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Abstract: As a template-free, data-driven methodology, the molecular transformer model provides
an alternative by which to predict the outcome of chemical reactions and design the route of the ret-
rosynthetic plane in the field of organic synthesis and polymer chemistry. However, in consideration
of the small datasets of chemical reactions, the data-driven model suffers from the difficulty of low
accuracy in the prediction tasks of chemical reactions. In this contribution, we integrate the molecular
transformer model with the strategies of data augmentation and normalization preprocessing to
accomplish the three tasks of chemical reactions, including the forward predictions of chemical
reactions, and single-step retrosynthetic predictions with and without the reaction classes. It is clearly
demonstrated that the prediction accuracy of the molecular transformer model can be significantly
raised by the use of proposed strategies for the three tasks of chemical reactions. Notably, after the
introduction of the 40-level data augmentation and normalization preprocessing, the top-1 accuracy
of the forward prediction increases markedly from 71.6% to 84.2% and the top-1 accuracy of the
single-step retrosynthetic prediction with additional reaction class increases from 53.2% to 63.4%.
Furthermore, it is found that the superior performance of the data-driven model originates from the
correction of the grammatical errors of the SMILES strings, especially for the case of the reaction
classes with small datasets.

Keywords: chemical reaction; retrosynthesis; data augmentation; machine learning; molecular
transformer model

1. Introduction

The prediction of chemical reactions and the design of a synthetic route are the key
steps involved in the problem-solving tasks of organic synthesis and polymer chemistry [1],
which is used to create new molecules from simple commercially available compounds.
Because of its complexity, organic synthesis is believed to be one of the main bottle-
necks in the preparation of organic molecular materials, as well as the discovery of novel
medicines [2—4]. Accurate models to predict the output of chemical reactions could boost
chemists’ productivity by reducing the number of experiments to be performed [1,5-13].

Machine learning has long been presented in the chemical domains, tackling the chal-
lenges associated with structure-activity relationship predictions [14-17], virtual screen-
ing [18-21] and quantum chemistry [22-25]. Enabled by algorithmic advances in deep
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Licensee MDPL, Basel, Switzerland. learning and the availability of reaction datasets, the methods used to predict chemical

reactions have advanced in recent years [26-31]. In particular, the chemical compounds
can be equivalently expressed as text sequences, such as the simplified molecular-input
line-entry system (SMILES) [32]. The tasks of chemical reaction prediction can be regarded
Attribution (CC BY) license (https:// S @ problem of translating natural language in machine learning, where the objective is
creativecommons.org,/ licenses/by/ to map a text sequence of reactant compounds to a text sequence of product compounds.
40/). In order to achieve the tasks, a neural sequence-to-sequence model was developed to
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realize the completely end-to-end prediction of forward reaction without the need of any
atom-mapped reaction instances [28]. Unfortunately, the model does not enhance accuracy
significantly over the rule-based method and provides a large number of chemically er-
roneous results. Recently, the transformer architecture has demonstrated the benefits of
machine translation [33]. It is only dependent on the self-attention mechanism, allowing
for the extraction of both local and global characteristics regardless of the separation be-
tween the input and output sequences. For instance, Schwaller applied the transformer
model to predict the consequences of chemical reactions and obtained cutting-edge findings
(Figure 1a) [34].
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Figure 1. Schematic diagram of the workflow for the chemical reaction predictions. (a) Original
workflow: the transformer model is used to predict the consequence of chemical reactions. (b) Our
proposed workflow: the strategies of data augmentation and normalization preprocessing are incor-
porated into the transformer model in order to improve the prediction accuracy.

Although the transformer model can learn the chemical knowledge from data sets
without human intervention, the prediction accuracy of these methods is relatively low
due to a small, non-normalized dataset [31]. As an important tool in artificial intelligence
(AI), data augmentation, which provides the same entity with numerous representations,
can be utilized to overcome the restriction of limited amounts of data. More recent works
have demonstrated the successful implementation of data augmentation in a variety of
neural networks [35-37]. A chemical reaction can be represented by several strings via the
SMILES enumeration, and the data-augmented model can learn more about a reaction by
employing a batch of randomly chosen SMILES strings. Therefore, in conjunction with
the normalization preprocessing of the SMILES strings, the data augmentation by the
SMILES enumeration provides a clue regarding the promotion of the performance of the
transformer model in order to predict chemical reactions.

