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Abstract: The use of biodegradable plastics is gradually increasing, but its expensive cost limits pro-
motion. In this study, poly(butylene adipate-co-terephthalate)/thermoplastic hydroxypropyl starch
reinforced with nano-silica (PBAT/TPHSg-SiO2) composite films with high hydroxypropyl starch
content were prepared in a two-step process. The effect of reinforced thermoplastic hydroxypropyl
starch on the mechanical, thermal, processing properties, and micromorphology of the composite
films was investigated. The results showed that the tensile strength of the composite films was
significantly improved by the addition of nano-silica, with 35% increase in horizontal tensile strength
and 21% increase in vertical tensile strength after the addition of 4 phr of nano-silica. When the
content of thermoplastic hydroxypropyl starch reinforced with nano-silica (TPHSg-4SiO2) is 40%, the
horizontal and vertical tensile strengths of the films are 9.82 and 12.09 MPa, respectively, and the
elongation at break of the films is over 500%. Electron micrographs show that TPHSg-4SiO2 is better
homogeneously dispersed in the PBAT and exhibits a bi-continuous phase structure at a TPHSg-4SiO2

content of 40%. In this study, the blowing PBAT/TPHSg-4SiO2 composite films effectively reduce the
cost and still show better mechanical properties, which are suitable for packaging applications.

Keywords: PBAT; thermoplastic hydroxypropyl starch; nano-silica; reinforcement

1. Introduction

With the increasing awareness of environmental protection, biodegradable plastics
have received a great deal of attention. PBAT has been the most widely used petroleum-
based fully biodegradable polyester so far and has similar processing and usability to low
density polyethylene (LDPE) [1]. It has received widespread attention for applications
in the packaging industry, biomedical, industrial, and agricultural sectors [2–4]. Due
to the high production costs of PBAT products, difficulties have been encountered in
large-scale commercial applications. Reducing the manufacturing cost of PBAT packaging
materials has become the most important factor affecting the widespread use of PBAT-
based materials. Blending PBAT with inexpensive inorganic non-metallic powders [5–8] or
naturally degradable polymers such as starch [9–14], lignin [15,16], bamboo flour [17], and
corn marmalade [18] was an important way to prepare low-cost PBAT-based composites.

Starch was considered to be one of the most promising fillers for PBAT-based compos-
ites due to its abundant source, low cost, renewable, and fully biodegradable characteris-
tics [19,20]. It reduced the cost of PBAT materials without compromising the biodegradable
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characteristics of the composite. However, the melting temperature of starch is much
higher than its decomposition temperature [21,22] and the poor compatibility of starch
with PBAT made direct blending of high levels of starch with PBAT unfeasible. The starch
could only be mixed with biodegradable polymers after it has been turned into plasticized
starch [9,23–28].

A number of studies have focused on improving the properties of PBAT/TPS com-
posite films, particularly the mechanical strength, by improving the compatibility between
PBAT and TPS, or by adding reinforcement directly to the blending system. Table 1 lists
the results of this year’s research on PBAT/TPS composite films. As can be seen from
the results of these studies, although the compatibilizers were effective in improving the
compatibility between the two phases of PBAT and TPS, a large part of these did not
significantly increase the mechanical strength of composite materials.

The reasons for this may be that the mechanical properties of thermoplastic starch
are poor, which has a mechanical strength of 1.0–5.0 MPa and a high-water absorption
capacity [29–31]. Therefore, the thermoplastic starch phase greatly limited the mechanical
properties and performance of the material. Consequently, improving the mechanical
properties of thermoplastic starch is an effective way to improve the mechanical properties
of PBAT/TPS composite materials. In previous reports, nano-inorganic powders (modified
clay, nano-silica, and nano-zinc oxide) and fiber were able to significantly improve the
mechanical properties of starch [32–36]. However, there were no reports of such modified
thermoplastic starches being blended with PBAT and a detailed study was necessary. It
is believed that thermoplastic starch reinforced by nano-silica can further increase the
thermoplastic starch content in PBAT-based materials while maintaining serviceability.
This will further reduce the production costs of PBAT/TPS composites films.

