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Abstract: Influenced by water injection, a dominant flow channel is easily formed in the high water
cut stage of a conglomerate reservoir, resulting in the inefficient or ineffective circulation of the
injected water. With gel flooding as one of the effective development methods to solve the above
problems, its parameter optimization determines its final development effect, which still faces great
challenges. A new optimization method for gel flooding is proposed in this paper. Firstly, the gel
flooding parameters were obtained through physical experiments; then, an experimental model of
gel flooding was established according to the target reservoir, and parameter sensitivity analysis
was carried out. Next, a history matching of the gel flooding experiment was carried out. Finally,
history matching of the target reservoir was also carried out, and a gel flooding scheme was designed
and optimized to determine the best parameters. The experimental results showed that the gelation
time was 4 h and the gel viscosity was 6332 mPa·s; the breakthrough pressure, resistance factor (RF),
and residual resistance factor (RRF) all decreased with the increase in permeability. The gel had a
good profile control ability and improved oil recovery by 16.40%. The numerical simulation results
illustrated that the porosity of the high permeability layer (HPL) had the greatest impact on the
cumulative oil production (COP) of the HPL, and the maximum polymer adsorption value of the
HPL had the largest influence on the COP of the low permeability layer (LPL) and the water cut
of both layers. Benefiting from parameter sensitivity analysis, history matching of the gel flooding
experiment and a conglomerate reservoir in the Xinjiang A Oilfield with less time consumed and
good quality was obtained. The optimization results of gel flooding during the high water cut stage
in a conglomerate reservoir of the Xinjiang A Oilfield were as follows: the gel injection volume,
injection rate, and polymer concentration were 2000 m3, 50 m3/d, and 2500 mg/L, respectively. It
was predicted that the water cut would decrease by 6.90% and the oil recovery would increase by
2.44% in two years. This paper not only provides a more scientific and efficient optimization method
for gel flooding in conglomerate reservoirs but also has important significance for improving the oil
recovery of conglomerate reservoirs.

Keywords: conglomerate reservoir; high water cut stage; gel flooding; numerical simulation; optimization

1. Introduction

The opening-up of China will inevitably bring about rapid economic development,
and the demand for oil and gas will also grow. In the face of the growing demand for
oil and gas, it is more important to develop domestic oil and gas resources in addition to
relying on foreign imports. In 2022, China’s external dependence on crude oil was 70.9%,
down from 72% in 2021, but still far beyond the 50% warning line, so there is an urgent
need to increase domestic crude oil development [1,2]. The development of conventional
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oil reservoirs in China has reached a very high level and scale, and it is difficult to improve
its development to a higher level for a long time into the future. Therefore, some special oil
reservoirs have begun to enter the view of crude oil developers or companies. Among them,
conglomerate oil reservoirs have attracted great attention because of their rich geological
reserves and large development potential [3–6]. However, conglomerate reservoirs are
a special kind of lithologic reservoir, and they still present problems worldwide due to
their complex and variable lithology, the complex modal characteristics of pores, poor
reservoir physical properties, and strong heterogeneity [7–10]. Water flooding is one of the
common development methods for conglomerate reservoirs, but long-term water flooding
can form a high permeability water-flow channel between injection and production wells
during the high water cut period, which intensifies the heterogeneity of the reservoir,
resulting in the inability to displace the remaining oil in the low permeability area, low
water injection sweep coefficient, much remaining oil, and inefficient or ineffective injection
water circulation [11–13]. In view of the above problems, researchers have carried out a
large number of studies, among which the use of gel to plug high permeability areas can
effectively improve reservoir heterogeneity, improve the sweep efficiency of injected water,
increase oil production, and reduce the water cut significantly. Field tests have proven
that gel flooding can improve the development effect of conglomerate reservoirs in the
high water cut period and is an effective way to achieve stable oil production and improve
oil recovery [14–17].

