combination with copper ions, to the geopolymer matrix reduced
the carbonation process. In contrast, we recognize from Figure 7B that the carbonation
process is enhanced by the addition of copper (II) ions alone to the geopolymer paste by
intensifying the CO-group-related absorption bands. This could be explained by copper
ions reducing the geopolymerization process [35]. We also noticed that the major and
strong absorption band at around 1008 cm−1 that corresponds to the asymmetric stretching
vibrations of Si-O-T (where T = Si or Al) seen in the SF mix’s IR spectrum (Figure 7A) shifted
to a lower wavenumber at around 980–954 cm−1 for the geopolymer mixes SF-RD and
SF-RD-Cu2+ (Figure 6). The geopolymerization process and the development of amorphous
aluminosilicate gels (CSH and N-(C)-A-S-H) in geopolymer binders can be regarded as
explanations of the band shift [48,49]. These findings demonstrate the positive benefits
of reactive red 195 dyeing bath effluent alone or in combination with copper (II) ions on
the geopolymerization process and production of additional hydration products. As we
notice from Figure 7, the decrease in the intensity of the main absorption band related
to νas of Si-O-T (at 1005 cm−1) in the case of the SF-Cu2+ mix is further evidence of the
geopolymerization retardation effect of copper ions.

3.1.5. X-ray Diffraction Analysis (XRD)

The XRD patterns of the geopolymer mixes (SF, SF-dye, SF-Cu2+, and SF-RD-Cu2+)
after 3 and 28 days of hydration curing in water are shown in Figure 8. As a result of the
complete dissolution of slag and fly ash species by alkaline activation and the development
of an amorphous geopolymer matrix, all geopolymer samples showed a huge and broad
hump between 20◦ and 40◦ 2θ in their XRD patterns [50]. The major hydration product
of the geopolymerization process was identified as the crystalline phase, (CSH) with
basal reflections at d = 3.03 and 2.786 Aº, respectively. Additionally, Figure 8 illustrates
a significant quartz peak at d = 3.34, 4.25, 2.45, and 1.81 Aº, which could be caused by
unreacted silica from the raw materials. The release of free silica that has been partially
substituted with aluminum (Al) atoms or that has interacted with hydrated calcium oxide
suggests the creation of a new crystalline phase, such as (CASH) type gel (d = 1.97 Aº).
Figure 8 demonstrates that the nature of the hydration product generated in geopolymer
pastes is unaffected by the presence of reactive red 195 dyeing bath effluent and copper
ions. According to the XRD patterns, the presence of copper ions alone in the geopolymer
mix has caused a drop in the intensity of the characteristic CSH peaks. As shown in
Figure 8, however, reactive red 195 dyeing bath effluent improves hydration by increasing
the intensity of CSH peaks and decreasing the intensity of the peak related to quartz. The
development of a well-resolved crystalline peak associated with gehlenite (Ca2Al2SiO7) (d-
values = 3.066, 2.84, 2.74, 1.91, 1.81 Aº) and wollastonite (CaSiO3) (d = 2.97, 2.63, 1.86 Aº) was
observed as a result of paste sintering (denser microstructure) [35]. These are dehydrated
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forms of phases that provide strength, such as calcium silicate hydrate (CSH) and calcium
aluminum silicate hydrate (CASH).
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3.2. Leaching of Reactive Red 195 Dye Effluent and Copper (II) Ions from Slag-FA-Based
Geopolymer Mixes
3.2.1. Optical Absorption Spectra for Reactive Red 195 Dying Bath Effluent in Leachate
Solutions

