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Abstract: Fibre breaks govern the strength of unidirectional composite materials under tension.
The progressive development of fibre breaks is studied using in situ X-ray computed tomography,
especially with synchrotron radiation. However, even with synchrotron radiation, the resolution
of the time-resolved in situ images is not sufficient for a fully automated analysis of continuous
mechanical deformations. We therefore investigate the possibility of increasing the quality of low-
resolution in situ scans by means of super-resolution (SR) using 3D deep learning techniques, thus
facilitating the subsequent fibre break identification. We trained generative neural networks (GAN)
on datasets of high—(0.3 µm) and low-resolution (1.6 µm) statically acquired images. These networks
were then applied to a low-resolution (1.1 µm) noisy image of a continuously loaded specimen. The
statistical parameters of the fibre breaks used for the comparison are the number of individual breaks
and the number of 2-plets and 3-plets per specimen volume. The fully automated process achieves an
average accuracy of 82% of manually identified fibre breaks, while the semi-automated one reaches
92%. The developed approach allows the use of faster, low-resolution in situ tomography without
losing the quality of the identified physical parameters.

Keywords: fibre breaks; computed tomography; deep learning; super-resolution; image quality

1. Introduction

Unidirectional composites (UD) are widely used in industry for their high mechanical
properties-to-weight ratio [1]. One of the common damage modes is fibre breakage, which
governs longitudinal tensile failure. As fibre breaks accumulate, clusters of fibre breaks
will develop, which will eventually lead to catastrophic failure of the UD composite [2].
Accurate prediction of this phenomenon is an important and difficult task that requires
not only comprehensive mathematical models but also fast and reliable verification meth-
ods. Different prediction models, describing the longitudinal tensile fibre breaks, were
introduced in the past decades (for example, [3–7]) and, recently, detailed benchmarking
exercises of the models were performed [2,8,9]. The latest benchmark [2] stated that “the
models failed to predict fibre break (and cluster) development accurately”. These predictive
models displayed a low accuracy for coupled break formation and evolution. The authors
of [2] emphasise the importance of an in situ experimental method development in order
to further increase the accuracy of longitudinal tensile strength predictions.

Recently, X-ray computed tomography (CT) became the most utilised technique for
experimental evaluation of fibre break development during tensile tests [10]. Combined
with monitoring in situ performance, CT enables observation of the chronology of damage
development. Labscale CT was extensively used to study composite materials, for example,
in [11–16]. Labscale CT, however, remains too slow to study fibre break development at
the representative strain rates and resolutions required for fibre-by-fibre detection level.
Therefore, researchers have used synchrotron radiation computed tomography (SRCT),
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which enables in situ observation of fibre break development over time and during load-
ing [17,18]. However, despite the high cost and complexity of SRCT, we can only study
small specimens (around 1 mm3) in the targeted high sub-µm resolution. For continuous in
situ scanning, the image quality is significantly lower. Owing to the inherent limitations
of CT, a 3D image of a specimen at a higher resolution requires increased X-ray flux and
exposure time and introduces limitations in the specimen’s size [19]. CT data processing
includes the extraction of fibre trajectories, which is usually achieved using automated or
semi-automated algorithms. The algorithms work only for high-resolution images (HR),
and it is very difficult to annotate the fibre breaks in low-resolution, noisy images.

For low-resolution images (LR), all the identification needs to be performed manually, and
several attempts over the same volume are needed to find all the fibre breaks. Considering that
in situ scans produce dozens of volumes, and fibre break densities can reach up ~1000 mm−3,
it can take several working days to identify all the fibre breaks in one volume manually [2]. The
resolution limitation of X-ray CT can be one of the many bottlenecks for the rapid development
of not only longitudinal tensile failure models but also models for other properties that require
information on the damage and microstructure of composite materials.

