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Abstract: The two-step batch foaming process of solid-state assisted by supercritical CO2 is a versatile
technique for the foaming of polymers. In this work, it was assisted by an out-of-autoclave technology:
either using lasers or ultrasound (US). Laser-aided foaming was only tested in the preliminary experi-
ments; most of the work involved US. Foaming was carried out on bulk thick samples (PMMA). The
effect of ultrasound on the cellular morphology was a function of the foaming temperature. Thanks to
US, cell size was slightly decreased, cell density was increased, and interestingly, thermal conductivity
was shown to decrease. The effect on the porosity was more remarkable at high temperatures. Both
techniques provided micro porosity. This first investigation of these two potential methods for the
assistance of supercritical CO2 batch foaming opens the door to new investigations. The different
properties of the ultrasound method and its effects will be studied in an upcoming publication.

Keywords: polymer; PMMA; foaming; sc-CO2; laser; ultrasound

1. Introduction

The design of porous polymers has become an area of great interest and the methods
of fabrication of these materials are numerous. In general, foaming involves an expansion
of the material after the dissolution of a blowing agent that can be chemical or physical.
Between the physical blowing agents, supercritical fluids have emerged as the best option,
with sc-CO2 and sc-N2 being the most employed [1,2]. CO2 is a well-known, cheap, non-
toxic, non-flammable, inert and highly available pure gas, and its critical conditions can be
easily reached (Tc = 31 ◦C, Pc = 7.38 MPa). Sc-CO2 has been largely used as a blowing agent
for the different foaming process, i.e., discontinuous (batch), semi-discontinuous (injection)
and, continuous (extrusion), and with a wide range of polymers such as polymethyl
methacrylate (PMMA), polycarbonate, polyethylene terephthalate (PET), polystyrene (PS),
glycol-modified PET, polyvinyl chloride (PVC), polypropylene (PP), polyurethane (PU),
polyimide and polycaprolactone [1,2]. Nevertheless, (a) generating a great cellular density
(i.e., ≥1015 cells/cm3), (b) stabilising growing bubbles at an early stage of the process
and, (c) obtaining low densities are still challenges. Creating a large number of small
bubbles simultaneously at the beginning of the foaming is a difficult task. The properties
and morphologies of the foams can be variated by varying either the material design,
employed blowing agent, operating conditions (saturation temperature, pressure and time),
depressurisation rate (dP/dt), special coolers or mixers, etc. Moreover, new techniques
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to manage the cellular morphology of the foams were developed including foaming in
different stages, enhancing crystallinity or the polymer matrix, and the use of external
“actions” such as laser irradiation (LS) and ultrasonic waves (US).

The present work concerns the assistance of (a) LS and (b) US. Our preliminary
work on LS-aided scCO2 foaming is new and LS-aided foaming is nearly absent from our
literature review. Since we will deal mainly with US, the foaming assisted by laser will be
not presented in this introduction.

Few papers studying foaming process aided by additional techniques, such as ultra-
sonic waves, are currently available. Ultrasonic irradiation (US) is mainly used in industry
for filtration, freezing, drying, separation, extraction, cleaning, mixing, emulsion steril-
isation, diagnosis, defect detection, etc. [3–5]. US is divided into low frequency (16 to
100 kHz), high frequency (>100 kHz) and very high frequency (>1 MHz). Most of the US
cleaning baths available in laboratories operate with frequencies between 35 to 45 kHz and,
have powers from 100 to 500 W. The mechanisms of action of ultrasound on materials are
divided into thermal and non-thermal. Thermal effects occur when the acoustic energy is
absorbed and transformed into heat. Such an effect depends on the absorption, frequency
and dissipation of the ultrasound energy. Ultrasound can act by (i) cavitation (formation of
vapour bubbles of a flowing liquid in a region where the pressure of a liquid falls below
the vapour pressure) and by (ii) mass transfer enhancement. US has also been combined
with other technologies such as microwaves, supercritical CO2 extraction, high pressure
processing and enzymatic extraction [6].