This study was conducted to improve the mechanical properties of thermoplastic
starches by incorporating silica nanoparticles as reinforcing agents in the preparation of
thermoplastic starches. Then PBAT was then mixed with thermoplastic hydroxypropyl
starch reinforced with different nano-silica content at a ratio of 8/2 to prepare the com-
posite film, and the mechanical properties of the composite films were characterised to
select the optimum amount of nano-silica. After selecting the strongest thermoplastic
hydroxypropyl starch, the PBAT-based composite films with high thermoplastic starch
content were blended proportionally. The mechanical properties, thermal properties, and
microscopic morphology of the films were also characterized, and high-strength, low-cost
PBAT-based fully biodegradable films were obtained.

Table 1. Literature review on the effect of TPS content on the mechanical properties of PBAT/TPS films.

Source of Starch Compatibilizer/
Additive TPS Ratio in PBAT/TPS

Film Mechanical Properties
ReferenceTS EB

Cassava Neat sepiolite 50 5.3 120 [37]
Corn Maleic anhydride 10–50 4.4–13.4 256–540 [38]

Potato Maleic anhydride
PBAT-g-MA 40–50 6.2–7.9 196–220 [9]

Corn Citric acid
Tween 80 20–50 2.3–4.0 7–21 [39]

Cassava Soybean oil
Tween 80 50 0.5–6.1 32–400 [10]

Cassava - 20–60 6.6–8.3 547–819 [40]

Cassava Citric acid
Water soluble curcumin 38 5.8–6.0 72–258 [41]

Acetylated cassava Nisin
Nisin-EDTA 40 1–14 200–950 [42]

Corn Maleic anhydride 50 5.3 212 [13]
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2. Materials and Methods
2.1. Materials

PBAT (TH801t, blown-film grade) was obtained from Blue Ridge Tunhe Science and
Technology Co., Ltd. (Xinjiang, China) with a density of 1.2–1.28 g/cm3. Hydroxypropyl
starch (HS-HP-102, Food grade) (HS) was purchased from Hengrui Starch Technology Co., Ltd.
(Luohe, China) with a hydroxypropyl group content under 7.0%. Glycerol (Food grade) was
obtained from Procter & Gamble (China) Co., Ltd. (Shanghai, China). Nano-silica (HL-200)
was purchased from Huifu nanomaterials Co., Ltd. (Yichang, China) with hydroxyl group of
4.0–4.5% and specific surface area of 200 ± 20 m2/g.

2.2. Methods
2.2.1. Preparation of Composite Film Materials

Hydroxypropyl starch (HS) was dried in an oven at 80 ◦C for 8 h, and nano-silica was
dried at 105 ◦C for 2 h. Hydroxypropyl starch, glycerol, and nano-silica were mixed in a FW100
high speed mixers by Tianjin Teste Instruments Co., Ltd. (Tianjin, China) at room temperature
for 20 min according to the formula of Table 2 and stored in a sealed container until use. The
mixtures were compounded into TPHSg-SiO2 pellets by extrusion, using a KTE-20 laboratory
twin-screw extruder (Nanjing Keke Extrusion Equipment Co., Ltd., Nanjing, China) with a
screw diameter (D) of 21.6 mm and length of 40 D. The barrel temperatures from the feed
zone to the die zone were 100, 130, 140, 145, 150, 145 ◦C. The screw speed was 100 rpm. The
extruded strands were air-cooled, cut into pellets, and stored in a sealed container until used.

Table 2. Formulation of silica-enhanced thermoplastic hydroxypropyl starch.

