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Abstract: Metal–plastic composites are becoming increasingly important in lightweight construction.
As a combination, e.g., for transmission housings in automobiles, composites made of die-cast alu-
minum housings and Polyamide 66 are a promising material. The interface between metal and plastic
and the properties of the plastic component play an important role with regard to media tightness
against transmission oil. The mechanical properties of the plastic can be matched to aluminum by
glass fibers and additives. In the case of fiber-reinforced plastics, the mechanical properties depend on
the fiber length and their orientation. These structural properties were investigated using computer
tomography and dynamic image analysis. In addition to the mechanical properties, the thermal
expansion coefficient was also investigated since a strongly different coefficient of the joining partners
leads to stresses in the interface. Polyamide 66 was processed with 30 wt% glass fibers to align the
mechanical and thermal expansion properties to those of aluminum. In contrast to the reinforcement
additives, an impact modifier to improve the toughness of the composite, and/or a calcium stearate
to exert influence on the rheological behavior of the composite, were used. The combination of the
glass fibers with calcium stearate in Polyamide 66 led to high stiffnesses (11,500 MPa) and strengths
(200 MPa), which were closest to those of aluminum. The coefficient of thermal expansion was
found to be 6.6 × 10−6/K for the combination of Polyamide 66 with 30 wt% glass fiber and shows
a low expansion exponent compared to neat Polamid 66. It was detected that the use of an impact
modifier led to less orientated fibers along the injection direction, which resulted in lower modulus
and strength in terms of mechanical properties.

Keywords: plastic–metal hybrids; fiber orientation; X-ray microtomography; dynamic image analysis;
thermal expansion exponent

1. Introduction

The combination of two materials makes it possible to combine the positive properties
of both partners [1]. Metal–plastic hybrid composites are therefore a promising way to
reduce the weight of, for example, automobiles and, thus, CO2 emissions [2]. Due to
their high mechanical properties, fiber-reinforced plastics and aluminum, with their low
densities, play a major role in this material combination [3].

In-mold technology has become established for the production of metal–plastic com-
posites. A metal insert is placed in an injection mold and the plastic is injected with an
injection molding machine [4,5]. One challenge in combining the two materials is the
interface between the metal and the plastic, as these have different mechanical and thermal
characteristic values [3]. When metal–plastic joints are produced by injection molding,
the quality of the finished part significantly depends on the adhesion of the composite.
The metal part is often pretreated by chemical etching or sandblasting to generate a rough
surface [6]. The rough surface creates strong bonding by mechanically anchoring the melt
to the pretreated surface [7].

Especially for the automotive industry, a strong bond between metal and plastic is
essential. The substitution of non-load-bearing areas in a die-cast housing with plastic must
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also provide tightness against media such as transmission oil on the interface between
plastic and metal.

The influence of additives, such as an impact modifier or a lubricant, has already been
demonstrated in combination with Polyamide 6 [8]. The viscosity of the polymer can be
influenced by the impact modifier and the calcium stearate. The mechanical properties of
the polyamide are increased and brought as close as possible to those of aluminum by the
addition of glass fibers. This study investigated to what extent the impact modifier and
calcium stearate influence the fiber length and the fiber orientation.

For a media-tight bond between Polyamide 66 and aluminum, the interface plays
an important role. In order to bond the two joining partners as strongly as possible, the
surface is roughened and/or an coupling agent is used. Ultimately, however, the failure
of the bond is caused by stress peaks caused by brittle properties or different expansion
coefficients. In this project, it will later be investigated whether a less brittle material can
enable a long-lasting, tight connection between the joining partners, which can guarantee
tightness even with small movements and vibrations due to higher ductility. For this reason,
the fiber-reinforced material will be provided with additives such as a lubricant and/or
an impact modifier and investigated with regard to the mechanical properties and the
thermal expansion coefficient. This study can be seen as preliminary work for the further
investigation of composite Polyamide 66 and aluminum.