The effect of ultrasound can also depend on the state of the polymer. In the liquid state
(polymer melt), apparent viscosity reduction, molar mass distribution decrease, crosslink-
ing, increase in the motion of liquid molecular chains and plastic welding can be observed
when using ultrasound [7,8]. In the work of Yang. et al. [8], an increase in the melt strength
of polypropylene was observed after the application of 300 W of ultrasonic waves that
induced chain scission and recombination reactions at the die where an ultrasonic probe
was set. In regard to foaming, Yang et al. [9] used a chemical foaming agent (Azodicar-
bonamide) to produce a cellular polymer. When US and talc were introduced into the high
melt strength polypropylene (HMSPP) melt, the HMSPP foam had a larger cell density
and smaller size as well as a more uniform distribution. Regarding thermal properties,
compared to the HMSPP foam without ultrasonic oscillation, the minimum thermal con-
ductivity of the HMSPP foam with US reached 0.055 W/m/K. The ultrasound-assisted
chemical extrusion was said to be a promising technology to continuously and rapidly
fabricate better polymer foams.

In the solid state, a reduction of the intrinsic viscosity or the molecular weight when
increasing the frequency of applied ultrasound to the two water-soluble polymers car-
boxymethyl cellulose (CMC) and polyvinyl alcohol (PVA) was observed, evincing a degra-
dation of the polymers [10]. In the work of Price et al. [11], powders of polyethylene (PE),
PP, PVC and PMMA were subjected to irradiation with high-intensity ultrasound while
suspended in water; changes in the particle sizes and the surface morphology were obtained,
and these changes could be correlated with the physical properties of the evaluated materials.
Regarding the foaming process, the literature contains rather few examples of US-aided
microcellular foaming processing, usually by heating simultaneously the gas-saturated poly-
mer and employing ultrasound waves in a solid state. Adam et al. [12] foamed PS using a
temperature-induced batch foaming assisted by sc-CO2. The nucleation was triggered by the
elevation of the temperature of the super-saturated sample, in this case, the ultrasound were
applied during this stage. At a foaming temperature of 50 ◦C, the cell density of the foams
was increased, evincing that the use of ultrasound reduced the nucleation barrier. The cell
size ranged from 0.5 to 3.5 µm, with or without US applied at 60 or 70 ◦C. The smallest cell
size (0.3–2.4 µm) was obtained at 50 ◦C with the aid of ultrasound.

Gandhi et al. [13] found that there is a critical effective distance from the ultrasonic
transducer where the cavitation is maximal and beyond which, the intensity of it decreases
drastically. It was found that only when foaming (one-step) acrylonitrile–butadiene-styrene
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(ABS) at the critical effective distance, a remarkable increase in the cellular density could
be observed. The expansion ratio and cell morphology were also found to be significantly
affected by the relative placement of gas-saturated polymers with respect to the transducer
in the sonication medium. In another study, Gandhi et al. [14] also showed that longer
periods of ultrasound exposure developed foams with smaller cell sizes. The ultrasonic
frequency was also found to significantly influence the morphology. Low-frequency sonica-
tion resulted in foams with a uniform cell distribution, whereas high frequency sonication
developed a bimodal microcellular type of microstructure.

Wang et al. [15] foamed polylactic acid (PLA) using sc-CO2 as the blowing agent
in a temperature-induced batch process (two-step foaming). Ultrasound was applied
during 60 s. It was noticed that before the ultrasound application, most pores were closed.
After the ultrasound exposure, the pores became mostly open. This shows that inter-pore
connectivity of the foams can be substantially enhanced by applying ultrasound treatment.

This work studied the foaming of amorphous PMMA [16]. A solid-state, two-step sc-
CO2 batch foaming process was employed, and the assistance of laser irradiation (LS) and
ultrasonic waves (US) on the cellular morphology of the foamed samples was investigated.
US was especially tested to initiate more nuclei, increase the nuclei density, and break
growing bubbles towards micro and nano foams. Measurements of thermal conductivity
(λW/m/K) were also carried out in order to examine a possible effect of US.