Gel flooding is a method in which a certain amount of a cross-linking agent is mixed
in polyacrylamide solution to form a dense polyacrylamide network structure, which
can effectively block high-permeability layers, improve the utilization degree of low-
permeability layers, ultimately achieve the purpose of profile control, and improve oil
recovery [18–20]. The key parameters of gel flooding are the gelation time, adsorption
quantity, viscosity, breakthrough pressure, and the RF and RRF of the gel. Many re-
searchers have investigated these key parameters using experiments and obtained good
results [21–28]. Zhang et al. [21] found that higher 2-acrylamido-2-methylpropane sulfonic
acid content resulted in a higher gelation time for three gel systems prepared with S00, S30,
and S50 polymers. Li et al. [22] discovered that the gelation time of a sustained-release
crosslinker/water-soluble thixotropic polymer gel system decreased with the increase in
poly (ethyleneimine) concentration. Wei et al. [23] reflected on the adsorption of a polymer
gel system by measuring the polymer concentration and identified that under the same
permeability, the higher the polymer concentration, the greater the adsorption quantity and
the higher the adsorption rate. Zheng et al. [24] revealed that a polymer gel composed of
4000 ppm field-applied hydrolyzed polyacrylamide (HPAM) and a 3000 ppm Cr3+ acetate
cross-linker had low viscosity at the beginning, and then, this increased with the gelation
time, and the viscosity reached 11,000 mPa·s after 3 days of gelation time. Wu et al. [25] de-
tected that a thixotropic and high-strength gel had a large swelling ratio, high breakthrough
pressure, and good plugging ability in a swelling experiment and a slim tube experiment.
Liu et al. [26] showed in their study that the RF became larger with the increasing polymer
concentration through a polymer gel flooding experiment in a single sand pack and found
that the polymer gel had good resistance to washing, with an RRF greater than 4.5 and
a plugging rate higher than 78% after 20 pore volume (PV) water flooding. However, it
has to be mentioned that there were inevitably errors in the experiment, and these errors
should also be considered when determining the gel flooding parameters.

Although the key parameters of gel flooding can be obtained through laboratory exper-
iments, this is not sufficient for the optimization of gel flooding in actual reservoirs. A group
of scholars proposed a method that could quickly simulate and predict the profile control
performance of multi-layer reservoirs [29], which could determine the overall decision of
profile control well optimization, performance prediction, and consumption optimization
using the production data of oil and water wells. Nevertheless, the determination of charac-
teristic parameters is random and has some limitations in practical application. Numerical
simulation can be used for the production prediction [30,31], feasibility assessment [32], and
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scheme optimization [33,34], which is one of the common means of reservoir development
optimization research and is also applicable to the gel flooding of conglomerate reservoirs.
Many researchers have applied the numerical simulation method to the optimization of gel
flooding in conglomerate reservoirs and have achieved some results [35,36]. Wu et al. [35]
obtained the distribution and gradation of water flow channels through numerical reservoir
simulation and designed the slug parameters of three enhanced oil recovery (EOR) models
based on the results. The field comparison test results showed that model 2 was optimal.
Wu et al. [36] clarified the distribution characteristics of remaining oil by carrying out
history matching and designed and optimized a subsequent development adjustment plan.
However, at present, there are two major problems in the numerical simulation of gel
flooding in conglomerate reservoirs. One is that the characteristic parameters of numerical
simulation of gel flooding in conglomerate reservoirs are mostly directly based on the
data obtained from physical experiments, without further consideration of experimental
errors, and then better history matching is achieved by adjusting other parameters. Sec-
ond, when conducting history matching of gel flooding in conglomerate reservoirs, the
adjustment parameters are relatively large and have strong randomness, resulting in great
time consumption for history matching. Therefore, how to better apply the parameter
data obtained from physical experiments to numerical simulation and how to efficiently
adjust the parameters to speed up history matching are urgent problems to be solved for
the optimization of gel flooding in conglomerate reservoirs.