Sample Name HS (phr) Glycerol (phr) Nano-Silica (phr)

TPHSg-0SiO2 100 40 0
TPHSg-1SiO2 100 40 1
TPHSg-2SiO2 100 40 2
TPHSg-3SiO2 100 40 3
TPHSg-4SiO2 100 40 4
TPHSg-5SiO2 100 40 5

phr is weight parts.

PBAT and TPHSg-4SiO2 were then mixed according to the formulation in Table 3 and
extruded with the same laboratory twin-screw extruder. The barrel temperatures from
the feed zone to the die zone were 150, 155, 160, 165, 160, 155 ◦C. The screw speed was
120 rpm. The extruded strands were water-cooled, cut into pellets, and dried in a vacuum
oven at 80 ◦C for 12 h, stored in a sealed container until use. When exploring the optimum
nano-silica content, the ratio of PBAT/TPHSg-SiO2 was 8/2 and the nano-silica content
in TPHS was 1, 2, 3, 4, and 5 phr; the ratios for PBAT/TPHSg-4SiO2 composite films with
different starch content were explored as shown in Table 2 and the nano-silica content
in TPHS was 4 phr. Different percentages of PBAT/TPHSg pellets were prepared in the
same way.

Table 3. The ratio of PBAT/TPHSg-4SiO2 composite films.

Sample Name PBAT (%) TPHSg-4SiO2 (%)

90PBAT/10TPHSg-4SiO2 90 10
80PBAT/20TPHSg-4SiO2 80 20
70PBAT/30TPHSg-4SiO2 70 30
60PBAT/40TPHSg-4SiO2 60 40
50PBAT/50TPHSg-4SiO2 50 50
40PBAT/60TPHSg-4SiO2 40 60
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The films were prepared using a JFYC-28 laboratory small testing film-blowing ma-
chine by Guangzhou Jinfang Yuan Machinery Manufacturing Co., Ltd. (Guangzhou, China)
with a die diameter of 40 mm. The film-blowing conditions consisted of a screw speed of
15 rpm and extrusion temperature profiles of 135, 165, 155, and 140 ◦C, with a blow-up ratio
of 2.8–3.0 and a traction ratio of 3.0. The film thickness was kept at 50–60 µm (80 ± 5 µm
for samples with 50% TPHSg content, 60% TPHSg-4SiO2 content samples cannot be blown
due to the material phase structure with TPHSg as a continuous phase).

2.2.2. Characterization of the Composite Films

The static tensile tests were performed using a CMT6104 tensile tester by Meters
Industrial Systems (China) Co., Ltd. (Shenzhen, China). The tensile strength (TS) and
elongation at break (EB) of the films were evaluated according to GB/T 1040.3-2006. Film
samples were cut into strips (200 mm long and 20 mm wide), with a spacing of 50 mm and
a stretching rate of 200 mm/min. The thickness of the film was measured using a digital
flush micrometer gauge, measuring five positions on each film, and taking the average.
The tests were performed with at least ten replicates for each sample.

The thermal properties of the composite films were characterized using a Q20 differ-
ential scanning calorimeter by TA instruments (New Castle, DE, USA). An about 5–6 mg
sample was weighed and placed in a crucible under nitrogen atmosphere. The test tem-
perature was first increased from 40 ◦C to 180 ◦C, held for 5 min to eliminate the thermal
history of the sample, then cooled to −60 ◦C, held for 5 min, and then increased to 200 ◦C,
at a rate of 10 ◦C/min. The crystallization temperature (Tc) and the heat of crystallization
(∆Hc) were obtained from the first temperature reduction, while the glass transition tem-
perature (Tg), the melting temperature (Tm), and the heat of melt (∆Hm) were determined
in the second temperature increase, and the degree of crystallinity was calculated from the
following equation.