2. Materials and Methods

An extrusion grade PMMA (Altuglas ® V825T) produced by Arkema ® (Serquigny, France)
was employed. The characteristics of PMMA are: Mn = 43,000 g/mol, Mw = 83,000 g/mol,
Tg = 115 ◦C, amorphous transparent polymer, and bulk density 1.19 g/cm3.

2.1. scCO2 Saturation Stage

All samples were first impregnated with CO2 for 24 h at 40 ◦C and 10 MPa using two su-
percritical CO2 units [(i) in LCPO Bordeaux, 0.5 L autoclave from Separex, (Champigneulles,
France); (ii) in RAPSODEE Albi, extraction unit SF 2 × 0.5 L 4158 pilot, developed by Sepa-
rex (Champigneulles, France)]. Injected bars 80 × 10 × 12 mm in size were used for LS and
conventional US. For localised US, they were cut into smaller samples 10 × 10 × 5 mm in
size from which two samples were saturated at the same time in the autoclave to compare
the foaming with and without localised US. To avoid foaming during the release of the
gas and to ensure that the samples are in a transparent state after the saturation stage, the
depressurisation profile similar to the one shown in Figure 1 was applied.
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Figure 1. Depressurisation profile.

2.2. Laser Assisted Foaming

A classical CO2 laser for cutting or engraving materials (Trotec SPEEDY 300, FabLab
IUT Bordeaux, Bordeaux, France), with a power capacity of 20 to 120 W and scanning
capacity of 610 × 305 mm, was used to heat the sample. For this, the sample was scanned
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by the laser beam. The samples were fixed into the laser equipment after their saturation
with CO2.

The engraving mode was chosen to initiate the foaming of the PMMA samples line by
line (Figure 2).
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Scanning speed (S) is expressed as % of maximum speed; here, S = 10 or 50%. Laser
power (P) is expressed as % of maximum power; here, P= 20 or 90%, i.e., respectively 24 W
and 108 W. Pulsation per inch (PPI = 1000) and ‘0’ offset in z (distance between material
and laser) are constant values.

2.3. Ultrasound-Assisted Foaming
2.3.1. Conventional Ultrasound Bath

A conventional ultrasound water bath was used in “normal” mode (no pulsation, no
sweep, degas modes; Elmasonic S 30 H (Elma Electronic, Strasbourg, France) dimensions of
tank: 240× 137× 100 mm) with a working frequency of 37 kHz, an ultrasonic power of 320 W
(at peak frequency), and an effective ultrasonic power of 80 W. The water temperature was set
from 30 up to 100 ◦C. Three temperatures were chosen; the bath was first regulated for 15 min
at 50 ◦C, 80 ◦C and 100 ◦C before immersing the CO2-saturated samples for 90 s (maintaining
them inside the water bath—below the water upper level—by a heavy glass beaker).

2.3.2. Localised Ultrasound

In Figure 3, the used setup is shown. Inside a distilled water bath, two beakers were
placed and filled with distilled water. An ultrasound probe was placed in one of the beakers,
and the distance between the probe and the bottom of the beaker was kept at 10 mm for all the
tests. A Vibracell probe model 72441 by Bioblock Scientific (Fisher Bioblock Scientific, Aalst,
Belgium) was used. This probe has a maximum power capacity of 600 W and a frequency of
20 kHz. An electronic power of 300 W was applied. After the saturation step, one sample
was plunged into the beaker with just water (without US). The other sample was plunged
into the beaker with the ultrasound probe (with US), and the samples were always placed
under the probe. Three bath temperatures (Tfoaming) were tested: 50 ◦C, 73 ◦C and 80 ◦C. The
with and without ultrasound samples were plunged into the beaker for 30 s.

2.4. Density and Porosity

Water pycnometry (buoyancy method) was employed to measure the density of the
samples (ρ) and the total porosity (εT) and the expansion ratio (E) of the foams were
calculated as follows:

εT= 1− ρf
ρs

and E =
ρs
ρf

(1)

ρf: foamed sample density (g/mL)
ρs: solid sample density (1.19 g/mL)
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2.5. Cellular Morphology

For the study of the cellular morphology of the produced foams, scanning electron
microscopy (SEM) was employed (model HITACHI S-3000N). For the preparation of the
samples, foams were frozen in liquid nitrogen and fractured to assure that the microstruc-
ture remained intact. The surfaces were coated with gold using a sputter coater (model
EMSCOPE SC 500), in argon atmosphere.