In this contribution, we incorporate the data augmentation and normalization prepro-
cessing strategies used by the SMILES strings into the transformer architectures, which are
schematically illustrated in Figure 1b. In comparison to the molecular transformer model
without data augmentation and normalization preprocessing, our proposed strategies have
the ability to significantly improve the accuracy of the model. In particular, the improved
model achieves excellent results in both forward and retrosynthetic predictions, with top-1
accuracies of 84.2% and 63.4%, respectively. Furthermore, the grammatically invalid rate of
the predicted results is analyzed.

2. Dataset and Methods
2.1. Dataset

The reaction data for the training of model were obtained from Lowe’s work [38]. The
dataset we utilized contains 50,000 reaction items (designated as USPTO-50K), which is a
common benchmark in the field of the Al-assisted prediction of chemical reactions. Inspired
by Liu et al. [31], the items in the dataset were divided into 10 reaction classes. Figure 2
shows the reaction class (denoted as Rx_n), reaction name and the corresponding number
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in the dataset of USPTO-50K. In comparison with the cases of heteroatom alkylation and
arylation (Rx_1), acylation and related processes (Rx_2), and deprotections (Rx_6), the data
of heterocycle formation (Rx_4), protections (Rx_5), oxidations (Rx_8) and functional group
addition (Rx_10) are extremely scarce in the dataset of USPTO-50K. It should be mentioned
that a larger dataset is required to achieve a reliable model for the prediction of chemical
reactions, especially for the transformer-based architecture of Al-assisted models.

Rx_7: Reductions Rx_8: Oxidations Rx_9: Functional group interconversion Rx_10: Functional group addition
(4585) (814) (1834) (227)

Rx_6: Deprotections V
(8353)

_ Rx_1: Heteroatom alkylation and arylation

(15122)
Rx_5: Protections
(650)
Rx_4: Heterocycle formation ~ Rx_3: C-C bond formation Rx_2: Acylation and related processes
(900) (5639) (11913)

Figure 2. Distribution of reaction classes within the USPTO-50K. Rx_n denotes the reaction class as
well as the corresponding name and number listed below.

2.2. Data Preprocessing

Data augmentation can provide a more detailed description of molecules by enu-
merating various SMILES strings, and can enable the model to obtain more unique data
points from the data. As a promising method of data augmentation in cheminformatics,
the SMILES enumeration has the ability to expand the amount of SMILES strings for each
molecule. It has been demonstrated that the Al-assisted models trained by a batch of
random SMILES strings (i.e., data augmentation) outperform the canonicalization pro-
cess [37-41], especially when the training set is small. The data augmentation strategy
is achieved by the SMILES enumeration on the basis of the chemical information library
RDKit. The atomic order of molecules can be randomly selected in the RDKit molar format,
where different atomic orders result in different SMILES strings. As schematically illus-
trated in Figure 3a, the starting atom and the direction of the molecular graph are randomly
chosen in the SMILES enumeration (also known as the “random” SMILES), resulting in
N-level data augmentation. Note that the strategy of data augmentation is only performed
on the training dataset via the method of SMILES enumeration.

Generally, the SMILES strings are tokenized in order to obtain a token-based SMILES
before it is input into the transformer model. However, the token-based SMILES strings are
not suitable for the transformer model, because they are not total charactered. Therefore,
before inputting the data into the molecular transformer model, the character-based method
is used to normalize the SMILES strings of the augmented dataset. Figure 3b shows an
example of the normalization preprocessing for the SMILES string of molecules, which
splits the reactants and products into characters. The normalized strings act as the input of
the molecular transformer model.
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Figure 3. (a) An example of data augmentation by the SMILES enumeration. All the SMILES
strings represent the same compound and the canonical SMILESs are listed in the dataset of USPTO-
50K. (b) An example of normalization preprocessing for the input SMILES. The normalization
preprocessing splits the SMILES into a string of characters.

2.3. Model

In this study, the molecular transformer model was used to predict the chemical
reactions of organic compounds. Using the molecular transformer model, we carried out
three tasks: forward predictions of chemical reactions and single-step retrosynthesis with
and without additional reaction classes. In the task of forward predictions, the reactants
acting as the input of the Al-assisted model were used to predict their output, namely the
products of chemical reactions. In contrast, the retrosynthetic tasks that corresponded to the
prediction of reactants from the given products with and without additional reaction classes
acted as the input of the model. Following previous works [31,42], we used accuracy as the
evaluation metric. The reported accuracies describe the percentage of correct reactions. A
reaction was counted as correct only if the predicted products/reactants exactly matched
the chemical compounds reported in the literature after the canonicalization. Details of the
architecture of the model are provided in ref [33,34].

