
Citation: Usmanova, A.; Brazhnikova,

Y.; Omirbekova, A.; Kistaubayeva, A.;

Savitskaya, I.; Ignatova, L.

Biopolymers as Seed-Coating Agent

to Enhance Microbially Induced

Tolerance of Barley to Phytopathogens.

Polymers 2024, 16, 376. https://

doi.org/10.3390/polym16030376

Academic Editors: Masoud Ghaani

and Stefano Farris

Received: 28 November 2023

Revised: 24 January 2024

Accepted: 26 January 2024

Published: 30 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Biopolymers as Seed-Coating Agent to Enhance Microbially
Induced Tolerance of Barley to Phytopathogens
Aizhamal Usmanova 1, Yelena Brazhnikova 1,2,* , Anel Omirbekova 1,2, Aida Kistaubayeva 1, Irina Savitskaya 1

and Lyudmila Ignatova 1,2

1 Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan;
aizhamalduszhanovna@mail.ru (A.U.)

2 Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University,
Almaty 050038, Kazakhstan

* Correspondence: polb_4@mail.ru

Abstract: Infections of agricultural crops caused by pathogen ic fungi are among the most widespread
and harmful, as they not only reduce the quantity of the harvest but also significantly deteriorate its
quality. This study aims to develop unique seed-coating formulations incorporating biopolymers
(polyhydroxyalkanoate and pullulan) and beneficial microorganisms for plant protection against
phytopathogens. A microbial association of biocompatible endophytic bacteria has been created,
including Pseudomonas flavescens D5, Bacillus aerophilus A2, Serratia proteamaculans B5, and Pseudomonas
putida D7. These strains exhibited agronomically valuable properties: synthesis of the phytohormone
IAA (from 45.2 to 69.2 µg mL−1), antagonistic activity against Fusarium oxysporum and Fusarium
solani (growth inhibition zones from 1.8 to 3.0 cm), halotolerance (5–15% NaCl), and PHA production
(2.77–4.54 g L−1). A pullulan synthesized by Aureobasidium pullulans C7 showed a low viscosity rate
(from 395 Pa·s to 598 Pa·s) depending on the concentration of polysaccharide solutions. Therefore, at
8.0%, w/v concentration, viscosity virtually remained unchanged with increasing shear rate, indicat-
ing that it exhibits Newtonian flow behavior. The effectiveness of various antifungal seed coating
formulations has been demonstrated to enhance the tolerance of barley plants to phytopathogens.

Keywords: polyhydroxyalkanoate; polysaccharides; dynamic viscosity; seed coating; beneficial
microorganisms; biocontrol

1. Introduction

According to the estimates of the Food and Agriculture Organization (FAO), 20–40%
of global crop losses are related to plant diseases, with 42% of those attributed to infections
caused by pathogenic fungi. Fusarium fungi are common pathogens of cereals, including
barley, and can cause diseases such as Fusarium head blight, seedling blight, root rot, and
Fusarium crown rot throughout their life cycle. In addition, many species of Fusarium are
capable of producing mycotoxins (deoxynivalenol, nivalenol, HT2/T2, zearalenone), even
in some cases in the absence of severe disease symptoms [1].

The use of microorganisms and their metabolites as bio-control agents is one of the
most promising methods for the effective and safe protection of plants. The widespread
use of antibiotics in the food industry, agriculture, and medicine leads to an increase
in antibiotic resistance of pathogenic microorganisms. In this regard, endophytes have
advantages over other biocontrol agents, as they are producers of many biologically active
metabolites, such as phenolic acids, alkaloids, quinones, steroids, saponins, tannins, and
terpenoids. Microbiological strategies for protecting agricultural crops are based on the
plant growth-promoting properties of these strains.

Biopolymers can also be used in the development of plant protection products against
phytopathogens. They are non-toxic and biodegradable and can be obtained from renew-
able sources, making them suitable for use in organic farming. Additionally, they can
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interact with many hydrophobic and hydrophilic compounds in more complex formu-
lations. Biopolymers play a protective role for plants against pathogenic fungi through
several mechanisms [2]. Polymers can directly interact with fungi, suppressing spore
germination and mycelium growth, as demonstrated, for example, with chitosan [3,4].
They can act as effective elicitors, inducing the plant immune system to fight pathogens [5].
They can also be used as carriers for active ingredients with controlled release [2].