Cell size distributions were estimated by measuring the maximum Feret diameter of
the observable cells on the SEM microphotographs using ImageJ software.

Cell density (N0, expressed in cells/cm3) was estimated using Equation (2).

N0 =

(
6× 1021

πΦ3

)(
εT

1− εT

)
(2)

where Φ is the average mean diameter of cells, expressed in nm, and εT is the porosity (calculated
from Equation (1)). It is a rough estimation, since cell distributions are sometimes large.

2.6. Thermal Conductivity

The thermal conductivity of the materials was measured by the thermal plane source
method using a TPS2500S apparatus. The thermal plane source consists of monitoring the
temperature response due to heating by a disk source over a time t. The 7577 sensor with
heating area of 4 mm in diameter was used. This sensor was chosen in order to ensure that
the possible probing depth was at least twice that of the sensor diameter and fulfilled the
assumption that heat does not diffuse to the sample boundaries during measurement time.
For each measurement, two identical samples of the material were places in contact with the
sensor and pressed without deforming them in order to ensure a good contact between the
sensor and the sample. When supplied with a constant electrical current, the nickel spiral
of the sensor generates Joule heating and at the same time permits the monitoring of the
average temperature ∆T of the heated area through the evolution of its electrical resistance.
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In this configuration, the theory gives the time-dependent temperature increase as:

∆T(τ) =
Q

π3/2 r k
D(τ) (3)

where Q is the total heat flux generated by the sensor, r is the radius of the sensor, k is the
thermal conductivity of the sample and D(τ) is a geometry-related function according to
dimensionless time τ =

√
t/θ. In the expression of τ, t is the time and θ is the characteristic

time defined as: θ = r2/a where a is the thermal diffusivity of the sample. Denoting the
total measurement time tm, a ratio of total measurement time to thermal characteristic time
TCT = tm/θ can be defined.

In order to ensure reliable results, two crucial parameters were chosen: the heating
power Q and the measurement time tm. These two setting parameters are generally
fixed through a trial and error approach. The heating power Q was chosen to obtain a
temperature increase not exceeding 5 K over the measurement time in order to avoid
any nonlinear behaviour of the sample material. On the other hand, the measurement
time was adjusted to allow the heat to diffuse sufficiently into the sample but without
achieving its outer boundaries. In order to validate the selected Q and tm, three criteria
were evaluated from the realized measurements: the probed depth δwhich must not exceed
the sample geometry, the ratio of total measurement time to thermal characteristic time
TCT which is recommended to be in the interval between 0.33 and 1, and finally the mean
value of residuals σm corresponding to the difference between measured and calculated
(Equation (3)) temperature and which is expected to be lower than 10−3 K.

3. Results and Discussion
3.1. Laser-Assisted Foaming

As soon as a line is scanned, PMMA whitened, evincing a foaming process. Figure 4
shows the sample surface of pure PMMA after the whole predefined scans, after the complete
scanning lines. Nevertheless, these whitened zones peeled off to make foamed chips.

Polymers 2023, 15, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 4. Foamed PMMA samples after laser heating scans. 

As described in the experimental section, the procedure followed in this laser-as-
sisted foaming (with this specific equipment) only affected the surface. Therefore, an in-
teresting perk of this technique is that the foaming localization can be controlled since 
there was no expansion outside of the laser scan.  

The surface morphology observed by SEM (Figure 5) revealed rather homogeneous 
pores, especially at the highest power and speed (90%, 100%). The fastest scanning speeds 
can probably freeze the pore structure (rapid crossing below Tg). In these conditions, the 
diameters were in the micron range. Additionally, a pore elongation seemed to appear in 
some areas; its origin could be due to the scanning mode of the laser.  