Generally, there are two methods used to improve the resolution of CT images:
hardware- and software-based. When synchrotron radiation is exploited, the best and
most expensive hardware is already used, so it is not always possible to upgrade. One of
the software-based solutions to address the resolution limitations of tomography is to use
image quality enhancement with super-resolution (SR) techniques [20–23]. In the computer
vision field, SR are emerging algorithms designed for improving image quality. In recent
years, researchers have made significant progress in reconstructing high-resolution 2D
images using deep learning, especially with convolutional neural networks (CNN) and
generative adversarial neural networks (GAN) [24–26]. For instance, Enhanced Super
Resolution GAN (ESRGAN) can achieve excellent enhancement results and demands low
computational overhead after training [27]. The main drawback of super-resolution is that
the neural networks require a large amount of ideally paired high- and low-resolution im-
ages for training, which are difficult to obtain for CT imaging. In addition, if non-synthetic
data is used, optical distortions can make it impossible to create a perfectly aligned dataset
in 3D due to small differences in feature locations [28]. The problem of data parity can be
solved using the CycleGAN architecture [29], as this does not require paired datasets.

Super-resolution techniques are mainly available for 2D images. For 3D images,
they can be implemented only in the slice direction, not the in-plane direction [30] or by
averaging improvements in the in-plane and slice directions [31]. These 2D approaches can
introduce inconsistencies in neighbouring slices and cannot consider the information from
the other slices and generate information between them. This is an important drawback for
analysing continuous features such as fibres. One of the solutions is to use super-resolution
on initial tomography projections before 3D image reconstruction [32], but projections are
not always available. Recently, 3D super-resolution algorithms started to appear that use
3D kernels and enable direct 3D image analysis [24,33]. They require more data for training
and much more hardware resources. The deeper architecture leads to difficulties in training
convergence and requires more advanced strategies to train the model properly.

In this work, we propose the use of deep learning-based super-resolution for CT
image quality improvement and, specifically, for enabling automated fibre break analysis in
unidirectional composites. To achieve super-resolution of CT images, we developed a deep
learning architecture that combines ESRGAN and CycleGAN, which can handle 3D images
and generate high-quality results without needing paired data. The study was performed
for two types of carbon fibre/epoxy unidirectional composite with already known fibre
break distribution [34]. The quality of super-resolution enhancement is evaluated with the
following metrics: (1) the number of individual fibre breaks (1-plets), and (2) the number of
clusters (2-plets, 3-plets). The implementation of deep learning techniques in the analysis
of fibre breaks significantly increases the quality of identification and reduces time and
manual intervention requirements.
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2. Materials and Methods

This study is based on the materials and data obtained by Breite et al. [8] and, recently,
by Guo et al. [35]. Here, we provide a brief description of the materials and data acquisition.
For more detailed data specifications and access, we refer the readers to the corresponding
data article [36,37].

2.1. Materials and Manufacturing

Two carbon fibre cross-ply laminates were used: one for training the neural networks
and another for validation. Cross-ply laminates are employed to efficiently apply loads
to microscale specimens inside the SRCT load rig. The transverse ply did not affect the
measured longitudinal fibre breaks.

The first material was produced from prepregs manufactured at KU Leuven in a hot-
melt drum winder. The T700SC-12K-50C carbon fibres (Toray Industries) were impregnated
with Sicomin SR8500 KTA313 epoxy resin. The composite had a [90/0]s layup.

The second material was made from Grafil 34-700WD-24 K-1.4%A carbon fibres
(Mitsubishi Chemical) and proprietary 736LT epoxy resin at North Thin Ply Technology
(Switzerland). For this material, a [904/04]s layup was produced. Curing of the prepreg
took place in KU Leuven’s computerised autoclave according to the manufacturer’s recom-
mendations [38,39].

2.2. Synchrotron-Radiation Computed Tomography Experiments

After bonding 1 mm thick 2014-T6 aluminium panels in the end tab regions using
3M Scotch-Weld EC 9323 B/A structural adhesive, miniaturised double-edge-notched
tensile specimens (DENT specimens) were prepared from the cured materials, using a
water-jet cutter, according to the dimensions specified in Figure 1. Bonding end tabs before
water-jetting ensured perfect alignment of the end tabs, which is crucial in order to avoid
any flexure during the tensile tests.
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In total, data was acquired during two separate beamtimes at the TOMCAT beamline
at Swiss Light Source (SLS). During the first beamtime, KU Leuven, INSA Lyon, and
the University of Southampton performed the SRCT measurements together. INSA Lyon
provided the tension-compression rig [40] for the in situ experiments of the NTPT composite
(34-700 WD), and the GigaFRoST camera [41] was used for continuous scanning. A second
beamtime took place under the participation of Lund University and KU Leuven, in
which a customised Deben CT500 tension-compression rig was used. From this beamtime,
only static scans without loading are analysed in this study. Here, a pco.EDGE camera
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was used to acquire high- and low-resolution imaging of the in-house produced material
(T700SC)). The high- and low-resolution scans were obtained from one specimen, but, due
to mechanical adjustments of the scanning system, small deviations in specimen position
and microscope magnification occurred [28].