Among biopolymers, the most used are carboxymethyl cellulose, chitosan, xanthan
gum, gum arabic, polyvinyl alcohol, starch, gelatin, polyacrylamide, and alginates. These
polymers are used for treating the seeds of turnips, tomatoes, chickpeas, corn, beans,
eggplants, okra, chili peppers, guar, pumpkins, cucumbers, lupine, clover, soybeans, and
wheat [6–8].

One of the promising microbial polymers for seed coating is pullulan. It is a water-
soluble, low-viscosity polysaccharide that has the property of biodegrading under the
action of microorganisms. Pullulan has oxygen barrier properties, excellent moisture reten-
tion, and also prevents the growth of pathogens. Additionally, pullulan is a prebiotic—a
substance that stimulates the growth and development of microorganisms [9,10].

Polyhydroxyalkanoates (PHAs) are of great interest as well, as they are non-toxic,
biodegradable, and biocompatible polymers [11]. Previous studies have reported the
use of PHA with the addition of polycaprolactone to obtain biodegradable films for rice
seed germination [12]. Furthermore, some PHAs exhibit antagonistic activity against
bacteria [13,14]. In our previous studies, we demonstrated that PHA produced by the
strain Pseudomonas fluorescens D5 has pronounced antifungal activity against Fusarium
graminearum, Fusarium solani, Fusarium oxysporum [15], and Penicillium expansum [16].

However, there is no information about the use of a mixture of PHA with pullulan
in the composition of seed coatings. Therefore, this work is aimed at developing unique
compositions for seed treatment, including effective microorganisms and biopolymers
(PHA and pullulan) as seed coating agents to enhance the microbially induced tolerance of
plants to phytopathogenic fungi.

The main objectives of the present study are as follows: (1) formation of a microbial
association with agronomically valuable properties, (2) investigation of the rheological
properties of polysaccharide solutions, and (3) study of various seed coating types for
barley tolerance to Fusarium.

This study is significant for a better understanding of the effect of seed coating on
the microbially induced tolerance of barley to phytopathogens. In this research, a new
opportunity is proposed for the use of pullulan as a seed coating agent, expanding the
areas of application for microbial polymers. The excellent gelling and thickening properties,
as well as the biodegradability and non-toxicity of the investigated biopolymers, pullulan,
and PHA, make them promising for use in antifungal formulations for seed treatments.

2. Materials and Methods

The following strains were used in the present study:

Bacillus aerophilus A2 (accession number OQ569360) isolated from leaves of peppermint
(Mentha piperita);
Pseudomonas flavescens D5 (accession number OP642636) isolated from flowers of common
chicory (Cichórium intybus);
Serratia proteamaculans B5 (accession number OR858823) isolated from the leaves of Iris;
Bacillus simplex B9 (accession number OR864231) isolated from the roots of wormwood
(Artemisia absinthium);
Pseudomonas putida D7 (accession number OR863903) isolated from the roots of Echinacea
(Echinacea purpurea);
Aureobasidium pullulans C7 (accession number OR864236) isolated from dark chestnut soil;
Bacillus thuringiensis C8 (accession number OR858828) isolated from the surface of apples.
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2.1. Production of IAA

To determine the amount of indole-3-acetic acid (IAA) produced by microorganisms,
a colorimetric method was employed. Isolates were cultivated in nutrient broth for 48 h at
28 ◦C. After incubation, the culture was centrifuged at 6000× g for 20 min. The supernatant,
with a volume of 1 mL, was mixed with 2 mL of Salkowski reagent. The optical density
was measured at 530 nm. The concentration of IAA was expressed in µg mL−1 [17].

2.2. The Antifungal Properties of Microorganisms

The antifungal activity was determined using the agar disk diffusion method. Bacteria
were cultured for 48 h in nutrient broth at 28 ◦C with aeration. Bacterial cultures were
spread on the surface of nutrient agar as a continuous lawn in a volume of 100 µL, and
after 48 h of growth, 5 mm diameter disks were cut. Disks with bacterial culture were
placed on Petri dishes previously inoculated with a continuous lawn of phytopathogenic
test cultures (Fusarium solani, Fusarium oxysporum) at a concentration of 106 spores mL−1. A
nutrient agar disk served as a control. The Petri dishes were incubated at 28 ◦C for 72 h.
The antifungal activity was assessed by measuring the diameter of the growth inhibition
zone of the tested phytopathogens [18].