Xc% =
∆Hc

∆H0
c × (1− a)

× 100% (1)

where ∆Hc is the heat of crystallization of the sample; ∆H0
c is the heat of crystallization of

pure PBAT, 70.69 J/g; a is the weight fraction of thermoplastic hydroxypropyl starch.
Note: According to the NMR test data, the mass proportion of PBT segment in

the PBAT was 48.75%, and the enthalpy of crystallization of PBT segment was 145 J/g.
Therefore, the heat of complete crystallization (∆H0

c ) of pure PBAT sample was 70.69 J/g.
The thermal stability properties of the PBAT/TPHSg-SiO2 composite film material

were characterized using the thermogravimetric analyzer (TG-209, NETZSCH Scientific
Instruments Trading (Shanghai) Ltd., Shanghai, China). The testing temperature program
was 30 ◦C, heating to 800 ◦C with a heating rate of 10 ◦C/min under a nitrogen atmosphere
and sample mass of 8–9 mg.

Scanning electron microscope (ZEISS Ultra 55, CarlZeiss Jena, Oberkochen, Germany)
was used to observe the surface and cross-sectional morphology of the composite films. The
films were frozen in liquid nitrogen. The samples were placed in water for 24 h, allowing the
TPHSg-SiO2 phase to be completely removed from the film. The film samples were placed
on the device and plated with gold using plasma sputtering for 20 min before observation.

The PBAT/TPHSg-SiO2 composites were tested for the melt flow index according to
GB/T 3682-2000. The tests were carried out at 150 ◦C and 190 ◦C, respectively, with a weight
of 2160 g. The melt flow index values in g/10 min were calculated using Equation (2).

MI =
tre f ·m

t
(2)

where: tre f is the reference time, s (600 s); m is the average mass of cut sections, g; t is the
time interval between cut sections, s.

Data in this work was expressed as the mean along with its corresponding standard
deviation (SD). The analysis of variance (ANOVA) was performed with SPSS (version
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27.0 for windows, IBM, New York, NY, USA) and the Tukey test was used to determine
significant difference between means (p < 0.05).

3. Results
3.1. Mechanical Properties

Figure 1 shows the tensile strength (Figure 1a) and elongation at break (Figure 1b) of
the composite films prepared by PBAT with 20% of thermoplastic hydroxypropyl starch
with different nano-silica contents. The horizontal and vertical tensile strengths of the
film tend to increase with the amount of nano-silica in the thermoplastic hydroxypropyl
starch, reaching a maximum of 4 phr of nano-silica. Compared to the sample without
silica, the horizontal tensile strength of the film increased from 10.63 MPa to 14.34 MPa,
with an increase of 35%, and the vertical tensile strength increased from 11.17 MPa to
13.52 MPa, with an increase of 21%. Elongation at break of the film was between 600 and
800%. The increase in the tensile strength of the composite film is mainly due to the
increased mechanical strength of the thermoplastic hydroxypropyl starch, which effectively
disperses the stress during film stretching and thus increases the overall tensile strength of
the film. According to the findings of Zhu et al. [33], nano-silica has been shown to enhance
hydroxypropyl starch by the mechanism shown in Figure 2, mainly due to the interfacial
adhesion between the starch and the SiO2 nanoparticles, which is caused by the C-O-Si
chemical bond, the formation of hydrogen bonds between the silicon hydroxyl groups on
the surface of the silica nanoparticles, and the large number of silicon hydroxyl groups in
the starch matrix [43].
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Figure 1. Effect of SiO2 dosage on mechanical properties of PBAT/TPHSg-SiO2 (8/2) composite films.
(a) Tensile strength; (b) Elongation at break.