Table 1 describes all the essential acquisition parameters of the two SRCT datasets.

Table 1. SRCT test and scan parameters for different purposes.

Purpose Training Set, Stationary Validation Set, Continuous Loading
High-Resolution Low-Resolution

Material T700SC T700SC 34-700
Sensor size (px2) 2560 × 2160 2560 × 2160 2016 × 1716

Sensor pixel size (µm) 6.5 6.5 11.0
Energy (kV) 15 15 20

Exposure time (ms) 250 80 9
Microscope magnification 20× 4× 10×

Voxel size (µm) 0.325 1.625 1.1
Number of projections per volume 2000 2000 1000

Propagation distance (mm) 30 100 60
Displacement rate (µm/s) - - 1.4–1.6

Number of volumes acquired before failure 1 1 17
Testing time per scan (s) 500 160 9

Absorption-based tomography reconstruction was performed using the Gridrec algo-
rithm [42] without optical distortion corrections. In total, one high- and one low-resolution
volume of the T700SC specimen were prepared to train the neural network. Due to high
memory consumption, the CT images were divided into small volumes to create a large
training dataset (details in Section 2.4). The low-resolution image was interpolated to have
a scale factor of 4 with the HR image, allowing the correct upscaling of 22. In addition, the
T700SC LR scan was adjusted to match the 34-700 LR scans in terms of average grayscale
values, contrast, and sharpness. Out of 17 low-resolution scans of the 34-700 specimen
with fibre break development under continuous load, four images were prepared for fibre
break analysis and verification of the super-resolution algorithm: initial (0% load, where
100% load indicates failure of the specimen), intermediate load (75% load), high load (94%
load), and before failure (98% load). Figure 2 shows the prepared images, illustrating the
difference in sharpness and contrast between high- and low-resolution images.
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scan (0.3 µm); (b) T700SC specimen in a low-resolution scan (1.2 µm); (c) 34-700 specimen in a
low-resolution scan (1.1 µm).

2.3. Super-Resolution Algorithm

In this work, a generative adversarial network (GAN [43]) was designed, trained,
and used as a super-resolution algorithm. Traditional GANs comprise two networks, a
generator, and a discriminator. In this study, the generator’s objective was to increase
image resolution, i.e., to produce a generated high-resolution image from an original low-
resolution image. The purpose of the discriminator is to take the original and the generated
high-resolution images as input, distinguish the original from generated ones, and pass the
feedback on to the generator. In this adversarial process, the generator wants to fool the
discriminator, and the discriminator wants to know when and how it is fooled. Both neural
networks give better and better results as the training progresses.

The generator and discriminator are convolutional neural networks with modifications
described below. The Enhanced Super-Resolution generator ([27]) with residual-in-residual
blocks was implemented and modified to work with grayscale 3D CT images. The generator
was also upgraded to the 3D case by employing volumetric kernels. Residual blocks force the
information in the initial image to be used throughout all layers of the neural network and
allow the neural network to remember the initial image up to the final high-resolution image
generation. Figure 3 presents detailed descriptions of the generator and discriminator. As was
discussed in the literature [27], the super-resolution method can enhance the image quality
when: (1) there is enough data to train the model (this depends on each case and should
be tested separately) and (2) the minimal feature to be increased is visible in low-resolution
images (for CT images, the damage size should be at least twice the spatial resolution).