2.3. Determination of Microbial Halotolerance

To assess the halotolerance of bacteria, nutrient agar medium supplemented with NaCl
at concentrations of 5%, 10%, 15%, and 25% was used. Microorganisms were inoculated
using the streak method. Strains capable of cultivation at different salt concentrations were
selected based on the research results.

2.4. PHA Production Assay

Strains producing PHA were cultivated in liquid MSM medium at 28 ◦C for 48
h at 150 rpm. The medium composition (g·L−1) was as follows: MgSO4·7H2O—0.1;
KH2PO4—0.68; K2HPO4—1.73; NaCl—4.0; NH4NO3—1.0; FeSO4·7H2O—0.03;
CaCl2·2H2O—0.02; and glucose—5.0 [19]. Subsequently, the suspension was centrifuged
at 6000× g for 10 min, the supernatant was decanted, and PHA was extracted from the
residue. Sodium hypochlorite and hot chloroform were added to the residue at a 1:1 ratio,
and the mixture was kept at 30 ◦C for 1 h. The suspension was then centrifuged at 6000× g
for 15 min, and the upper and middle layers were removed. The residue was precipitated
with a 1:1 mixture of ethanol and acetone, dried at 35 ◦C, and weighed [20].

2.5. Microbe–Microbe In Vitro Compatibility Test

Five bacterial strains (Pseudomonas flavescens D5, Bacillus aerophilus A2, Serratia myotis
B5, Bacillus simplex B9, and Pseudomonas putida D7) were used for in vitro compatibility test.
The agar diffusion method was selected to determine biocompatibility. Bacterial strains
were separately grown on nutrient agar at 28 ◦C for 24 h. Then, colonies were transferred
to nutrient broth and incubated overnight at 28 ◦C at 160 rpm [21].

A volume of 100 µL of the test microorganism (0.5 McFarland) was spread on the sur-
face of nutrient agar. Sterile filter paper disks (d = 5 mm) were inoculated with the overnight
bacterial culture adjusted to a concentration of 0.5 McFarland. Inoculated disks were placed
on Petri dishes (4 disks per each) with the test microorganism, and each was incubated in
darkness at 28 ◦C for 4 days. Experiments were conducted with three replicates.

2.6. Extraction of Polysaccharide

For the extraction of polysaccharides, the 4-day-old culture of A pullulans C7 and
3-day-old culture of B. thuringiensis C8 were centrifuged for 15 min at 10,000× g. The fungal
polysaccharide was precipitated with a double volume of 96% ethanol and the bacterial
polysaccharide with a triple volume of alcohol. The yield coefficient for biomass (P/X) was
calculated as a ratio of production of EPS to the dry biomass and expressed in percent. The
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yield coefficient for substrate (P/S) was calculated as a ratio of production of EPS to the
utilized glucose and expressed in percent [22].

2.7. Measurement of Dynamic Viscosity

The dynamic viscosity of the polymer’s solution with different concentrations—2,
4, 6, 8, 10, and 12% w/v—was performed using a rotational Ametek Brookfield DVPlus
viscometer with a ULA spindle, at different shear rates, ranging from 0.1 to 500 s−1 at
25 ◦C [23]. The viscosimetric analyses of the samples were performed at 25 ◦C.

2.8. Development of Various Options for Processing Barley Seeds

Various antifungal formulations for seed treatments were developed, including (1) bac-
terial strain suspension, (2) polymer mixture, and (3) bacterial strain suspension + polymer
mixture.

Bacterial strains were separately cultured in nutrient broth for 48 h at 180 rpm
and 28 ◦C. The cultures were then centrifuged at 6000× g for 10 min and resuspended
in a phosphate-buffered saline (PBS (g L−1), 8.0 NaCl, 0.2 KCl, 1.44 Na2HPO4, and
0.24 KH2PO4). The optical density of each bacterial suspension was adjusted to 108 CFU
mL−1 Strain suspensions were mixed in equal proportions.