Figure 9 demonstrates the immobilization behavior of different geopolymer mixes
(SF-dye, SF-D-Cu2+) against reactive red 195 dying bath effluent (0.68 mg/L) as determined
by UV–VIS absorbance spectra of leachate solutions following various curing times of 1,
3, 7, 14, and 28 days. As shown in Figure 9, the reactive red 195 dye’s UV–VIS absorption
band spectra were recorded a maximum at various wavelengths of 327, 520, and 541 nm.
As we notice from Figure 9A,B, the absorption measurements of the leachate solutions for
the different prepared geopolymer mix cubes SF-RD and SF-RD-Cu2+ cured from 1 day to
28 days in H2O showed a complete disappearance of the absorption band maxima related
to the reactive red 195 dye (at 321, 520, and 541 nm). This could be explained by the better
adsorption capabilities of the geopolymer matrix and its hydration products (CSH and
CASH), which make it easier to become removed of wastes, such heavy metals and organic
dyes affluent, as the results showed in a previous studies [34,36,38]. Table 4 shows the
calculated values of leaching % and immobilization of reactive red 195 dyeing bath effluent
in different leachate solutions after various curing periods. These data show that the color
of reactive red 195 dyeing bath effluent is eliminated by stabilizing and hardening inside
the geopolymer matrix.
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Figure 7. FTIR spectra of different geopolymer mixes cured in water for different hydration ages,
(A) SF, (B) SF-RD-Cu2+.

3.2.2. Determination of Copper (II) Ions in Geopolymer Mix Leachate Solutions

Using the atomic absorbance spectroscopy measurement of leachate solutions after
different curing durations from 1 day to 28 days, the effectiveness of immobilizing of copper
ions (700 ppm) in the absence and presence of effluents of reactive red 195 dye inside the
slag-FA-based geopolymer matrix was investigated. The results of the leaching % of the
several geopolymer mixes, including SF-Cu2+ and SF-RD-Cu2+, are summarized in Table 5.
After 28 days of hydration, it is seen that the leaching % of copper (II) ions in the case of
the geopolymer mixes SF-RD-Cu2+ equals zero. In the case of the SF-Cu2+ geopolymer mix,
however, the leaching% values of copper ions are extremely low, and the immobilization
values are close to 100. It is explained by the geopolymer paste’s remarkable efficiency in
immobilizing copper ions, which fully solidify inside the geopolymer matrix over a period
of the 28 days, as well as the beneficial effects of reactive red 195 dyeing bath effluent on the
copper ion immobilization process. This highlights the slag/fly-ash-based geopolymer’s
exceptional effectiveness in trapping copper ions and reactive red 195 dyeing bath effluent
and converting harmful slag and fly ash into user- and environmentally building materials.
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3.2.3. Leachate Solution pH Measurements as a Function of Contact Time with Various
Geopolymer Mixtures

According to Table 6, several geopolymer mix cubes containing reactive red 195
dyeing bath effluent and copper (II) (700 ppm) (SF-Cu2+, SF-dye, and SF-D-Cu2+) were
tested to see how the pH of the leachate solutions changed with contact time (0, 3 h, 1, 3,
7, and 14 days). The pH values for several geopolymer mix leachate solutions increased
throughout the duration of 28 days of hydration. These high levels of alkalinity are
induced by the continuous hydration of the geopolymer paste over time and the release of
alkaline species into leaching solutions [34,36,38]. We have shown in Figure 10 a schematic
diagram of the environmentally friendly disposal of industrial wastes through the use of
the geopolymerization process.
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Table 4. Leaching % and immobilization values of reactive red 195 dyeing bath effluent in leachate
solutions of different geopolymer mixes after different curing times.

Leaching % Immobilization
(100-Leaching %)Time

(Days)
SF-RD SF-RD-Cu2+ SF-RD SF-RD-Cu2+

1 0 0 100 100
3 0 0 100 100
7 0 0 100 100
14 0 0 100 100
28 0 0 100 100



Polymers 2023, 15, 1797 13 of 16

Table 5. Leaching % and immobilization values of copper (II) ions (700 ppm) in leachate solutions of
different geopolymer mixes after different curing times.