 
Figure 5. SEM of foamed PMMA surface morphologies after laser heating at different scanning 
speeds (S) and power (P). 

If the power was increased and the speed lowered, the PMMA started to degrade. 
Nevertheless, this type of foaming assistance appears to be a useful method for local foam-
ing to induce micro porosity. The literature contains very few cases and also reveals that 
foaming only occurs on the surface [17,18].  

As a conclusion, the main result of this preliminary study of laser-induced gas satu-
rated-polymer foaming is the possibility of local foaming at the micron level onto a sur-
face. This is, to our knowledge, the first example of such result.  

  

Figure 4. Foamed PMMA samples after laser heating scans.

As described in the experimental section, the procedure followed in this laser-assisted
foaming (with this specific equipment) only affected the surface. Therefore, an interesting
perk of this technique is that the foaming localization can be controlled since there was no
expansion outside of the laser scan.



Polymers 2023, 15, 1968 7 of 16

The surface morphology observed by SEM (Figure 5) revealed rather homogeneous
pores, especially at the highest power and speed (90%, 100%). The fastest scanning speeds
can probably freeze the pore structure (rapid crossing below Tg). In these conditions, the
diameters were in the micron range. Additionally, a pore elongation seemed to appear in
some areas; its origin could be due to the scanning mode of the laser.
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If the power was increased and the speed lowered, the PMMA started to degrade.
Nevertheless, this type of foaming assistance appears to be a useful method for local
foaming to induce micro porosity. The literature contains very few cases and also reveals
that foaming only occurs on the surface [17,18].

As a conclusion, the main result of this preliminary study of laser-induced gas
saturated-polymer foaming is the possibility of local foaming at the micron level onto
a surface. This is, to our knowledge, the first example of such result.

3.2. Ultrasound-Assisted Foaming
3.2.1. Conventional Ultrasound Bath

Figure 6 shows examples of the obtained foams at 50 ◦C without or with US. In Figure 7,
porosity (εT) classically increased with temperature, but there was also a supplementary
effect of the ultrasound, that was only appreciable at low temperatures (50 ◦C).
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Figure 7. Porosity of foamed PMMA without or with US, in a conventional US bath.

It was assumed that the temperature of the bath was not affected by the use of
ultrasound during the time of the experiments. In Figure 8, it is observed that the higher
the temperature, the higher the expansion ratio and the lower the density; this behaviour
is again well known for this kind of process [1]. However, when exposing the samples to
the ultrasound at the same temperature, the density was further decreased; this effect was
overcome by temperatures above 80 ◦C.
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Figure 8. Density and expansion ratio of foamed PMMA in a conventional US bath. (solid bars:
without US, striped bars: with US).

In Figure 9, the cell density and average cell size are shown. It can be noted that, in
general, when increasing the temperature, the cell density increased for both with and
without ultrasound samples. Regarding the effect of the ultrasound at the same temperature,
it can be noted that only for a temperature of 100 ◦C the cell sizes decreased very slightly;
in the other cases, the cell sizes in the same range (even very slightly increased). At
each temperature, the effect of US for increasing the cell density was probably the most
interesting, although the behaviour is not very significant.
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Figure 9. Cellular density and average cell size of foamed PMMA in a conventional US batch.

Figure 10 shows SEM micrographs of the porous structures. It can be observed that
less homogeneous structures were obtained with increasing temperature; nevertheless,
when exposing the samples to ultrasound at the same temperature, more homogeneous
structures were visually observed. In melt foaming, the two previous effects (on No and Φ)
were noted in extruded PP foamed by a chemical blowing agent in the presence of talc [9].
In solid-state foaming, these US effects were slight as noted by one previous work on PS
foams [12]. Our work on neat PMMA foams is thus consistent with these two studies.
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As a first preliminary conclusion, US seems to act as a foam modifier and homogenizer,
and acted towards increasing the nuclei densities and lowering the foam density.