To address the current challenges faced in the optimization of gel flooding in con-
glomerate reservoirs, this paper took a conglomerate reservoir of Xinjiang A Oilfield as the
research target and proposed a new optimization method for gel flooding. Firstly, the gel
flooding parameters were obtained through physical experiments. Then, the gel flooding
experimental model was established according to the target reservoir, and a parameter
sensitivity analysis was carried out to reduce the randomness of parameter adjustment. On
the basis of the parameter sensitivity study, history matching of the gel flooding experiment
was carried out to confirm the correctness of the parameter sensitivity analysis results
and further clarify the key parameters. After that, a conglomerate reservoir model of the
Xinjiang A Oilfield was established, and history matching was carried out. Finally, a gel
flooding scheme was designed and optimized to determine the optimal parameters of gel
flooding during the high water cut stage in a conglomerate reservoir of the Xinjiang A
Oilfield so as to achieve the purpose of optimizing gel flooding and improving oil recovery.
This study can provide a reference for the development and optimization of similar oilfields,
help to improve the oil recovery of the oilfields, and ease the tense situation surrounding
domestic crude oil supply.

2. Materials and Methods
2.1. Physical Experiment
2.1.1. Materials

The polymer used in the experiment was hydrolyzed polyacrylamide (HPAM) with
a molecular mass of 1.5 × 107 g/mol and a hydrolysis degree of 26.36% from Beijing
Hengju Chemical Group Corporation. Its glass transition temperature, melting point, and
vaporized point are 188 ◦C, 209 ◦C, and 280 ◦C, respectively (Figure 1). The solid-state
aldehyde cross-linking agent, as well as the accelerator, were the self-products of Beijing
Hengju Chemical Group Corporation. The salinity of the simulated formation water was
13,456 mg/L, and its ionic component content is presented in Table 1. The crude oil sample
was from the Xinjiang A Oilfield with a density and viscosity of 0.86 g/m3 and 15.80 mPa·s
at 40 ◦C, respectively. The core samples were artificial cores; the #1–3 cores were used for
the gel performance characterization experiment, and cores #4 and #5 were applied for the
gel flooding experiment. Their basic information is provided in Table 2.
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Figure 1. Differential scanning calorimetry (DSC) curve of the HPAM.

Table 1. The ionic component content of the simulated formation water.

Ionic Component Content, mg/L

HCO3
− 1412.15

Cl− 5208.20
SO4

2− 107.65
Na+ 6412.20
Ca2+ 208.15
Mg2+ 107.65

Table 2. Basic information of the core samples.

Core No. Length,
cm

Diameter,
cm

Porosity,
%

Weight,
g

Permeability,
mD

#1 10.00 2.55 19.18 96.24 30
#2 10.01 2.53 22.35 95.33 170
#3 10.12 2.54 25.80 94.56 342
#4 10.07 2.54 26.98 94.25 345
#5 9.95 2.53 20.50 95.97 35

2.1.2. Gel Preparation

Firstly, 1 L of HPAM solution with a concentration of 2500 mg/L was prepared with
the simulated formation water; then 2 g of a cross-linking agent was added, and the solution
was stirred in a JJ-1B stirrer from Xinrui Instrument Factory (Changzhou, China) at a speed
of 400 revolutions per minute (rpm) for 2 h; after that, 0.3 g of the accelerator was added and
stirred well to obtain a gel solution with a gel concentration of 4800 mg/L (recorded as C1).

2.1.3. Characterization of Gel Performance

(1) The freshly prepared gel solution was sealed and placed in a constant-temperature
water bath at 40 ◦C for static gelation. The viscosity was measured using a DV2T viscometer
from Brookfield Engineering Laboratories, INC (Middleboro, MA, USA), and a viscosity
versus time curve was plotted. The time when the viscosity inflection point occurred was
the gelation time of the gel, and the viscosity when it tended to be smooth was the viscosity
of the gel.

(2) The simulated formation water and the core saturated with the simulated formation
water were loaded into the simulated formation water tank and core holder, respectively.
The relevant experimental device was connected, as shown in Figure 2; the air in the device
was completely evacuated, and the whole device was placed in a constant temperature
thermotank at 40 ◦C for 12 h.

(3) Water flooding was carried out at a displacement rate of 0.2 mL/min, and the
displacement pressure difference ∆Pw1 was measured when it was stable.
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(4) The freshly prepared 40 ◦C gel solution was filled into the gel tank, and the air in
the device was completely evacuated. Gel flooding was conducted at a displacement rate
of 0.2 mL/min. After injection of the 2 PV (recorded as V1) gel solution, the displacement
pressure difference ∆Pi was measured when it was stable. Then, gel flooding was stopped,
and this condition was kept for 24 h.