The USPTO-50K dataset was partitioned into a 45K /5K train/test split. We used a
beam search with a size of 10 to decode the top-k outputs. This work was built on the
Open-NMT-PyTorch packages [43]. The data augmentation of the SMILES enumeration
was performed with a Python script (v3.7) utilizing the RDkit (v2019.03).

3. Results and Discussion

In conjunction with the data augmentation and normalization preprocessing of the
USPTO-50K dataset, the molecular transformer model was used to accomplish the three
tasks of chemical reactions, including the forward predictions of chemical reactions, and
single-step retrosynthetic predictions with and without the reaction classes.

3.1. Model Performance on Forward Predictions of Chemical Reactions

In the task of forward predicting chemical reactions, the input and output of the
molecular transformer model are the reactants and products, respectively. To verify the
effectiveness of data augmentation and normalization preprocessing, we implemented a
series of training tasks with various N-levels of SMILES enumeration and character-based
preprocessing to evaluate the performance of the molecular transformer model. N-level
data augmentation corresponds to each chemical compound with N different SMILES
representations. Note that the 1-level corresponds to the case of the original dataset
of USPTO-50K.

Figure 4 shows the effect of N-level data augmentation on the performance of the
data-driven model with and without the normalization preprocessing. One can importantly
deduce that the introduction of data augmentation results in a significant improvement
in the model performance, in comparison with the original dataset of USPTO-50K (i.e.,
1-level). In particular, the top-1 accuracy increases from 71.6% to 76.2% as the 5-level data



Polymers 2023, 15, 2224

50f13

augmentation is applied to the original dataset of USPTO-50K without the normalization
preprocessing. With 10-level data augmentation, the top-1 accuracy continues to be im-
proved, reaching 80.1%. As the levels of data augmentation are further increased, the
top-1 accuracy can reach 83.2% at the 40-level data augmentation, but the improvement
magnitude is no longer as obvious as that of 5- and 10-level data augmentation. Similarly,
in comparison with the original dataset, the top-3, top-5 and top-10 accuracies can be
improved after the introduction of data augmentation into the data preprocessing.

(a) 90 “ (b) 90 1

—(O— With normalization prcprnccs’sing
- —(O— Without normalization preprocessing
X 85} <
7 —8 85 —0
] oy o)
S 80 £
s =
3 g
- = 80
i Lar]
a2 75F L
5 -9
& [
7[) A i A i 1L ".‘ . 75 A A 2 i A 7h 2
1 5 10 15 20 40 1 5 10 15 20 40
N . N
(C) o " (d) 9 2
~ 85 —Q g
g ’_‘,O ga _F/O
H 585 —0
g &
v, 80 -
z T
= &
75 — . . — 80 P 2 . N sh N
1 5 10 15 20 40 1 5 10 15 20 40
N N

Figure 4. Effect of N-level data augmentation on the model performance for the predictions of
forward chemical reactions. (a) Top-1, (b) top-3, (c) top-5 and (d) top-10 accuracies of the data-driven
model with and without normalization preprocessing.

Another important outcome is the better performance of the molecular transformer
model, which is identified through the introduction of normalization preprocessing; this is
shown in Figure 4. In most cases, the accuracy of the data-driven model with normalization
preprocessing is better than that without normalization preprocessing. For example, the
top-1, top-3, top-5 and top-10 accuracies noticeably increase ~5.0% for the 1-level data
augmentation. As the normalization preprocessing is applied to the treatment of the
SMILES strings, the accuracies of the data-driven model are increased by different degrees.
In particular, the top-1 accuracy can reach 84.2% at the 40-level data augmentation and
normalization preprocessing.