The examination of glass fibers in a selected volume with regard to fiber length
and fiber orientation is possible through 3-dimensional analysis by X-ray microtomogra-
phy [9,10]. Due to the high density of the glass fiber of 2.6 g/cm3, it can be easily separated
from the polyamide with a density of 1.15 g/cm3. In 2015, Nguyen Thi et al. investigated
glass fibers in Polyamide 6 using X-ray microtomography and were able to visualize and
evaluate the fibers in terms of length and their orientation at different locations within a
test specimen [11].

In addition to the mechanical properties, the coefficient of thermal expansion plays
a major role with regard to the bond strength. If the coefficient of thermal expansion of
the two components is very different, the different behavior during cooling has a negative
effect on the bond strength. A similar behavior of the two joining partners means a low
interfacial stress. For this reason, fiber-reinforced polymers are used for applications in
joining metal and plastic in order to obtain high dimensional stability under thermal
influences, and during cooling after injection molding [12,13]. Heckert et al. were able to
show that the coefficient of thermal expansion decreased as the weight content of fibers in
a fiber-reinforced polymer increased. The coefficient of thermal expansion for Polyamide 6
is 85 × 10−6/K and could be reduced to 50 × 10−6/K by adding 60 wt% glass fiber [14].

2. Materials and Methods
2.1. Materials

The base polymer used for this study was Polyamide 66 (PA66) from BASF (Lud-
wigshafen, Germany). The grade Ultramid A27E has a density of 1.14 g/cm3 and is a
special grade for compounding. Before processing, the polyamide was dried in a Dry Jet
Easy Dryer from TORO-Systems (Igensdorf, Germany) for at least 4 h at 80 ◦C to achieve a
moisture content of max 0.2%. The PA66 was used as a non-colored grade.

To reinforce the polyamide, glass fibers were added as short fibers with a content of
30 wt% in the compounding process. The glass fibers of type CS 7928 were purchased from
Lanxess Germany GmbH (Cologne, Germany). The fibers had an initial length of 4.5 mm
and a fiber diameter of 11 µm. A sizing on the surface of this fiber type promised good
adhesion to polyamides.

The use of an impact modifier leads to an increase in the toughness of a plastic and was,
therefore, used here to modify the properties. An impact modifier from Kraton Polymers
LLC (Houston, TX, USA) was added to the polyamide in two components. One component
of the modifier was type FG1901, which consists of a linear triblock copolymer based on
styrene and ethylene/butylene with a polystyrene content of 30%. This component was
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added with a weight content of 8%. The second component was type G1657, which is
a linear triblock copolymer based on styrene and ethylene/butylene with a polystyrene
content of 13%. This component was added with a weight content of 12%. Both components
had a density of 0.9 g/cm3. The weight content of the impact modifier was 20% in total.
The components and their weight contents were selected according to a recommendation
of the manufacturer [15].

The lubricant calcium stearate from the Faci Group (Genova, Italy) was also used
to reduce the viscosity of the polyamide melt. The salt is also used as a lubricant in
pharmaceutical products and as a lubricant in the paper and metal processing industries.
It has a melting point of 150 ◦C and a density of 2.6 g/cm3. The stearate was used with
a weight content of 0.1%. After consultation with the manufacturer, it was advised that a
higher concentration would have a negative effect on the adhesion properties between the
plastic compound and the aluminum.