(5) Water flooding was conducted at a displacement rate of 0.001 mL/min; the dis-
placement pressure difference was recorded when the liquid at the outlet started to move,
which is the breakthrough pressure of the gel. Then, the displacement rate was gradually
increased to 0.2 mL/min. After the outlet was full of water, the displacement pressure
difference ∆Pw2 was measured after it was stable.

(6) The total production liquid V2 after gel injection and its gel concentration C2
were measured.

(7) The equations for the RF, RRF, and maximum adsorption quantity R are
Equations (1)–(3), respectively.

RF =
∆Pi

∆Pw1
(1)

RRF =
∆Pw2

∆Pw1
(2)

R =
C1V1 − C2V2

W
(3)

where W represents the weight of the core.

2.1.4. Gel Flooding Experiment

(1) The relevant experimental device was connected, as displayed in Figure 3. The
simulated formation water, the core samples saturated with simulated formation water, and
the crude oil samples were loaded into the simulated formation water tank, core holders,
and crude oil tank, respectively. The temperature was set to 40 ◦C, and this condition was
kept for 12 h.

(2) Saturating of the core samples with the crude oil sample was conducted, and
irreducible water saturation was obtained. The specific process can be seen in [37,38]. After
that, the condition was maintained for 12 h.

(3) The initial water flooding process was carried out at a displacement rate of
0.2 mL/min. The pressure at the inlet and the water and oil production at the outlet
were recorded every 10 min until the injection of water reached 11.8 PV.

(4) A freshly prepared 40 ◦C gel solution was filled into the gel tank, and the air in
the device was completely evacuated. Gel flooding was conducted at a displacement rate
of 0.2 mL/min. The pressure at the inlet and the water and oil production at the outlet
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were recorded every 10 min until the injection of gel reached 0.5 PV. Then, gel flooding was
stopped, and this condition was maintained for 24 h.
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(5) The extended water flooding process was carried out at a displacement rate of
0.2 mL/min. The pressure at the inlet and the water and oil production at the outlet were
recorded every 10 min until the injection of water reached 19 PV.

2.2. Numerical Simulation

Firstly, the STARS module in the CMG numerical reservoir simulation software version
2019.10 of Computer Modelling Group Ltd. was applied to establish the gel flooding
experimental model. Then, considering that gel flooding history matching involved many
parameters and took a considerable amount of time in order to improve the follow-up
history matching speed of the gel flooding experiment and the conglomerate reservoir
in the Xinjiang A Oilfield, the CMOST module in CMG software was used to conduct
sensitivity analysis on the maximum adsorption quantity of the polymer, RRF and other
parameters to determine the influence degree of each parameter, so that the parameter
adjustment in the history matching process had a clear target. On the basis of parameter
sensitivity analysis, history matching of the gel flooding experiment was carried out to
confirm the correctness of the parameter sensitivity analysis results and further clarify
key parameters to provide support for accelerating the subsequent history matching of
the conglomerate reservoir in the Xinjiang A Oilfield. Based on the parameter sensitivity
analysis and gel flooding experiment history matching, a conglomerate reservoir model
of the Xinjiang A Oilfield was established, and history matching was conducted. Finally,
based on the history matching of the conglomerate reservoir in the Xinjiang A Oilfield, the
gel flooding scheme was designed and optimized to determine the optimal parameters of
gel flooding at the high water cut stage so as to achieve the optimization of gel flooding
in the conglomerate reservoir of the Xinjiang A Oilfield at the high water cut stage and
improve oil recovery.