The network was enhanced with the CycleGAN methodology [29], which allows the
use of unpaired images for training; the LR and HR data do not need to be aligned pixel-
by-pixel and do not need to depict the same image at all, just a similar one. CycleGANs
work by enforcing an inverse transformation; they translate a low-resolution image to look
like a high-resolution image without paired constraints during the training. The use of
such a GAN mitigates any inconsistencies caused by optical distortions, as the network
can operate on unpaired data. The final network architecture has over 8 million trainable
parameters and is shown in Figure 4. The following loss functions were used to train the
generator and discriminator: reconstruction, adversarial, and cycle losses.
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2.4. Data Processing and Neural Network Training

Python 3.8 and TensorFlow 2.9 frameworks were utilised to process the CT data,
implement the deep learning architecture, and train models. The learning process of neural
networks was performed on a workstation with a 12-Core Xeon 4214 processor, a 16 GB
Tesla V100 graphical card, and 64 GB of RAM.

Because deep learning and CT processing are hardware-intensive tasks, CT volumes
were divided into smaller volumes as follows: 32 × 32 × 32 pixel3 for low-resolution
images and 128 × 128 × 128 pixel3 for high- and super-resolution images. We used a
volume overlap of 3 pixels for low-resolution and 12 pixels for high-resolution images. The
total training data set consisted of 4560 LR and HR small volumes.

ADAM stochastic gradient descent solver [44] was applied for the model optimisation
with β1 = 0.9. The mean square error (MSE) loss function was implemented as a cycle loss
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for pixel-wise comparison between LR and cycled LR images for LR generators. RaGAN
(Relativistic average GAN) loss function was used for the generator and the discriminator
adversarial training process [45]. The total loss function was the weighted sum of all losses
with the weight of cycle loss equal to 10 and GAN losses equal to 1, as in [29]. The training
was performed with mixed precision [46].

Low-resolution volumes were enhanced by super-resolution and full-scale SR images
were obtained. The overlap allowed us to perform the enhancement almost seamlessly.

2.5. Fibre Break Identification

The reference data for fibre break locations were obtained by several manual in-
spections of images for fibre break analysis, which were performed in detail on the last
volume before failure [2,36]. For the specimen with 17 volumes to be analysed, it can take
3–5 working days to identify all the fibre breaks once everything is set up. These difficulties
are related to the high fibre break density, which can reach 1000 breaks/mm3.

For this paper, all darker regions are called voids, including possible fibre breaks and
cracks. For image segmentation, three segmentation algorithms were analysed: RootPainter,
ImageJ with Weka segmentation plugin, and InSegt. A modified RootPainter algorithm [47]
was implemented for fibre and void cross-section identification as the algorithm with the
best performance and fast segmentation speed. Weka segmentation [48] showed similar
segmentation results but at a much slower speed. The InSegt algorithm [49] and the classical
ImageJ segmentation are only applicable to fibres and do not work well to segment voids.

The RootPainter algorithm is based on deep learning techniques and implements
a U-Net network for image segmentation with a batch size of 4 and 3 × 3 kernels. The
network was trained according to the RootPainter documentation. The training was
performed interactively on partially annotated images, and later on corrective annotations,
until the algorithm produced satisfactory results. To locate fibre centre points, only the
central parts of the fibres without edges were used for training. Part of the InSegt Fibre
code [49] was implemented for fibre trajectory tracking. All voids were analysed in 3D
with the MATLAB “regionprops3” function and then filtered to remove noise (voids less
than 1000 pixels in volume) and very large objects (more than 105 pixels in volume), which
were analysed manually.

Two methods were used to distinguish the fibre breaks from the voids. The first method
searched for fibre sections above and below a void along the smallest diameter of a fitted
ellipsoid; the voids located between the fibre sections are considered to be fibre breaks. The
second method required a CT image of the initial state of the specimen. The resolution of the
initial state image was also increased with super-resolution, and a MATLAB image registration
algorithm was implemented to align the initial state image with the loaded state images. The
voids intersected by the initial fibre trajectories were considered fibre breaks, as was the case
in [2], for higher-quality CT scans of stepwise loaded specimens. In the second method, the
distance from the centre of the void to the fibre sections was considered to decide on the
intersection, in order to avoid false identification due to image artefacts.