2.2. Compounding

The compounds were produced on a co-rotating twin-screw extruder from Leistritz
(Nuremberg, Germany), type ZSE18 HPe. The barrel has a diameter of 18 mm and an L/D
ratio of 40. The extruder is equipped with a screw configuration that has a high proportion
of conveying elements. This configuration is intended to generate lower shear energy in the
melt to prevent severe fiber shortening. The impact modifier and the lubricant were mixed
into the PA66 granules and added to the compounding process by a gravimetric feeder from
Brabender (Duisburg, Germany). After melting of the granules, the glass fibers were also
added to the process by a gravimetric feeder. The melt temperature during compounding
was 280 ◦C and the screw speed was 200 rpm. The extruded material strand was cooled
with compressed air after exiting the die and then cut into granules with a length of 3 mm
in a pelletizer of the type Scheer SGS 25-E (Grossostheim, Aschaffenburg, Germany). The
material composition of the PA66, the additives, and the glass fibers can be seen in Table 1.

Table 1. Compositions of charges produced by compounding.

PA66 GF Impact Modifier Calcium Stearate

Kraton FG1901 Kraton G1657 CaSt

wt% wt% wt% wt% wt%

PA66/30GF 70 30 - - -
PA66/30GF/IM 50 30 8 12 -

PA66/30GF/CaSt 69.9 30 - - 0.1
PA66/30GF/IM/CaSt 49.9 30 8 12 0.1

In the following table and in the results section, the compounds are described with the
abbreviations glass fiber (GF), impact modifier (IM), and calcium stearate (CaSt).

2.3. Injection Molding

The specimens, according to DIN EN ISO 527 Type 1A, were injection-molded for
mechanical characterization and X-ray microtomography (µ-CT). An injection molding
machine from Arburg (Loßburg, Germany) type 320C Golden Edition was used for this
purpose. The machine has a clamping force of 500 kN. The temperature along the screw
was set to 290 ◦C and the injection speed was set to 16 cm3/s. The mold temperature was
set to 80 ◦C. All compounds were dried at 80 ◦C for at least 4 h before processing.

2.4. Tensile Testing

Tensile tests to DIN EN ISO 527 were performed on a universal testing machine, type
Z010 from Zwick Roell (Ulm, Germany). The tests were performed at a speed of 5 mm/min
and the Young’s modulus, tensile strength, and elongation at break were evaluated.
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2.5. Dynamic Image Analysis (DIA)

For dynamic image analysis, the fibers were separated from the matrix material by
ashing the samples at 600 ◦C for 6 h. The system QICPIC/R06 (Sympatec, Clausthal-
Zellerfeld, Germany) with a MIXCEL wet dispersion unit was used to measure the fiber
length distribution. The fibers were dispersed in isopropanol. The images were acquired
at a rate of 175 Hz and a resolution of 4.2 MP. A cuvette with a width of 0.5 mm was
used and the fibers were measured with an M5 objective. This objective records fibers
with a length of 1.8 µm to 3700 µm. For each sample, 3 measurements of 60 s were
performed. Approximately 10,000 fibers were measured for each measurement. The fibers
were evaluated with the LEFI (length of fiber) module, which measures the shortest distance
between the endpoints of the fiber.

2.6. X-ray Microtomography

A volume shown in Figure 1 was examined by X-ray microtomography to compare
the fiber length in the volume with the fiber lengths from DIA and to examine the fiber
orientation along the flow direction. For this purpose, a Zeiss Xradia Versa 520 (Oberkochen,
Germany) was used. The measurements were performed at a voltage of 80 kV and a current
of 87.2 µA. A volume of size 4 mm × 5 mm × 12 mm from the middle of a tensile specimen
was recorded, as shown in Figure 1, with a 5279 µm field of view and a pixel size of
5.2 µm. Avizo 9.4 software was used to compose the 1600 taken images and a volume of
5 mm × 2 mm × 2 mm was used to display the optical fibers and to evaluate them in terms
of orientation and length. The flow direction during mold filling corresponds to the z-axis.
The deviation of the fiber from the z-axis is represented with an angle theta (θ). Thus, a
fiber with an angle θ = 0◦ is oriented along the z-axis and an angle of θ = 90◦ shows that
the fiber is oriented orthogonally to the z-axis. About 60,000 fibers were evaluated in the
volume of the specimen. Fiber length in X-ray microtomography was evaluated to provide
a reference for the results of the DIA.
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2.7. Dynamic Mechanical Analysis