The polymer mixture was prepared using PHA at a concentration of 0.05% and
pullulan at a concentration of 2% (wt./vol.), incorporated into phosphate-buffered saline.

For coating of seeds simultaneously in a bacterial suspension and a polymer blend,
PHA at a concentration of 0.05% and pullulan at a concentration of 2% (wt./vol.) were
introduced into a mixture of bacterial suspensions.

2.9. Pot Experiments

To conduct the research, barley seeds sterilized in a 5% sodium hypochlorite solution
were used. Subsequently, the seeds were rinsed with sterile water and sown on nutrient
agar medium [22] to ensure the absence of bacteria on the seed surface.

Phytopathogenic load conditions were simulated by introducing a suspension of the
phytopathogenic fungus F. oxysporum into the soil at a titer of 108 spores mL−1, with 2 mL
of the suspension per 100 g of soil.

Experiment options:

T1—Untreated seeds;
T2—Untreated seeds + Fusarium oxysporum;
T3—Seed treatment with bacterial suspension + Fusarium oxysporum;
T4—Seed coating with polymeric mixture + Fusarium oxysporum;
T5—Simultaneous seed coating with bacterial suspension and polymeric mixture of Fusar-
ium oxysporum.

Pre-sterilized seeds were immersed in various antifungal formulations, followed by
transferring the seeds to 0.1 M CaCl2. After coating, the seeds were dried for 20 min
before planting.

In each pot containing 300 g of sterile soil, 10 barley seeds were planted. The experi-
ment was conducted under sterile conditions with three replicates. The plants were grown
for 12 days.

2.10. Determination of Free Proline Concentration

The content of free proline was determined using a non-heated acidic ninhydrin
reagent prepared as follows: (1.25 g ninhydrin + 30 mL glacial acetic acid + 20 mL 6 M
H3PO4). A portion of fresh plant tissue from a leaf blade (200 mg) was homogenized in
10 mL of a 3% aqueous solution of sulfosalicylic acid and left for 1 h in a water bath at
100 ◦C.

Subsequently, 1.5 mL of glacial acetic acid, 1.5 mL of ninhydrin reagent, and 1.5 mL
of the prepared extract were poured into a clean test tube. The samples were incubated
for 1 h in a water bath at 100 ◦C and then rapidly cooled to room temperature. After



Polymers 2024, 16, 376 5 of 17

artificial cooling (using cold water or ice), the optical density of the reaction products was
measured at a wavelength of 520 nm using a spectrophotometer. Proline content values
were calculated using a calibration curve, constructed using chemically pure proline [24].

2.11. Determination of Chlorophyll Concentration

To obtain an ethanolic extract, 2 g of leaves were sliced and thoroughly ground in a
mortar, gradually adding 96% ethanol in small portions (a total of 10 mL). The extract was
centrifuged for 15 min at 6000× g [25]. Photocolorimetry was carried out using a spec-
trophotometer at wavelengths of 665 and 649 nm in a cuvette with an optical path length of
1 cm. The comparison cuvette was filled with 96% ethanol. The pigment concentration was
determined using the following formula:

Chla = 13.95 × A665 − 6.88 × A649

Chlb = 24.96 × A649 − 7.32 × A665

2.12. Preparation of the Extract for the Determination of Antioxidant Enzymes

Antioxidant enzyme activity was determined spectrophotometrically based on the
rate of NADH oxidation using the method [26]. For this purpose, plant material (1.5–2 g)
was homogenized with an extracting medium containing 50 mM K-phosphate buffer
(pH 7.5), 1 mM EDTA, 0.3%, 1 mM ascorbic acid, filtered and centrifuged (15 min, 8000× g).
The obtained supernatant was used to determine the activity of the enzymes.

2.12.1. Investigation of Catalase Activity

Catalase activity was determined using H2O2 according to the method [26]. The
reaction mixture consisted of 15 mM H2O2, 100 mM K-phosphate buffer (pH 7.0), and
0.1 mL of the sample. Changes in optical density were measured at 240 nm, and activity
was calculated using the extinction coefficient ε = 0.03 mM−1 cm−1. All experiments were
conducted in triplicate and expressed in units per milligram of protein.