Figure 3a shows the tensile strength of PBAT/TPHSg-4SiO2 and PBAT/TPHSg com-
posite films with different TPHS content. As the content of TPHS in the film increases,
the tensile strength of the film gradually decreases, and the vertical tensile strength of the
composite film is slightly higher than the horizontal tensile strength. The horizontal and
vertical tensile strength of the PBAT/TPHSg-4SiO2 composite film is significantly higher
than that of the PBAT/TPHSg composite film with the same amount of thermoplastic starch.
It shows that the reinforcement of thermoplastic hydroxypropyl starch by nano-silica is
an effective way to improve the tensile strength of PBAT/TPHS composite films. At a
TPHSg-4SiO2 content of 40%, the film also maintains horizontal and vertical tensile strengths
of 9.82 MPa and 12.09 MPa, both of which meet the requirements for commercial films,
according to the relevant standards, such as GB/T 18893-2002, GB/T 4456-1996, and GB/T
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38082-2019. When the content of TPHSg-4SiO2 is 50%, the horizontal and vertical tensile
strengths of the film are 6.20 MPa and 8.21 MPa, respectively, which can still meet the
mechanical property requirements of agricultural film materials, according to the relevant
standards, such as GB/T 35795-2017, showing a good prospect of use in the field of fully
biodegradable agricultural ground cover films.
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Figure 3. Effect of TPHS content on mechanical properties of PBAT/TPHSg-4SiO2 composite films.
(a) Tensile strength; (b) Elongation at break.

Figure 3b shows the change in elongation at break for the composite films. The
vertical elongation at break of the composite films ranged from 800 to 900%, which is
similar to the 812% of pure PBAT. After adding TPHSg-4SiO2 as a filler to reduce costs, the
PBAT/TPHSg-4SiO2 composite film maintains a good elongation at break, avoiding the
disadvantages of thermoplastic starches with low elongation at break and brittle materials.
However, the horizontal elongation at break of the film has a clear tendency to decrease
as the TPHSg-4SiO2 content increases, and the rate of decrease increases significantly after
the TPHSg-4SiO2 content reaches 40%, decreasing to 666% at 40% TPHSg-4SiO2 content and
554% at 50% TPHSg-4SiO2 content, 40.1% reduction compared to PBAT films. The reason for
the drastic decrease in elongation at break may be that the PBAT/TPHSg-4SiO2 composite
film changed from an island structure to a bi-continuous phase structure (as shown in
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Figure 4e), the PBAT and TPHSg-4SiO2 phases were oriented in the vertical direction during
the blowing of the film, and the PBAT phase was no longer continuous in the horizontal
direction of the film. Since the mechanical strength of the thermoplastic starch phase is
much lower than the PBAT phase, when the bi-continuous phase structure appears, the
composite film easily breaks during stretching due to defects in the starch phase, which is
also the reason why the tensile strength decreases when the TPHSg-4SiO2 content increases.
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Figure 4. Scanning electron micrographs of the cross-section of PBAT and composite films (5000×).
(a) pure PBAT 5000×; (b) 90PBAT/10TPHSg-4SiO2 5000×; (c) 80PBAT/20TPHSg-4SiO2 5000×;
(d) 70PBAT/30TPHSg-4SiO2 5000×; (e) 60PBAT/40TPHSg-4SiO2 5000×; (f) 50PBAT/50TPHSg-4SiO2 5000×.

In addition, the mechanical properties of PBAT/TPHSg-4SiO2 composite films are
comparable to LDPE materials which are commonly used in packaging and agriculture. The
thermoplastic starch content of 50% still has good mechanical properties, PBAT improves
the mechanical properties and flexibility of the thermoplastic starch. Zhai et al. [44] reported
PBAT/TPS composite films prepared with glycerol and citric acid as plasticizers and nano-
clay as reinforcing agent. The horizontal and vertical tensile strengths of the films at
50% of thermoplastic starch were 5.3 and 7.4 MPa. PBAT/TPS composite films with a
thermoplastic starch content of 50% were prepared by Pan et al. [38] The horizontal and
vertical tensile strengths were 4.4/4.6 MPa, and the films had 256/277% elongation at
break in the horizontal and vertical directions. In this work, the mechanical properties of
PBAT/TPHSg-4SiO2 composite films were improved by adding nano-silica as reinforcing
agent for thermoplastic hydroxypropyl starch.