To understand why a better performance is observed for the data augmentation
and normalization preprocessing, we analyze the incorrect predictions of the molecular
transformer model. Considering the easily quantifiable count of grammatically invalid
results output by the SMILES strings, we only evaluate the grammatically invalid rate
for the output of the molecular transformer model. Figure 5 shows the comparison of
invalid rates in terms of the top-1, top-3, top-5 and top-10 accuracies under different
N-levels of data augmentation. As expected, the data augmentation significantly reduces
the grammatically invalid rate of prediction results. For example, the grammatically invalid
rate of top-1 accuracy has a value of 7.95% (Figure 5a). When the SMILES enumeration
preprocessing is incorporated into the data-driven model, the grammatically invalid rate of
top-1 accuracy notably decreases to 0.72% with the 5-level data augmentation, and to 0.24%
with the 40-level data augmentation. Similar observations are also identified in the cases of
the top-3, top-5 and top-10 accuracies. Namely, the grammatically invalid rate continues to
decline with an increase in the number of augmented SMILES strings.
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Figure 5. Comparison of invalid rates in terms of the top-1, top-3, top-5 and top-10 accuracies for
the model (a) without and (b) with normalization preprocessing under different N-levels of data
augmentation. For the sake of clarity, a break is shown in the y axis.

Figure 5a,b also show the invalid rates of the data-driven model without and with
normalization preprocessing, respectively. Similar to the case of data augmentation, the
grammatically invalid rate is generally reduced by an introduction of normalization pre-
processing into the molecular transformer model. In particular, the grammatically invalid
rate of top-1 accuracy notably reduces from 7.95% to 2.32% after the introduction of nor-
malization preprocessing. Because the invalid rate is very low with the high-level data
augmentation, the impact of normalization preprocessing becomes weak. Taken together,
these results obtained from Figures 4 and 5 suggest that the introduction of data aug-
mentation and normalization preprocessing can be harnessed to efficiently improve the
performance of the molecular transformer model for the prediction of forward chemical
reactions, originating from the reduction in grammatically invalid outputs.

Figure 6 illustrates examples of the chemical reactions predicted by the molecular
transformer model with and without the data augmentation and normalization preprocess-
ing. Figure 6a,b show the predictions of a heteroatom alkylation and arylation reaction, as
well as a simple deprotection reaction for the case of data augmentation, respectively. The
original molecular transformer model predicts chemically unreasonable products. After
applying the data augmentation strategy, the improved model is able to successfully predict
the correct products. Figure 6¢,d show the predictions of a C—C bond formation reaction,
as well as a heteroatom alkylation and arylation reaction for the case of normalization
preprocessing, respectively. Similarly, the introduction of normalization preprocessing into
the data-driven model results in the correct predictions of products.

The findings identified above demonstrate the powerful ability of the model to rep-
resent a reaction with multiple SMILES strings and obtains additional information about
chemistry from the augmented training data. As a result, the molecular transformer model
can significantly reduce the grammatically invalid rate and achieve a high accuracy for the
forward reaction predictions. Furthermore, the normalization preprocessing improves the
performance of the molecular transformer model, which also originates from the correction
of the grammatical errors in the SMILES strings.

3.2. Model Performance on Single-Step Retrosynthesis without Reaction Classes

In the task of single-step retrosynthesis, the input and output of the molecular trans-
former model are the products and reactants, respectively. Note that the reaction classes
are not included in the input of the data-driven model. Figure 7 shows the effect of the
N-level data augmentation on the performance of the model with and without the normal-
ization preprocessing. Similar to the forward reaction predictions, the top-1 accuracy of
the molecular transformer model is improved by the introduction of data augmentation
and normalization preprocessing. In particular, the top-1 accuracy can achieve 50.2% for
the 40-level data augmentation. However, with the introduction of the data augmentation,
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the top-3, top-5 and top-10 accuracies decrease, arising from the diversity of the predicted
molecules in the task of retrosynthesis.
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Figure 6. Examples of the predictions of forward chemical reactions from the molecular trans-
former model with and without (a,b) the data augmentation and (c,d) normalization preprocessing.
(a,d) Heteroatom alkylation and arylation reaction, (b) deprotection reaction and (¢) C—C bond
formation reaction. The molecular transformer model with (without) the data augmentation and nor-
malization preprocessing predicts the correct (incorrect) products enclosed by the orange (blue) boxes.
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Figure 7. Effect of N-level data augmentation on the performance of the data-driven model for the
predictions of single-step retrosynthesis without reaction classes. (a) Top-1, (b) top-3, (c) top-5 and
(d) top-10 accuracies of the model with and without normalization preprocessing.