3.2.2. Localised Ultrasound

Figure 11 shows the initial and foamed PMMA samples using localised ultrasound
at a foaming temperature of 80 ◦C. Figure 12 shows the density of the solid PMMA and
the produced foams; it can be observed that as the temperature increased, the density
was reduced for both ultrasound and non-ultrasound foams. Regarding the effect of the
localized ultrasound, there was a reduction in the density which was more noticeable when
increasing the foaming temperature. The effect of US was two-fold: on the one hand, it
enhanced cavitation (bubble generation on gas and liquids, thus nucleation) and on the
other hand, it breaks structures mechanically (generates cracks, break fibres, etc.). Increasing
power or time exposition may be thus detrimental. This is the reason for choosing a short
exposition time (30 s) to detect a potential effect on nucleation only, knowing that long
times will favour growth and coalescence. In this way, the effect of localized US in the solid
state is better using short times (30 s was chosen) and low temperatures (here, 50 ◦C) and it
seems logical that US effects become negligible at high temperatures (e.g., 80 ◦C).
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Figure 11. PMMA samples foamed by sc-CO2-assisted batch foaming with and without localised US.
Tfoaming = 80 ◦C.
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Figure 12. Density of PMMA foams produced by sc-CO2 assisted batch foaming with and without
localised US.
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In Figure 13, the total porosity of the different obtained samples can be observed.
Increasing the temperature led to a classical increase in the porosity.
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Figure 13. Porosity of solid PMMA and its foams produced by sc-CO2-assisted batch foaming without
and with localised US.

Comparing the nature of the ultrasound (conventional vs. localized), there seemed
to be some benefit to applying localized US in our conditions. Such a result is still being
studied. At first glance at the SEM micrographs (Figure 14), localized US seemed to induce
more small cells and fewer large cells, with a reduction in the average pore size at 50 ◦C
(and a narrower distribution). As for conventional US, the effects of localized US became
attenuated at 80 ◦C.
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Figure 14. SEM microphotographs of PMMA foams produced by sc-CO2-assisted batch foaming
without (left) and with (right) localised US. (a,b) T = 50 ◦C, (c,d) T = 80 ◦C.
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Thus, comparing conventional and localised US is not straight forward. Other impor-
tant factors are the (i) duration of foaming under US and (ii) size of the sample. US may
have a benefit to be revealed by changing the power, temperature or localization (maximum
cavitation) as stated by reference [13].

Further work (distributions of cell sizes, effect of US power, time of exposure, etc.)
is under progress to understand the phenomena. This work combines PMMA with a
tri-block copolymer (BCP) named MAM (polymethylmethacrylate-co-polybutylacrylate-co-
polymethylmethacrylate) [16] for further enhancing nucleation.

Figure 15 shows the (a) frequency and (b) cumulated frequency of the cell sizes of
the different samples. The first observation to be made is that for a temperature of 80 ◦C,
there was no influence from the use of ultrasound on the mean cell diameter (3 µm). The
homogeneity of the cell structure was not affected, and the median absolute deviation
(MAD) corresponded to 0.8 µm for both distributions. When decreasing the temperature
to 50 ◦C, a decrease in the cell sizes were observed. Exposing the samples to ultrasound
resulted in a slight decrease in the mean cell size from 2.5 µm to 2.1 µm. Regarding
the MAD, a more homogeneous structure was obtained when applying the ultrasound,
decreasing from 0.7 µm to 0.5 µm. These results suggest that localised ultrasound only has
effects on cell size and cell size distribution at lower temperatures.
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Figure 16 shows the cell density of the samples. It can be observed that there was no
difference between the cellular densities between the samples produced at 50 ◦C and 80 ◦C.
Therefore, regarding the effect of ultrasound, an increase of the cell density was noticed
for both temperatures. There are two possible reasons: firstly, the ultrasound reduced the
required energy to nucleate a cell or the ultrasound provided extra energy to the system,
which allowed the cells to nucleate faster.
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3.3. Comparison of Thermal Properties after Conventional Ultrasound-Assisted Foaming
3.3.1. Setting the Thermal Characterisation Parameters