3.2. Melt Flow Index

Table 4 shows the melt flow index of PBAT and thermoplastic hydroxypropyl starch
composites. The melt flow index of the material increases and then decreases with the
increase in TPHSg-4SiO2 phase content, and the MFR is maximum at the TPHSg-4SiO2 con-
tent of 20%. The reason may be that at low TPHSg-4SiO2 content, the small molecules of
glycerol in the TPHSg-4SiO2 transferred to PBAT and the melting index of the composite
increases. When the TPHSg-4SiO2 content reaches 30%, the phase structure of the compos-
ites is transformed. As shown in the SEM results, the phase structure is changed into a
two-phase continuous structure at a high TPHSg-4SiO2 content, and the high viscosity of the
TPHSg-4SiO2 phase itself restricts the flow of the composites, which reduces the fluidity of
the composites and leads to the reduction of the melt index of the composites. When the
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content of TPHSg-4SiO2 reaches 60%, it does not have the ability to blow film at 140–160 ◦C
blowing temperature because the flowability is poor, and it has been cooled at the die.

Table 4. MI of PBAT and TPHSg-4SiO2 composite films.

Sample Name
Melt Flow Index (g/10 min)

150 ◦C, 2160 g 190 ◦C, 2160 g

PBAT 2.66 ± 0.03 c 9.47 ± 0.31 d

90PBAT/10TPHSg-4SiO2 2.85 ± 0.04 b 10.89 ± 0.18 c

80PBAT/20TPHSg-4SiO2 3.18 ± 0.08 a 14.21 ± 0.40 a

70PBAT/30TPHSg-4SiO2 2.59 ± 0.03 c 12.67 ± 0.32 b

60PBAT/40TPHSg-4SiO2 2.01 ± 0.05 d 10.34 ± 0.26 c

50PBAT/50TPHSg-4SiO2 1.09 ± 0.04 e 7.60 ± 0.19 e

40PBAT/60TPHSg-4SiO2 0.24 ± 0.02 f 3.72 ± 0.15 f

Each value is expressed as mean ± SD (n = 5). Different superscript letters in each vertical column denote
statistically difference (p < 0.05).

3.3. Scanning Electron Microscope

Figure 4 shows the cross-sectional morphology of the composite films. The contents of
thermoplastic hydroxypropyl starch in Figure 4a–f are 0%, 10%, 20%, 30%, 40%, and 50%,
respectively. The film sections were freeze-fragmentations in liquid nitrogen and dipped in
distilled water for one day to remove the starch phase from the film completely. Figure 4a
shows the cross-sectional morphology of pure PBAT with smooth cross-section. As the
content of TPHSg-4SiO2 gradually increased, the number of holes increased significantly, and
the holes show spherical or sphere-like shapes. When the content of TPHSg-4SiO2 was 40%
and above, the TPHSg-4SiO2 balls were deformed and connected, and the phase structure of
the composites changed from island structures to two-phase continuous structures. This
also leads to a dramatic decrease in mechanical strength and decrease in elongation at break
of the film in the horizontal direction.

When the TPHSg-4SiO2 content varied from 10% to 30%, electron micrographs show
the thermoplastic starch microspheres changing from 3 µm to smaller than 0.5 µm. Due to
the strong hydrogen bonding of the starch and the lower viscosity of PBAT, the TPHSg-4SiO2
spheres cannot disperse easily, so the diameter of TPHSg-4SiO2 spheres is larger. When
the TPHSg-4SiO2 content increased, the TPHSg-4SiO2 spheres squeeze each other and break,
making the diameter of the spheres smaller.