3. Results and Discussion
3.1. Experimental Results
3.1.1. The Gelation Time and Viscosity of the Gel

The change curve of gel viscosity with time is illustrated in Figure 4. The gel viscosity
began to increase significantly at about 2 h, which was due to cross-linking in the gel
system, and gel viscosity became stable at 4 h. Therefore, the gelation time and viscosity of
the gel were 4 h and 6332 mPa·s, respectively.
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3.1.2. Characteristic Parameters of Gel Flooding

The characteristic parameters of gel flooding were obtained through the character-
ization of gel performance, as shown in Table 3. The breakthrough pressure decreased
as the permeability increased; this is due to the fact that the greater the permeability, the
less resistance to fluid flow and the lower the breakthrough pressure [39]. The higher
permeability resulted in lower RF and RRF; the main reason for this is that the retention of
gel in the core with high permeability is reduced, which makes the flow of gel easier; the
resistance declines, and the RF and RRF decrease [40].

Table 3. Characteristic parameters of gel flooding.

Core No. Maximum Adsorption Quantity,
mg/g

Breakthrough Pressure,
MPa RF RRF

#1 129.18 0.011 178.03 87.04
#2 71.46 0.006 120.76 69.81
#3 57.53 0.0043 81.50 27.60

3.1.3. Experimental Analysis of Gel Flooding

The results of the gel flooding experiment are shown in Figure 5 and Table 4. During
the initial water flooding process, the water cut and oil recovery of the high permeability
core (called HPL) increased faster than that of the low permeability core (called LPL). After
2.8 PV water injection, the water cut and oil recovery of the HPL reached 91.30% and
48.54%, respectively, while those of the LPL were only 0 and 9.30%, respectively. After the
initial water flooding process, the water cut and oil recovery of the HPL reached 99% and
51.26%, respectively, while those of the LPL were only 97.80% and 34.67%, respectively.
This is due to the fact that the HPL makes it easier for water to flow, creating a dominant
channel. The injection of 0.5 PV gel resulted in a minimum water cut of 96.97% and an
EOR of 5.83% in the HPL, a minimum water cut of 72.20% and an EOR of 6.67% in the
LPL. After gelation, the HPL was effectively blocked. The EOR of extended water flooding
in the HPL was only 4.47%, while the EOR of extended water flooding in the LPL was as
high as 18.93%, which is more than four times greater than that of the former. The ultimate
oil recovery values of the HPL, the LPL, and the total were 61.56%, 60.27%, and 61.05%,
respectively, and the efficacy of the gel flooding was efficient and well-demonstrated.

3.2. Numerical Simulation Results
3.2.1. Gel Flooding Experimental Model

The grid number of the gel flooding experimental model was 100 × 1 × 2 = 200, and
the grid size was 0.1 cm × 2.55 cm × 2.55 cm. The distribution of initial pressure, porosity,
permeability, and oil saturation is provided in Figure 6.
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Table 4. The statistics of the production indexes of the gel flooding experiment.

Core
No.

Irreducible
Water

Saturation, %

Initial Water
Flooding Oil
Recovery, %

EOR of Gel
Flooding,

%

EOR of
Extended Water

Flooding, %

Ultimate Oil
Recovery,

%

#4 21.36 51.26 5.83 4.47 61.56
#5 30.13 34.67 6.67 18.93 60.27

Total 44.65 6.17 10.23 61.05

Polymers 2023, 15, x FOR PEER REVIEW 8 of 17 
 

 

oil recovery values of the HPL, the LPL, and the total were 61.56%, 60.27%, and 61.05%, 
respectively, and the efficacy of the gel flooding was efficient and well-demonstrated. 

 
Figure 5. The production index curve of the gel flooding experiment. 

Table 4. The statistics of the production indexes of the gel flooding experiment. 

Core  
No. 

Irreducible  
Water  

Saturation, % 

Initial Water Flood-
ing oil  

Recovery, % 

EOR of Gel 
Flooding,  

% 

EOR of Ex-
tended Water 
Flooding, % 

Ultimate Oil 
Recovery,  

% 
#4 21.36 51.26 5.83 4.47 61.56 
#5 30.13 34.67 6.67 18.93 60.27 

Total  44.65 6.17 10.23 61.05 

3.2. Numerical Simulation Results 
3.2.1. Gel Flooding Experimental Model 

The grid number of the gel flooding experimental model was 100 × 1 × 2 = 200, and 
the grid size was 0.1 cm × 2.55 cm × 2.55 cm. The distribution of initial pressure, porosity, 
permeability, and oil saturation is provided in Figure 6. 