The coefficient of thermal expansion was determined by dynamic mechanical analysis
(DMA) with variation in the temperature and a constant load. A Q 800 module from
TA Instruments (Hüllhorst, Germany) was used for this purpose. The specimens for the
measurements had dimensions of 30 mm × 10 mm × 4 mm and the clamp distance was
20 mm. The coefficient of expansion was measured in a temperature range from 25 to 100 ◦C
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and the heating rate was 3 ◦C/min. A constant load of 10 N was applied to the specimen.
For the evaluation, the average coefficient of linear expansion (α) was determined using
the following formula:

α = dL/(dT ∗ L0) (1)

The mean coefficient of thermal expansion is represented by α taken from the first and
last measuring points (dL) according to Figure 2. This is divided by the temperature differ-
ence (dT) and the original length (L0). Three specimens were tested for each compound.
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3. Results and Discussion
3.1. Tensile Test

For the evaluation of the results, tensile test specimens were first manufactured ac-
cording to DIN EN ISO 527 and tested in tensile tests. The use of various additives, such as
an impact modifier or a lubricant, changes the viscosity of the melt and the flow properties.
In this study, the mechanical properties as well as the glass fiber orientation and the length
of the fibers in the test specimens were demonstrated on Polyamide 66 with the use of the
individual additives and considering the interaction of both additives.

Figure 3 shows the results of the tensile tests. An increase in the elongation at break was
clearly visible between the samples PA66/30GF and PA66/30GF/IM. By adding a weight
fraction of 20 wt% of the impact modifier to the compound PA66/30GF, the elongation at
break increased from 3.1% to 3.7%, while the tensile strength decreased from 185 MPa to
137 MPa. On the one hand, this may have been due to the change in the chemical structure
caused by the impact modifier. The modifier largely consisted of styrene and formed a
two-phase mixture due to its incompatibility with polyamide [16]. On the other hand, it is
possible that the impact modifier changed the bond of the fiber to the matrix. If the fiber
is in contact with the impact modifier, the adhesion to it is worse than to the PA66. As a
result, the reinforcing effect is reduced due to lower force transmission.

The elongation at break of the PA66/30GF/IM/CaSt compound was also similar to
that of the compound PA66/30GF/IM, accompanied by a reduction in tensile strength. The
use of both additives was, therefore, dominated by the high degree of toughness of the
impact modifier. The compounds contained 0.1% by weight of CaSt. Such a small amount
was sufficient to have an influence on the flow properties of the polyamide melt. In terms
of mechanical properties, a slight increase in tensile strength was seen for the compound
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PA66/30GF/CaSt at 200 MPa compared to the PA66/30GF at 185 MPa. The Young’s
modulus was also increased from 10,650 MPa to 11,500 MPa by using calcium stearate. The
flow properties of the compound with calcium stearate led to better orientation of the fiber
to the flow direction, which was reflected in enhanced mechanical properties [17].
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For a media-tight composite of aluminum and PA66, the approach used was to make
the reinforced PA66 tougher by means of additives so that the media-tight composite could
be maintained even in the case of vibrations and small movements in the interface. For the
later tests of the composite, variation in the mechanical properties was, therefore, possible
with the additives used here. The use of an impact modifier was able to increase the
toughness of the plastic even with a fiber weight content of 30%.