To further elucidate the trend, we can plot the top-X (X =1, 3, 5 and 10) accuracies
of the model before and after normalization preprocessing under various levels of data
augmentation (Figure S1 of Supplementary Materials). Regardless of the N-level of data
augmentation, the top-X accuracy generally improves with an increase in X. It should be

pointed out that the performance of the model becomes saturated as the N-level of data
augmentation is increased.
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Figure 8 shows the effect of N-level data augmentation on the grammatically invalid
rates. As expected, the grammatically invalid rate continues to decrease with an increase in
the number of augmented SMILES and the introduction of normalization preprocessing.
For example, for the original dataset of USPTO-50K, the grammatically invalid rate of top-1
accuracy reduces from 8.78% to 2.88% after the introduction of normalization preprocessing
into the data-driven model. As the 40-level data augmentation is applied to the model, the
grammatically invalid rate of top-1 accuracy reduces to 0.22%, corresponding to the higher
performance of the molecular transformer model for the task of single-step retrosynthesis.
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Figure 8. Effect of N-level data augmentation on the grammatically invalid rates. (a) Top-1, (b) top-3,
(c) top-5 and (d) top-10 accuracies of the data-driven model with and without normalization preprocessing.

Figure 9 illustrates examples of the predictions of single-step retrosynthesis produced
by the molecular transformer model with and without the data augmentation and nor-
malization preprocessing. For the simple substitution reaction and reduction reaction
(Figure 9a,b), the molecular transformer model for the original dataset of USPTO-50K
predicts chemically unreasonable reactants. After applying the data augmentation strategy
to data preprocessing, the data-driven model successfully predicts the correct reactants.
Similarly, the introduction of normalization preprocessing results in the correct prediction
of reactants for the functional group interconversion, as well as the heteroatom alkylation
and arylation reactions (Figure 9¢,d).

3.3. Model Performance on Single-Step Retrosynthesis with Reaction Classes

Unlike the task carried out in Section 3.2, the input of the molecular transformer model
includes the products and the reaction classes, which are listed in Figure 1. Namely, more
information about the chemical reactions is introduced to the data-driven model for the
prediction of retrosynthesis. Figure 10 shows the effect of N-level data augmentation on the
performance of the model with reaction classes. Similar to the results of the model without
the reaction classes, the top-1 accuracy of the molecular transformer model is improved by
the introduction of data augmentation and the normalization preprocessing. It is of note
that, because the additional information of the chemical class is introduced to the input of
the data-driven model, the prediction accuracies of the molecular transformer model are
higher than when the reaction classes are absent. In particular, with the introduction of data
augmentation and the normalization preprocessing, the top-1 accuracy can achieve a higher
value of 63.4%, which is currently the best performance for single-step retrosynthesis.
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former model with and without (a,b) the data augmentation and (c,d) normalization preprocessing.
(a) Substitution reaction, (b) reduction reaction, (c) functional group interconversion reaction, and
(d) heteroatom alkylation and arylation reaction. The molecular transformer model with (without)
the data augmentation and normalization preprocessing predicts the correct (incorrect) reactants
enclosed by the orange (blue) boxes.
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Figure 10. Effect of N-level data augmentation on the performance of model for the prediction of
single-step retrosynthesis with reaction classes. (a) Top-1, (b) top-3, (c) top-5 and (d) top-10 accuracies
of the model with and without normalization preprocessing.

In addition, a significant conclusion may be drawn from the observation of Figures 7 and 10.
Namely, with the 15-level data augmentation, the model shows excellent performance.
When the amount of data augmentation is low, such as 5-level or 10-level data augmentation,
the performance of the model is not noticeably enhanced due to the limited availability of
the database. The model learns to predict several representations of the same molecule
when trained on a high number of augmented SMILES, such as 20-level and 40-level data
augmentation. The model predicts many SMILES strings for the same molecule in various
ways. Therefore, the model with 15-level data augmentation shows excellent performance.
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Figure 11 shows the impacts of data augmentation and normalization preprocess-
ing on the grammatically invalid rates for the single-step retrosynthetic prediction with
additional reaction classes. In general, the grammatically invalid rate decreases with an
increase in the N-level of data augmentation and the introduction of normalization prepro-
cessing, especially for the case of 5-level data augmentation. In particular, by comparing
the grammatically invalid rates in Figures 8 and 11, one can importantly deduce that
the chemical classes provide additional information for the achievement of the superior
performance of the molecular transformer model, which is applied to the one-to-many task
of retrosynthetic predictions.
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Figure 11. Effect of N-level data augmentation on the grammatically invalid rates for the retrosyn-
thetic prediction with additional reaction classes as the input. (a) Top-1, (b) top-3, (c) top-5 and
(d) top-10 accuracies of the model with and without normalization preprocessing.