The clustering of fibre breaks was analysed according to geometric criteria based on
stress redistribution caused by a fibre break. In line with [2], two fibre breaks are considered
to belong to the same cluster if their centre points are located in the same cylindrical volume
with a radius of 13 µm (2 fibre diameters) and an axial length of 97.5 µm (15 fibre diameters).

The accuracy of fibre break identification was analysed using statistical classification [50].
In this study, we labelled an identification as a true positive when correctly indicating the
presence of a fibre break, a false negative when incorrectly indicating the absence of a fibre
break, and a false positive when incorrectly indicating the presence of a fibre break. The
accuracy defines how close the automated algorithm gets to the number of fibre breaks that
were manually identified. Accuracy was calculated using the following equation:

Accuracy =
true positive

true positive + f alse negative + f alse positive
(1)
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For semi-automatic identification, the fibre breaks manually identified from large-
fused objects are also taken into account and false positives are checked. The miss rate
indicates the percentage of fibre breaks that were not found by the automated algorithms.

Miss rate = 1 − true positive
true positive + f alse negative

(2)

3. Results and Discussions
3.1. Image Processing

SRCT images of a continuously loaded (in situ) specimen were analysed as a validation
set. Compared to statically acquired images, in situ images not only have a lower resolution
but also higher noise and less precise edges of the objects due to movement during image
acquisition. For example, voids in the in situ image are not represented as spheres or
ellipsoids, but as vortex artefacts with the void as their centre (see Figure 5). This creates
additional difficulties for image processing.
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Super-resolution algorithms were applied to the in situ synchrotron images. Figure 6
presents the enhanced images. The resolution of the image was increased from 1.1 µm/pixel
to about 0.3 µm/pixel; the size of LR images was increased from 1059 × 448 × 1665 px3

(1.4 GB) to SR images of 4236 × 1792 × 6660 px3 (90 GB). A significant improvement in image
quality can be observed: fibre cross-sections become more visible, the fibre edges become
defined enough to be visually and computationally distinguished, and fibres do not blend
into each other anymore. Stitching artefacts can be found upon careful inspection of the centre
of the image in Figure 6a. However, the stitching quality is good and does not affect the image
analysis. Overall, the image becomes more suitable for automatic processing. As we do not
have ground truth HR images of 34-700 material to compare with SR images, we cannot use
image-related metrics (such as peak signal-to-noise ratio) for quantitative assessment.

Despite the significant quality improvement, deep learning deviations are present:
(1) several fibres are not round anymore, (2) in rare cases, the edges of the fibres can
seamlessly merge into the matrix (white arrow on Figure 6a), and (3) in the most challenging
cases, where all the fibres are merged in the original image, a few reconstructed fibres can
be not easily detected by the human eye (Figure 6b). However, when deep learning (U-Net)
segmentation is used, all the fibres are correctly segmented; the model reliably identifies
fibres even in difficult cases where fibres are represented by small greyscale gradients.

The quality of the reconstruction is consistent along the volume in all directions. There
are no large variations in the quality enhancement, such as the position of fibre edges
or greyscale inconsistencies. This is achieved by using a 3D filter in the super-resolution
model and seamlessly stitching small batches into the whole volume.

Fibre segmentation by the U-Net neural network allows fibres to be identified reliably
on each slice and to be tracked along the volume. Figure 6c presents the result of the fibre
tracking, where each fibre is represented as a line with a random colour. Fibre segmen-
tation and tracking are essential because finding and identifying fibre breaks correctly is
impossible without accurate fibre tracking.

The majority (more than 90%) of the fibres are tracked along the entire volume without
interruption or loss of tracking. This suggests that super-resolution and deep learning
segmentation can be used to enable automatic fibre tracking in low-resolution CT images
of fibre-reinforced composite materials.