3.2. Dynamic Image Analysis (DIA)

The fibers detached from the matrix by ashing were measured by DIA to compare
the results with the fiber lengths measured from µ-CT analysis. The results of the DIA
are shown in the diagrams of Figure 4. Overall, it can be seen that the fibers based on
the results of DIA were longer than the fiber lengths from the X-ray microtomography.
This was evident at the 75th and 90th percentiles. For the compound PA66/30GF, the 75th
percentile was 260 µm when evaluated by X-ray microtomography and approximately
310 µm in the DIA. The results of the other measurements with IM or CaSt were similar. In
the evaluation of the DIA results, as well as in the evaluation by the X-ray microtomography,
no great change in fiber length was seen. The compound PA66/30GF/CaSt only showed
slightly shorter fibers, especially at the high percentiles (75th and 90th), compared to
the PA66/30GF/IM/CaSt and PA66/30GF/IM compounds. This can be explained by a
decrease in the viscosity [11]. This resulted in more fiber breakage and, thus, in shorter
fiber lengths.
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3.3. X-ray Microtomography

The investigated volume from a tensile specimen included the edge region as well as
the center of the specimen in order to investigate all regions with respect to orientation and
fiber length.

Figure 5 shows the fiber lengths determined by X-ray microtomography. The differ-
ences between the four compounds were very small. The results visualized as boxplots
showed a slight fiber shortening in the compound PA66/30GF/CaSt. In particular, a differ-
ence was observed at the 75th and the 90th percentiles. The differences, especially in the
long fibers of the 75th and 90th percentiles, showed that the use of an impact modifier influ-
enced the process-induced shortening of the fiber length. In this compound, the fibers were
the shortest. On the other hand, the compounds with impact modifier PA66/30GF/IM and
PA66/30GF/IM/CaSt had longer fibers, especially at the 75th and 90th percentiles, due to
the tough properties of the impact modifier. Fiber shortening was less for these compounds.
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The figure shows that a difference in fiber length along all compounds was observed
in the higher values of the percentiles. At the 10% and 25% percentiles, no difference in
fiber length was visible.

In addition to the fiber length, the fiber orientation was investigated since the fiber
orientation also has a strong influence on the mechanical properties. In Figure 1, the z-axis
specifies the flow direction. The orientation of a fiber is described by an axis of its cylindrical
shape. The deviation of this axis from the flow direction is described by the angle theta (θ).
The smaller the angle theta, the better the fiber is oriented in the flow direction [18].

The orientation of the fibers can be seen in Figure 6, in which the fibers are colored
according to their orientation. Blue shows the fibers well-aligned to the z-axis and those red-
colored are the fibers with an orientation orthogonal to the flow direction. The figure shows
a volume that was separated from a tensile specimen and examined according to Figure 1.
In all four images in Figure 6, a very good orientation of the fibers can be seen in the edge
region. This can be explained by the swelling flow during injection molding and has already
been reported in numerous publications. In the volumes from specimens without an impact
modifier, good orientation of the blue colored fibers can be seen over the whole examined
area. In the case of the specimens from PA66/30GF/IM and PA66/30GF/IM/CaSt, it can
be seen that the fibers were less oriented to the flow direction in the center of the specimen
than in the edge region. A fiber with an orientation perpendicular to the flow direction
absorbed less stress than a fiber with an orientation in the flow direction since the flow
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direction also corresponds to the loading direction in the tensile test. The orientation to the
flow direction decreased towards the center for the samples mentioned.
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The fiber orientation is also illustrated quantitatively in bar graphs in Figure 7. The
fibers oriented to the flow direction are shown on the left of the horizontal axis in these
diagrams; the perpendicular oriented fibers are on the right. It can also be seen that a high
number of fibers in the specimens without impact modifier were oriented along the flow
direction. With this orientation, the fibers can absorb the forces under a tensile load in the
z-direction (Figure 1) much better than fibers that are oriented perpendicular to the flow
direction. The bar graphs also show that a smaller number of fibers were oriented along
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the flow direction in the specimens with impact modifier. This is also confirmed by the
pictures in Figure 6.
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The fiber orientation of the compounds with and without impact modifier also pro-
vides an explanation for the results of the tensile test in Figure 3. Here, the compounds
with impact modifier showed lower stiffness and strength than the compounds without
impact modifier. This was due, on the one hand, to the lower number of fibers oriented
to the loading direction, and, on the other hand, to the toughness of the impact modifier.
The mechanical properties of differently oriented fibers had previously been investigated
by Zarges et al. In their study, specimens with fibers oriented along the direction of load-
ing were also observed to be able to absorb a higher force than specimens with a fiber
orientation transverse to the direction of loading [19].