 
Figure 6. The distribution of initial pressure, porosity, permeability, and oil saturation in the gel 
flooding experimental model. 

3.2.2. Sensitivity Analysis of Characteristic Parameters 
The main sensitivity analysis parameters are displayed in Table 5, and the sensitivity 

analysis results are illustrated in Figures 7–10. The influence degree of the COP of the HPL 
from large to small was the porosity of the HPL, the irreducible water saturation, the RRF 
of the HPL, the maximum adsorption quantity of the HPL, the porosity of the LPL, and 

Figure 6. The distribution of initial pressure, porosity, permeability, and oil saturation in the gel
flooding experimental model.

3.2.2. Sensitivity Analysis of Characteristic Parameters

The main sensitivity analysis parameters are displayed in Table 5, and the sensitivity
analysis results are illustrated in Figures 7–10. The influence degree of the COP of the
HPL from large to small was the porosity of the HPL, the irreducible water saturation, the
RRF of the HPL, the maximum adsorption quantity of the HPL, the porosity of the LPL,
and the maximum adsorption quantity of the LPL. That of the LPL from large to small
was the maximum adsorption quantity of the HPL, the viscosity of the water, the porosity
of the LPL, the RRF of the HPL, and the permeability of LPL. The maximum adsorption
quantity of the HPL had a greater impact on the water cut of the HPL than the viscosity
of the residual oil. The effect degree of the water cut of the LPL from large to small was
the maximum adsorption quantity of the HPL, the permeability of the LPL, the maximum
adsorption quantity of the LPL, the RRF of the LPL, the RRF of the HPL, the permeability
of the HPL, and the irreducible water saturation.
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Table 5. The main sensitivity analysis parameters.

Name Porosity Permeability
Irreducible

Water
Saturation

Viscosity
Maximum

Adsorption
Quantity

RRF

Parameter POR PERMI SW AVISC ADMAXT RRFT
Note: Suffix 1 is the parameter of the HPL; suffix 2 is the parameter of the LPL, and suffixes 1–5 of the AVISC are
the viscosity of the water, the crosslinking agent, the polymer, the gel, and the residual oil, respectively.
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3.2.3. History Matching of the Gel Flooding Experiment

According to the sensitivity analysis results of the characteristic parameters, the
influence of each parameter on the two important production parameters, the COP and the
water cut of gel flooding, was clarified. Therefore, the history matching of the gel flooding
experiment was effectively accelerated by modifying the main influencing parameters



Polymers 2023, 15, 1809 10 of 16

within a reasonable adjustment range for the production parameters that were not ideal,
and good history matching was achieved, as shown in Figure 11.
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3.2.4. Model and History Matching of the Conglomerate Reservoir in the Xinjiang
A Oilfield

The grid number of the model of the conglomerate reservoir in the Xinjiang A Oilfield
is 87 × 65 × 35 = 197,925. The distribution of permeability, initial pressure, porosity, and
initial oil saturation is shown in Figure 12.

The original geological reserve was 235 × 104 m3, and the geological reserve in the
model is 230 × 104 m3, with an error of less than 2%. The reserve matching results
were good.

Using the history matching of the gel flooding experiment as a reference, the history
matching of the conglomerate reservoir in the Xinjiang A Oilfield was carried out based
on the sensitivity analysis of characteristic parameters; its efficiency was also greatly
improved, and a good history matching result was obtained. The history matching results
of the reservoir and the typical single well are shown in Figures 13 and 14, respectively.

3.2.5. Scheme Design and Optimization

To determine the optimal gel injection volume, injection rate, and polymer concentra-
tion, five values were considered for each parameter, as displayed in Table 6. Different gel
flooding schemes were designed by optimizing the combination of parameters, as shown
in Table 7. In the scheme, the oil wells maintained the original fluid production rate; the
injection production ratio was 1:1, and the prediction time was two years. The results of
different gel flooding schemes are shown in Figure 15. The incremental oil production
(IOP) in Figure 15 was the difference between the COP predicted by gel flooding and that
predicted by water flooding.
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Table 6. Parameter design of gel flooding.