Prior to thermal characterization, a comprehensive assessment for the proper selection
of Q and tm was realized on a foamed PMMA sample. The sample used for this assessment
was foamed according to the following protocol: saturation with sc-CO2 for 24 h under
10 MPa of pressure at 40 ◦C, then foaming in an 80 ◦C water bath. Measurements sweeping
different values of Q and tm were realized. As the materials were expected to be poor
thermal conductors, the range of Q was between 3 and 14 mW. With the dimensions of the
samples being small (less than 12 mm), the explored measurement time ranged between 4
and 40 s. Figure 17a–e presents the maps of the obtained values of the listed criteria. Firstly,
one can observe in Figure 17a that the temperature increase was lower than 2 K for heating
powers below 5 mW even when the measurement time was 40 s. This signifies that the
applied power should be more than 5 mW. Next, from Figure 17b, one can conclude that
a satisfying probing depth, at least on the order of the sensor size, can be obtained using
measurement times of 20 or 40 s.

Figure 17c shows the TCT ratio, which appears satisfying (0.4–06) for measurement
durations of 20 or 40 s. However, when one checks the mean of residuals (Figure 13d), it
exceeded the recommended value below 10−3 K for a measurement time of 40 s. It also
exceeded the recommended value for the lower measurement duration (20 s) when the
heating power was set to 14 mW. These criteria indicate that the most adapted heating
power is 6 mW or slightly more and a measurement time of 20 s. It appears from Figure 17e
that the thermal conductivity for measurement times lower than 10 s seemed to be overesti-
mated. In turn, for the 40 s measurement time, the values of k were the lowest found, but
the residuals exceeded the recommended value and these results must be discarded.
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For the measurements on all the produced samples, the sensor power was set to 6 mW
in order to avoid any overheating and the measurement time was 20 s. The measurements
were repeated 10 times for each characterized sample and the mean values of thermal
conductivity were determined.
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3.3.2. Thermal Conductivity of Materials Obtained by Foaming without and with
Conventional Ultrasonic Assistance

Concerning the thermal conductivity of the obtained foams when using the conven-
tional US bath, not surprisingly, it first followed the trend of the evolution of the bulk
density previously observed; namely, it decreased with decreasing density.

Next, an influence of ultrasonic assistance was observed, especially at the lower
temperatures used. This effect disappeared at 100 ◦C (foaming was governed only by T).
The US assistance led to a decrease in thermal conductivity of around 10% for foaming
at 80 ◦C and 15% when the foaming bath was at 50 ◦C (Figure 18). Thus, the benefits of
applying US were obvious after measuring thermal properties; the reasons are not yet clear
and are under investigation on samples fabricated by localized US. It appeared that even if
bulk densities lie in the same range of values, thermal conductivity may be affected by US
(change in the distribution of cell size, open cell content, connectivity, wall thickness, etc.).
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4. Conclusions

Two peculiar assistance methods were tested for polymer gas foaming after saturation
of samples by scCO2: heating by laser scans (LS-aided foaming) or thermal foaming in
an ultrasound water bath (US-aided foaming). The foaming process itself is traditionally
named a two-step, solid-state batch scCO2 process, meaning that, foaming occurs in a
second heating step. Here, such an assistance/aid was achieved either with the aid of LS or
US. Both aids are easy-to-apply technologies and revealed advantages and difficulties.

LS offers the possibility of local foaming at the micron level onto a surface by a normal
laser engraving mode (“line by line”), while the bulk major part remains unfoamed. LS is a
surface foaming aid.

US is a temperature bulk foaming aid (in a solid-state, two-step foaming process). The
US aid was revealed to be an efficient technique to improve foam homogeneity, to decrease
the bulk density and cell size and to increase the cell density. One difficulty comes from
the control of the exposure time, power and localisation of the applied US. This opens a
world of possibilities to master the cellular morphology of the foams just by varying the
ultrasound parameters. Coupling power, time and temperature requires a balance in order
to favour cavitation and nucleation, avoiding “mechanical” damage of the foam structures.

The perks of using ultrasound were confirmed after measuring thermal properties,
which showed a decrease in the foam thermal conductivity.
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