In low-resolution images (see Figure 5), due to the continuous fast scanning, the
representation of voids consists of a few different artefacts; void vortices (only visible in
3D), the size of fibre breaks being much larger than the fibre cross-section, and voids can be
superimposed by fibres, beam hardening, and grey scale inhomogeneities around voids.
As these types of defects are not present in the training data, the super-resolution algorithm
improves the clarity of not only the fibres and voids but also the artefacts present in the
original image. This presented a challenge in segmenting the voids and accurately locating
their centres for further analysis. The results of the super-resolution enhancement of voids
are accurate in most cases. Figure 7a shows one such example. The void is more clearly
visible without the small dark artefacts that appear between the fibres due to their tight
packing. The same effect of false voids was observed in the training data. The U-Net
segmentation accurately identifies the boundaries of the void, allowing us to locate its
centre with sufficient accuracy to identify fibre breaks.

Figure 7b displays one of the most challenging cases of fibre break quality enhance-
ment. In this example, the fibre break has a pronounced vortex artefact, which increased the
void size in the super-resolution image. Figure 7b presents the segmentation of this dark
region. Despite the artefacts, and shape and size differences, the centre of the segmented
fibre break is located in the correct place due to the symmetry of the 3D vortex artefact.

Figure 5b shows the 3D visualisation of the segmented voids. The 3D visualisation
shows the vortex artefacts of the voids. Unfortunately, it was not possible to train the
segmentation algorithm to identify only the voids without the artefacts.
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algorithm was not able to identify it automatically.

3.2. Fibre Break Identification

Fibre breaks are found amongst the segmented voids. After manual analysis of a
few fibre breaks, an average volume was calculated, which mostly varies between 1000
and 50,000 pixels in volume and the diameter of circumscribed ellipsoids is longer than
20 pixels. After filtering according to these parameters, only voids that could potentially be
fibre breaks remain. The voids with a volume much larger than the volume of the average
fibre break are treated separately, as such voids may represent a cluster of fibre breaks.

Fibre break identification is performed according to the procedures described in
Section 2.5, where only a central point of the fibre break is recorded (see Figure 6). Using
the first method, if an initial stage image is not available, then the accuracy of the fibre
break detection depends strongly on the search window and the number of slices used in
the analysis. If the search parameters are taken from the statistical analysis of void and fibre
size (how many slices a void occupies), then the accuracy of the fibre break identification



Polymers 2023, 15, 2206 12 of 17

is not as high (see Table 2). However, if the search parameters are optimised (by trial and
error), the accuracy of fibre break identification will increase, but will still not be sufficient
for flawless identification of all fibre breaks.

Table 2. Statistics of the automated fibre break identification with both methods.

98% Load
Method 1

(Stat.)

98% Load
Method 1

(Opt.)

98% Load
Method 2

94% Load
Method 1

(Opt.)

94% Load
Method 2

75% Load
Method 1

(Opt.)

75% Load
Method 2

Manual 299 299 299 248 248 78 78
True positive 258 266 272 225 230 74 75
False positive 70 51 33 43 25 14 6
False negative 41 33 27 23 18 4 3
Large objects 79 79 79 39 39 1 1

Breaks from large objects 18 18 18 12 12 1 1
Automatic accuracy 0.70 0.76 0.82 0.77 0.84 0.80 0.89

Semi-automatic accuracy 0.79 0.86 0.92 0.85 0.93 0.82 0.92
Miss rate (%) 8.2 5.3 3.2 4.7 2.5 3.9 2.6

If a scan before loading is available, then the second method can be used. This method
provides better results, and there is only one parameter to optimise, the minimum distance
from a void centre to the fibre trajectory, in order to consider the analysed void as a fibre
break. Table 2 presents the results of the fibre break identification using both methods.

The accuracy of the fibre break identification is lower when analysing volumes with
a large number of fibre breaks. This is because the algorithm is not able to recognise
individual fibre breaks in densely packed fused objects, as shown in Figure 5.

At this stage of image processing, it is challenging to separate such clusters into
individual voids. During the image processing, such clusters could be handled manually
by an operator who would be shown the low-resolution, super-resolution, and segmented
images, similar to Figure 7, and the operator can decide if there is a fibre break in the
images. The operator could remove all the false positive errors from the results, leaving
only false negatives unidentified. Using this approach with super-resolution analysis, it
is possible to identify most fibre breaks in low-resolution images of continuously loaded
specimens in a reasonable amount of time.