Leaching % Immobilization
(100-Leaching %)Time

(Days)
SF-Cu2+ SF-RD-Cu2+ SF-Cu2+ SF-RD-Cu2+

1 0.00000271 0 99.999997 100
3 0.00000469 0 99.999995 100
7 0.00000426 0 99.999995 100
14 0.0000610 0 99.999993 100
28 0.0000945 0 99.999905 100

Table 6. pH’s values of leaching solutions of different mixes at different hydration ages.

pHGeopolymer
Mixes 0 3 h 1 Day 3 Days 7 Days 14 Days 28 Days
SF-RD 7.22 12.63 13.25 13.28 13.38 13.40 13.70

SF-RD-Cu2+ 7.22 12.37 13.34 13.40 13.42 13.43 13.45
SF-Cu2+ 7.22 12.62 13.40 13.43 13.45 13.45 13.44
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merization strategy.

3.2.4. Comparison between Adsorption and Immobilization Efficiency of Slag-Based
Geopolymer Incorporated with Fly Ash

The adsorption of reactive red 195 dyeing bath effluent by an SF geopolymer mix
was evaluated according to our last study [22]. The results indicate that the maximum
removal efficiency (%) of the reactive red 195 dyeing bath effluent in the geopolymer cement
mix SF was equal to 91.3 for a dye concentration (5 ppm) at pH 3 after 1 h [22]. Table 7
summarizes the data from our current and previous studies to demonstrate the differences
between the two approaches used to remove the reactive red 195 dyeing bath effluent. The
findings suggest that the solidification approach offers an effective method for disposing of
dangerous and toxic contaminants.
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Table 7. Comparison between immobilization and adsorption removal % values for different haz-
ardous materials by using slag/fly-ash-based geopolymer (SF).

Reactive Red 195 Dyeing Bath Effluent Copper (II) Ions
(700 ppm)

Geopolymer Mix/Dye or
Heavy Metals Adsorption Removal

Efficiency %
(after 1 h)

Immobilization Removal %
(after 28 Days)

Immobilization Removal %
after 28 Days

SF + RD 91.3
Elapasery et al. [22] 100 (present study) ——–

SF + RD + Cu2+ (700 ppm) ——- 100 (present study) 100 (present study)
SF + Cu2+ (700 ppm) ———— ————- 99.999905 (present study)

4. Conclusions

In our present work, the immobilization behavior of different geopolymer cements
constructed from slag incorporated with fly ash towards both copper ions (700 ppm) and
reactive red 195 dying bath effluent was studied. The hydration characteristics of the
different prepared geopolymer mixes in the presence of Cu2+ ions (700 ppm), in addition
to the reactive red 195 dying bath effluent, were also analyzed for different hydration ages
from 1 day to 28 days. Our data indicate that:

• The developed eco-friendly geopolymer pastes eliminate copper ions and dyeing bath
effluent.

• The leaching test indicates complete removal of both pollutants by solidification inside
the geopolymer matrix for different hydration ages and till 28 days.

• The geopolymer mix’s compressive strength and porosity values are enhanced by the
addition of reactive red 195 dyeing bath effluent and Cu2+ ions.

• The nature of the hydration products formed is unchanged by the addition of Cu2+

ions and dying bath effluent, according to XRD and FTIR analysis.
• The presence of dyeing bath effluent inside the geopolymer matrix accelerates the

geopolymerization process, which was proven by FTIR and XRD analysis.
• The presence of copper ions alone in the geopolymer matrix has a retardation effect on

the geopolymerization process.
• The high alkalinity of curing solutions especially at the first hydration age is due to

the progress of geopolymerization.
• The solidification approach seems to be a more effective technique to remove haz-

ardous and toxic materials when compared with the adsorption method.

Our findings suggest that a geopolymer binder derived from industrial waste based
on 90% slag and 10% fly ash can be used to remove organic dye pollutants simultaneously
with copper ions with 100% removal efficiency using solidification method.
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