3.4. Dynamic Mechanical Analysis

The thermal expansion of the two joining partners is of great importance after process-
ing by injection molding. Plastic has a significantly higher coefficient of thermal expansion
than aluminum. This difference results in stresses in the interface between the two joining
partners, which, in turn, had a negative effect on adhesion, and, as a result, on the tightness
at the interface between the plastic and the metal. For this reason, the coefficient of thermal
expansion of the plastic should be brought into line with that of the aluminum [12,14,20].
Figure 8 shows the coefficients of expansion of the modified PA66, and, in comparison,
the coefficient of expansion of neat PA66. In the temperature range from 25 ◦C to 100 ◦C,
aluminum has a very low thermal expansion coefficient compared with plastics [21]. The
coefficient can be reduced by fiber reinforcement with GF [12,20]. It can be seen that the com-
pound PA66/30GF achieved the lowest coefficient of thermal expansion with 6.6 × 10−6/K.
The specimens for the determination of the coefficient of thermal expansion were prepared
in the same way as for the tensile tests for the injection-molded specimens according to DIN
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EN ISO 527. The fiber orientation in these tests was, therefore, exactly as shown in Figure 7.
The addition of additives to the compound PA66/30GF led to an increase in the coefficient
of expansion. As expected, the neat PA66 had the highest coefficient of thermal expansion.
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4. Conclusions

In this study, specimens were manufactured to investigate the tensile and thermal
properties of PA66 reinforced with 30 wt% glass fibers. In addition to glass fibers, an
impact modifier and/or a lubricant was added to vary the properties for investigation of a
media-tight plastic-metal bond. To explain the mechanical results, a volume of a specimen
was characterized by X-ray microtomography and the fibers were examined in terms of
length and orientation. In addition, the coefficient of thermal expansion was investigated
to compare the expansion of the modified PA66 with aluminum. The following conclusions
can be drawn:

• The addition of an impact modifier to GF-reinforced PA66 resulted in a higher elon-
gation at break and a reduction in the strength and stiffness of the compound. The
addition of calcium stearate led to a small increase in stiffness and strength, which
was closest to the properties of aluminum.

• The fiber length measured with X-ray microtomography was only very slightly affected
by the addition of the additives. In the case of the short fibers with a length of approx.
100 µm, no influence of the additives could be detected. For longer fibers of 250 µm
to 400 µm, the addition of an impact modifier had a minor effect on increase in fiber
length. The results of DIA produced similar results to those of X-ray microtomography.
The fiber length was slightly higher in the DIA results. In summary, no significant
change in fiber length due to the addition of the additives used in this study was
responsible for changes in the mechanical properties.

• The impact modifier had an influence on the fiber orientation. Towards the center
of specimens with impact modifier, the fibers were oriented in parallel less than in
specimens without impact modifier. At the edge region, the fibers were well oriented
along the flow direction due to the swell flow. The fiber orientation to the flow
direction showed a clear dependence on the mechanical properties. Fibers oriented to
the direction of flow showed higher strength and stiffness in the composite than fibers
whose orientation deviated from the direction of flow.
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• The use of individual additives led to an increase in the coefficient of thermal ex-
pansion. As a result, the very low coefficient of thermal expansion of PA66/30GF
(6.6 × 10−6/K) was able to be brought into line with the very low coefficient of alu-
minum, which led to low stresses in the interface and contributed to a media-tight
bond. For low stresses in the interface between aluminum and GF reinforced PA66,
the addition of the additives used here was counterproductive as they increased the
thermal expansion coefficient.
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