2.12.2. Investigation of Ascorbate Peroxidase Activity

The activity of ascorbate peroxidase was determined in a medium with the following
composition: 50 mM K-phosphate buffer pH 7.0, 0.5 mM ascorbate, and 0.2 mM H2O2.
The reaction was initiated by adding 0.1 mL of the sample [27]. Changes in optical density
were measured at 290 nm. Enzyme activity was calculated using the extinction coefficient
ε = 2.8 mM−1 cm−1 and expressed as 1 mmol of ascorbate min−1 per mg protein.

2.12.3. Investigation of Guaiacol Peroxidase Activity

Guaiacol peroxidase activity was determined using a spectrophotometric method,
considering absorption due to guaiacol oxidation [28]. The reaction mixture consisted of
50 mM phosphate buffer (pH 7), 9 mM guaiacol, 10 mM H2O2, and 0.2 mL of the sample.
Optical density was measured at 470 nm for 1 min, and enzyme activity was calculated
using the extinction coefficient ε = 26.6 mM−1 cm−1, expressed as 1 mmol of ascorbate
min−1 per mg protein.

2.13. Statistical Analysis

All the data are presented as the mean ± standard deviation (SD) of three replicates.
The data were processed by the standard methods of one-way analysis of variance (ANOVA)
using the software Statistica version 10.0 (TIBCO Software Inc., Palo Alto, CA, USA).
Tukey’s honestly significant difference (HSD) test (p < 0.05) was performed for multiple
comparisons to estimate significant differences between means.
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3. Results
3.1. Characterization of the Biological Activity of Endophytic Bacteria

For the application of microorganisms both to enhance plant growth and to protect
them from adverse factors, a crucial step is the selection of strains possessing a set of
beneficial properties. In the first stage of the research, the agronomically valuable properties
of five endophytic bacterial strains were investigated (Table 1).

Table 1. Plant growth-promoting properties of bacterial strains.

Strains

Properties

IAA,
µg mL−1

Zone of Inhibition of
Phytopathogen Growth, cm Halotolerance

PHA Production,
g L−1Fusarium

solani
Fusarium

oxysporum 5% NaCl 15% NaCl

Pseudomonas flavescens D5 45.2 ± 2.1 a - 3.0 ± 0.1 b + 2.77 ± 0.07 a

Bacillus aerophillus A2 52.4 ± 2.1 b - - + 4.54 ± 0.08 b

Serratia proteamaculans B5 62.7 ± 2.1 c 2.6 ± 0.1 b - +

Bacillus simplex B9 - 2.1 ± 0.05 a 1.8 ± 0.05 a +

Pseudomonas putida D7 69.2 ± 3.1 c - - + +

Values are given as the mean ± SD. Values represented by the same letter are not significantly different according
to the Tukey test (p ≤ 0.05).

One of the well-known mechanisms for improving and regulating plant growth by
microorganisms is their ability to synthesize various phytohormones. The stimulation of
plant growth resulting from the application of microorganisms is predominantly associated
with their ability to synthesize auxins, primarily IAA [29]. All examined bacteria demon-
strated the ability to produce IAA (Table 1), except for the Bacillus simplex B9 strain. The
highest concentration of IAA was found in the Pseudomonas putida D7 strain (Table 1). The
amount of produced IAA varied between 45.2 and 69.2 µg mL−1 depending on the strain,
which is similar to or significantly higher than that observed in other endophytic bacterial
strains [30,31].

The next criterion for assessing the biological activity of the strains was the evaluation
of their resistance to adverse environmental factors.

Among the adverse factors of biotic nature, phytopathogenic microflora plays a key
role. Infections of agricultural crops caused by pathogenic fungi are among the most
widespread and harmful, as they not only reduce the quantity of the harvest but also
significantly degrade its quality due to the accumulation of mycotoxins [32]. One of the
positive effects of bacteria on crops is their ability to protect plants from phytopathogens
through direct and indirect mechanisms [33].

The study of the antagonistic activity of bacterial strains against Fusarium solani
and Fusarium oxysporum showed that three out of five strains inhibit the growth of phy-
topathogens (Figure 1). The zones of growth suppression ranged from 1.8 to 3.0 cm
(Table 1).

Salinization of soils is one of the most crucial abiotic stress factors that negatively
impact plant privity [34]. The application of salt-tolerant growth-promoting bacteria may
contribute to stress alleviation and enhance the resilience of crops grown in saline soils [34].