Figure 5 shows a comparison of the cross-sectional morphology of both 70PBAT/30TPHSg
and 70PBAT/30TPHSg-4SiO2 composite films. It is clear that the number of holes of the
70PBAT/30TPHSg composite film is fewer than the one observed for the 70PBAT/30TPHSg-4SiO2
composite film, but the diameter of the holes in the former is significantly larger than the latter.
This is due to the thermoplastic starch having a higher melt strength after reinforcement with
nano-silica. During the melt blending process, the interaction between thermoplastic starch
pellets is more significant, resulting in the fragmentation of the starch pellets. Therefore, the
reinforced thermoplastic starch is better dispersed in PBAT. Better dispersion not only allows
the PBAT phase to maintain continuity, but also prevents the breakage of starch granules during
the stretching process, which can lead to defects and film breakage. This is the same result
as the tensile strength of the PBAT/TPHSg-4SiO2 composite film was higher than that of the
PBAT/TPHSg composite film.
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3.4. Differential Scanning Calorimetry

Differential scanning calorimetric analyses were performed on PBAT and PBAT/TPHSg-4SiO2
composites to obtain the crystallization temperature, glass transition temperature, melting tem-
perature, enthalpy of crystallization, enthalpy of melting, and crystallinity of the composites.
Figure 6a shows the process of the first temperature reduction. The Tc temperature of pure
PBAT was 65.73 ◦C. The crystallization temperature increased after the addition of TPHSg-4SiO2
and gradually increased as the content of TPHSg-4SiO2 increased. This is due to the TPHSg-4SiO2
acting as a nucleating agent and promoting the crystallization of PBAT. And as the TPHSg-4SiO2
content increases, the crystallization enthalpy of the composite film material gradually decreases.
Chen et al. [45] demonstrated that the reduced crystallinity of polyester was beneficial to the
degradation of the composite film. No crystallization process of TPHSg-4SiO2 was observed
during the tests.

Figure 6b shows the second temperature rise process, which obverses the glass tran-
sition temperature and the melting temperature of the material. The glass transition
temperature of the PBAT phase was reduced with the addition of TPHSg-4SiO2. It is possible
that the transfer of the glycerol from TPHSg-4SiO2 into the PBAT phase increases the mobility
of the PBAT molecular chain segments and decreases the glass transition temperature. It
can also be seen that the melting points of the composites are all higher than pure PBAT.
This is mainly due to the fact that the composites crystallize at higher temperatures, where
the molecular chain segments are more mobile, have enough time to adjust, and the crystals
are more perfect. However, the melting temperature of the composites did not change much
and the crystallinity of PBAT did not change. As can be seen in Table 5, the crystallinity
of the composite film material gradually decreases as the TPHSg-4SiO2 content increases.
This is due to the increase in TPHSg-4SiO2 content, the increase in the crystallization sites
of PBAT in the material, the faster crystallization of the PBAT phase, and the decrease
in crystallinity.
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TPHSg-4SiO2. (a) The first cooling process; (b) the second heating process. (1) Black: Pure PBAT; (2) Red:
90PBAT/10TPHSg-4SiO2; (3) Blue: 80PBAT/20TPHSg-4SiO2; (4) Green: 70PBAT/30TPHSg-4SiO2; (5) Purple:
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Table 5. DSC data of pure PBAT and PBAT/TPHSg-4SiO2 composite films.

Sample Name Tg
(◦C)

Tc
(◦C)

Tm
(◦C)

4Hc
(J/g)

4Hm
(J/g) Crystallinity (%)

PBAT −32.55 65.73 120.31 16.73 15.39 23.67
90PBAT/10TPHSg-4SiO2 −33.49 68.37 123.67 15.61 12.31 24.54
80PBAT/20TPHSg-4SiO2 −33.40 70.80 122.81 13.90 11.02 24.58
70PBAT/30TPHSg-4SiO2 −33.48 74.70 123.11 11.31 8.16 22.86
60PBAT/40TPHSg-4SiO2 −33.07 75.78 124.18 9.56 6.91 22.54
50PBAT/50TPHSg-4SiO2 −33.64 75.35 122.53 6.72 5.89 19.02