Fibre breaks were clustered using the geometric criteria described in Section 2.5: fibre
break identification. For clusters, we used the results from the second method when
the initial image was analysed. Table 3 summarises the results of the fibre break cluster
identification, where we can see small differences in cluster identification (see Figure 8c).
This is because the automated algorithm and an operator cannot locate the centre of the fibre
break with the same coordinates. The average distance between manual and automatically
calculated coordinates is about 4.7 µm and can be up to 10 µm for large fibre breaks or fused
objects. These deviations are comparable to the radial distance of 13 µm in the geometric
criteria and can affect the clustering of the fibre breaks.

Table 3. Number of fibre break clusters identified with the manual and automated inspection methods.

1-Plet 2-Plet 3-Plet 4-Plet 5-Plet 7-Plet

98% load
manual 175 43 7 0 2 1

auto 170 41 7 0 2 1

94% load
manual 145 34 6 0 2 1

auto 147 29 6 0 2 1

75% load
manual 45 10 1 0 2 0

auto 42 9 2 0 2 0
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Image processing of the enhanced images takes a considerable amount of time. Once
the super-resolution network was trained, the SR application took about four hours to
increase the resolution of the whole volume, six hours to segment an SR image into fibres
and voids, and one hour for image processing, tracking fibre trajectories, calculating void
sizes, and identifying fibre breaks. In addition, approximately one hour of manual work
was required to analyse large objects and eliminate false positives for the image before
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failure (79 large objects and 328 potential fibre breaks were checked). This is much faster
than the 3–5 working days required for manual analysis, especially when considering that
one hour of hands-on time was required.

Super-resolution can increase the speed of identification not only of fibre breaks in
unidirectional composites but also of other manufacturing defects in composite materials
such as delamination, matrix cracking, voids, or porosity. The developed algorithm can
help researchers working on models for strength assessment based on fibre breaks. One
can try to train the algorithm on one material and transfer the super-resolution capabilities
to other similar materials, such as demonstrated by training on T700SC and validating
on 34-700WD. However, there are limitations to using machine learning algorithms on
data that are significantly different from the training dataset; such algorithms will not be
able to work with significantly distinct data. If a new type of feature is introduced in the
images, machine learning algorithms will produce unexpected results and miss important
features. One reason why features may be missed after SR is that, in low-resolution images,
there is not enough information about them to reconstruct correctly. The spatial resolution
of the LR image determines the minimum feature size that can be reconstructed, which
should be at least two pixels per feature size. Another reason is that the features are not
well represented in the training data, in which case the model can fill in the feature with
the structure it is most familiar with [51]. For example, in this work, the neural network
was unable to correctly remove vortex artefacts and improve the quality of all voids. The
limits on how significantly the images can differ from each other remain a topic for further
research. Furthermore, future work could be devoted to the investigation of more versatile
neural networks that are trained on different materials at different resolutions.

4. Conclusions

A super-resolution algorithm has been designed and applied in order to improve
the image quality of low-resolution synchrotron CT scans. The algorithm is based on
deep learning architecture developed by combining Enhanced Super-Resolution GAN and
CycleGAN. The neural networks were trained on high-resolution and low-resolution scans
of a stationary carbon fibre composite and applied to another much larger low-resolution
image of a continuously loaded specimen.

As a result, the super-resolution images have more precise fibre and void boundaries
with only minor deep learning-based artefacts. To segment the images, we chose Root-
Painter software, which was the most suitable algorithm for our case. With this software,
precise identification of fibres and voids was achieved. The quality of the segmentation
allows the study of fibre trajectories and void locations.

Super-resolution processing enabled automated identification of fibre breaks using
void location and fibre trajectories. Two algorithms have been implemented: one using
the information from only the loaded image and the other using fibre trajectories from the
unloaded image. The average accuracies of the methods are 76% and 82%, respectively,
for the fully automated process and 86% and 92% for the semi-automated process with a
miss rate of less than 5.3%. The fibre break clustering outputs similar results, with minor
deviations, due to inconsistent fibre break centre locations. Super-resolution makes it possi-
ble to use faster, low-resolution in situ CT scans on continuously loaded specimens with
limited compromises on the quality of physical parameter identification. The developed
methodology can be used for faster, but less accurate, fibre break identification for strength
assessment models.
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