In order to further understand the impacts of the data augmentation and normalization
preprocess on the performance of the data-driven model, we evaluate the top-1 accuracy
and grammatically invalid rate in terms of the reaction class, which are shown in Figure 12.
The distributions of the reaction classes within the USPTO-50K are depicted in Figure 1.
The reaction classes Rx_1 (heteroatom alkylation and arylation), Rx_2 (acylation and related
processes) and Rx_6 (deprotections) have a large number of items, but the items of Rx_4
(heterocycle formation), Rx_5 (protections), Rx_8 (oxidations) and Rx_10 (functional group
addition) are extremely scarce. A common outcome is identified in Figure 12. For all the
reaction classes, the top-1 accuracies are significantly improved and correspondingly, the
invalid rates are reduced via the data augmentation and normalization preprocess in the
molecular transformer model.

More importantly, from the detailed observations in Figure 12, one can deduce another
important outcome. The accuracies of Rx_1, Rx_2 and Rx_6, with a large number of reaction
items, are relatively low. The most significant improvement in accuracy for the three
reaction classes is observed due to our strategies of data augmentation and normalization
preprocessing (Figure 12a). Meanwhile, the scarce Rx_4, Rx_5, Rx_8 and Rx_10 reaction
classes have relatively high accuracies, which can be also promoted by our proposed
strategies. However, a different trend is also observed regarding the change in the invalid
rates associated with the proposed strategies. As shown in Figure 12b, the Rx_4, Rx_5,
Rx_8 and Rx_10, which have a relatively small number of reaction items, have relatively
high invalid rates. After the introduction of our data augmentation and normalization
preprocessing strategies, their invalid rates significantly decreased.
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(a) Top-1 accuracies (b) Top-1 grammatically invalid rates
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Figure 12. (a) Top-1 accuracies and (b) grammatically invalid rate in terms of the reaction classes for
the single-step retrosynthesis. The blue lines correspond to the original UPSTO-50K dataset without
normalization preprocessing. The green and red lines are the 40-level augmented dataset without
and with normalization preprocessing, respectively.

The findings illustrated above prove the powerful ability of the proposed model
to represent a reaction using multiple SMILES strings and normalization preprocessing
in order to predict the outcome of retrosynthesis. Our proposed strategies for dataset
preprocessing are able to reduce the grammatically invalid rates and improve the accuracy
of the molecular transformer model. For the reaction classes with a large number of items,
our proposed strategies are able to significantly improve their prediction accuracy. For
the scarce reaction classes, the proposed strategies are able to significantly reduce their
grammatically invalid rate.

4. Conclusions

In this work, by virtue of the strategies of data augmentation and normalization
preprocessing, we use the molecular transformer model to accomplish the three tasks
of chemical reactions (i.e., the forward predictions of chemical reactions, and single-step
retrosynthetic predictions without and with the reaction classes). It is found that the
performance of such a data-driven model can be significantly improved by our proposed
strategies for the three tasks of chemical reactions. In particular, the top-1 accuracies
of forward and single-step retrosynthetic reaction predictions can, respectively, achieve
higher values of 84.2% and 63.4% with 40-level data augmentation and normalization
preprocessing, which are currently the best performance results for the tasks of chemical
reactions. It is clearly demonstrated that the superior performance of the data-driven model
originates from the correction of grammatical errors in the SMILES strings, especially for the
case of the scarce reaction classes. The data augmentation and normalization preprocessing
proposed in this study provide useful strategies by which to improve the prediction
capabilities of chemical reactions with a small dataset. We anticipate that these strategies
will be integrated into other machine learning models in order to further accelerate this
Al-assisted retrosynthetic route in the fields of organic chemistry and polymer chemistry.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/polym15092224 /51, Figure S1: The Top-X accuracies of the model
before and after normalization preprocessing at (a)1-, (b) 5-, (c) 10-, (d) 15-, (e) 20-, and (f) 40-level
data augmentation..
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