Parameter Gel injection Volume,
m3

Injection Rate,
m3/d

Polymer Concentration,
mg/L

Level 1 1000 10 1000
Level 2 2000 20 1500
Level 3 3000 30 2000
Level 4 4000 40 2500
Level 5 5000 50 3000
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Table 7. The designed gel flooding schemes.

Scheme NO. Gel Injection Volume,
m3

Injection Rate,
m3/d

Polymer Concentration,
mg/L

1 1000 10 1000
2 1000 20 1500
3 1000 30 2000
4 1000 40 2500
5 1000 50 3000
6 2000 10 1500
7 2000 20 2000
8 2000 30 2500
9 2000 40 3000

10 2000 50 1000
11 3000 10 2000
12 3000 20 2500
13 3000 30 3000
14 3000 40 1000
15 3000 50 1500
16 4000 10 2500
17 4000 20 3000
18 4000 30 1000
19 4000 40 1500
20 4000 50 2000
21 5000 10 3000
22 5000 20 1000
23 5000 30 1500
24 5000 40 2000
25 5000 50 2500

As an important production index, the IOP was used for range analysis to determine
the impact degree of different parameters and the best parameter value. According to
Table 8, the IOP mean value of 1 corresponding to the gel injection volume was the average
IOP of all the schemes with a gel injection volume of 1000 m3, and so on. The IOP mean
value of different parameters and its range is shown in Table 8 and Figure 16. From
Table 8, it can be seen that the impact on the gel flooding IOP from large to small was the
gel injection volume, the polymer concentration, and the injection rate. From Figure 16,
it can be determined that the optimal parameters of gel flooding in the conglomerate
reservoir of the Xinjiang A Oilfield at the high water cut stage were as follows: the gel
injection volume, injection rate, and polymer concentration were 2000 m3, 50 m3/d, and
2500 mg/L, respectively. The COP and water cut prediction comparison and the remaining
oil saturation distribution comparison between the optimal gel flooding scheme and water
flooding are provided in Figures 17 and 18, respectively. Compared with water flooding,
the water cut of the optimal gel flooding scheme decreased by 6.90%, and the oil recovery
increased by 2.44%, showing a good effect by the EOR.

Table 8. The IOP mean value of different parameters and its range.

Parameter Gel Injection Volume,
m3

Injection Rate,
m3/d

Polymer Concentration,
mg/L

IOP mean value 1 52,804.79 54,458.26 54,087.50
IOP mean value 2 54,691.17 54,600.09 54,502.43
IOP mean value 3 55,105.66 54,733.14 54,667.31
IOP mean value 4 55,300.76 54,827.55 55,092.85
IOP mean value 5 55,673.86 54,957.21 55,226.16

Range 2869.07 498.95 1138.66
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4. Conclusions

For a conglomerate reservoir, it is easy for a dominant water-flow channel to form dur-
ing the high water cut period, but gel flooding is an effective method to solve this problem.
However, the optimal design speed of gel flooding is affected by many factors, including
numerous parameters, some errors in the parameters measured in this experiment, and no
purposeful parameter adjustment in the process of numerical simulation. In this paper, a
new optimization method of gel flooding was proposed. First, the characteristic parameters
of gel flooding were measured through physical experiments; then, an experimental model
of gel flooding was established, and parameter sensitivity analysis was carried out. Based
on the parameter sensitivity analysis, the gel flooding experiment and actual reservoir
history matching were conducted. With a clear aim, the speed of history matching was
greatly improved, thus improving the optimization speed of gel flooding. This method was
successfully applied to the conglomerate reservoir of the Xinjiang A Oilfield at the high
water cut stage, and its optimal gel flooding parameters were obtained: the gel injection
volume, injection rate, and polymer concentration were 2000 m3, 50 m3/d, and 2500 mg/L,
respectively. Compared with water flooding, it was predicted that the water cut of the
optimal gel flooding scheme would decrease by 6.90% and the oil recovery would increase
by 2.44% in two years. The study of gel flooding in the conglomerate reservoir at the high
water cut stage in this paper can provide a reference for similar oilfield development and
has important significance in improving the application effect of gel flooding and EOR.
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