3.5. Thermogravimetric Analysis

Figure 7 and Table 6 show the TG curves of pure PBAT and PBAT/TPHSg-4SiO2 compos-
ite film materials and Figure 8 shows the DTG curves of pure PBAT and PBAT/TPHSg-4SiO2
composite film materials. In Figure 8, it can be seen that there is a first weight loss step
from 150 to 260 ◦C, which is a crystalline water weight loss step of the TPHSg-4SiO2 phase
and increases as the TPHSg-4SiO2 content increases. When the content of TPHSg-4SiO2 is
50%, the weight loss step increases significantly, caused firstly by the increase in water
of crystallization due to the increased TPHS content, and secondly by the shift in the
phase structure of the material. The transformation from island structures to two-phase
continuous structures is shown in the SEM characterization results. At low TPHSg-4SiO2
content, the crystalline water from TPHSg-4SiO2 needs to pass through the PBAT phase.
However, with the increase of the TPHSg-4SiO2 content, the precipitation of the crystalline
water no longer needs to pass through the PBAT phase and the precipitation capacity of
the crystalline water increases, resulting in a significantly larger weight loss step for the
crystalline water.
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Table 6. TG data of pure PBAT and PBAT/TPHSg-4SiO2 composite films.

Sample Name T90% (◦C) T50% (◦C) Residual Rate (%)
Tstart (◦C) Tmax (◦C)

Step 1 Step 2 Step 1 Step 2

PBAT 370.9 398.3 4.85 / 377.6 / 400.7
TPHSg-4SiO2 261.7 306.5 11.35 275.4 / 304.2 /

90PBAT-10TPHSg-4SiO2 356.2 394.3 3.19 286.4 377.3 298.0 398.2
80PBAT-20TPHSg-4SiO2 302.7 392.0 3.61 285.9 376.4 295.7 396.2
70PBAT-30TPHSg-4SiO2 288.9 388.4 3.97 286.2 376.0 302.0 396.8
60PBAT-40TPHSg-4SiO2 278.9 384.4 3.88 283.4 374.9 304.7 396.5
50PBAT-50TPHSg-4SiO2 206.8 377.0 5.70 279.6 375.1 314.9 394.6
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The decomposition onset temperature of pure TPHSg-4SiO2 was 275.4 ◦C. After com-
pounding with PBAT, the decomposition temperature of the starch phase increased and
gradually decreased as the TPHSg-4SiO2 content increased. The decomposition peak of the
starch phase gradually increases with the increase of the TPHSg-4SiO2 content, as shown in
Figure 8. The decomposition onset temperature of pure PBAT was 400.7 ◦C. The addition
of TPHSg-4SiO2 to the mix decreased the onset decomposition temperature of PBAT and
showed a decreasing trend with the increase of the TPHSg-4SiO2 content.



Polymers 2023, 15, 2026 12 of 14

4. Conclusions

The blend of thermoplastic hydroxypropyl starch and PBAT with the addition of silica
as reinforcing agent exhibits good mechanical properties, with a substantial increase in
mechanical properties compared to the sample without the addition of nano-silica. Even
with a thermoplastic hydroxypropyl starch content of 40%, the film has horizontal and
vertical tensile strengths of 9.82 and 12.09 MPa, respectively, which meet the requirements
for packaging film. Furthermore, at thermoplastic hydroxypropyl starch levels below
50%, the processing properties of the composites are similar to those of PBAT, enabling
the preparation of composite films by blowing. The micrographs also show that the
thermoplastic hydroxypropyl starch is homogeneously distributed in PBAT, while the
thermoplastic hydroxypropyl starch which was reinforced by nano-silica is better dispersed
in PBAT, and that the content below 40% does not affect the continuous structure of the
PBAT phase. Therefore, it is feasible to enhance the TPHSg-4SiO2 phase in PBAT/TPHSg-4SiO2
composite films by adding nano-silica, thus enabling the enhancement of the mechanical
properties of the composite films, and the color of the composite films will be whiter after
the addition of nano-silica. Our study provides an effective way to prepare PBAT-based
composite films with high starch content.
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