In the study of halotolerance, it was shown that all strains were resistant to a salt
concentration of 5%, and one strain, Pseudomonas putida D7, demonstrated the ability to
grow in a medium with 15% NaCl (Table 1, Figure 2). According to the classification,
the investigated strains are moderately halophilic, exhibiting optimal growth at NaCl
concentrations ranging from 3% to 15% (~0.5–2.7 M). Halophilic bacteria have several
advantages compared to other microorganisms, as they possess high metabolic activity,
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allowing them to grow in extreme conditions and produce a variety of valuable biologically
active compounds, including those with antimicrobial properties [35].
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D5—Pseudomonas flavescens D5, A2—Bacillus aerophillus A2, B5—Serratia proteamaculans B5, B9—
Bacillus simplex B9, D7—Pseudomonas putida D7.

PHA is a class of polyesters of various hydroxyalkanoic acids, which are synthesized
by many Gram-positive and Gram-negative bacteria and accumulate intracellularly [33].
In the present study, the strains Ps. flavescens D5 and B. aerophillus A2 demonstrated the
ability to produce PHA (Table 1).

3.2. Biocompatibility Assessment of Strains

Currently, the advantages of preparations based on microbial consortia over monocul-
tures are convincingly confirmed, as the biotechnological potential of microorganisms in
such preparations is more fully realized. There are several advantages of multi-component
preparations: multiplicity of action, synergistic effect, increased stability and adaptability
to different agro-climatic conditions, the ability to utilize inhomogeneous substrates in
composition, and more complete utilization of the functional capabilities of microorgan-
isms [36–38].

In the development of multi-strain inoculants, it is crucial to consider the type of
relationships between microorganisms and the possibility of their combination. Therefore,
the next stage of the research was the in vitro testing of the selected strains for compatibility
during their co-cultivation on a solid nutrient medium (Table 2).
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Table 2. Pairwise compatibility among bacterial strains.

Strain Pseudomonas
flavescens D5

Bacillus
aerophillus A2

Serratia
proteamaculans B5

Bacillus
simplex B9

Pseudomonas
putida D7

Pseudomonas flavescens D5

Bacillus aerophillus A2 +

Serratia proteamaculans B5 + +

Bacillus simplex B9 − − +

Pseudomonas putida D7 + + + −
«+»—compatible; «−»—incompatible.

It was shown that during co-cultivation, four out of five strains did not suppress
the growth and development of each other (Table 2), indicating their compatibility and
the possibility of including them in the composition of a multi-strain inoculant. The
identified biocompatibility of the studied strains indicates the absence of competition
between them and insensitivity to the produced extracellular metabolites with antagonistic
properties. An exception was the B.simplex B9 strain, which demonstrated pronounced
incompatibility with most of the investigated bacterial strains (Table 2). Thus, for seed
treatment in subsequent experiments, four out of five strains that showed compatibility
were used.

3.3. Biosynthesis of Microbial Exopolysaccharides and Their Rheological Properties

In addition to plant-beneficial microorganisms, such ingredients of seed coating as
binders that help to release a suitable amount of plant-beneficial microorganisms in physio-
logic conditions and ensure the adherence and cohesion of the material on the seed surface
and keep the ingredients active are used [37,39,40]. The microbial polymer solution should
be water-soluble with a low viscosity for complete atomization of the liquid onto seeds [40].

Earlier, we isolated strains Aureobasidium pullulans C7 [41] and Bacillus thuringiensis
C8, which showed the ability to biosynthesize exopolysaccharide (EPS). The A. pullulans C7
strain synthesized 12.53 ± 0.48 g L−1 exoglycan on the 4th day of fermentation, and the
yield coefficient for biomass was 349.02% (Table 3). This indicates that in this medium the
substrate is utilized to a greater extent for the formation of EPS than for the formation of
cell mass. The amount of polysaccharide accumulated by the studied strain is comparable
with the data of other researchers [42,43].

Table 3. Production of exopolysaccharides by strains A. pullulans C7 and B. thuringiensis C8 in
presence of glucose.

Strain The Dry Weight
of Cells, g L−1 (X)

Production of
EPS, g L−1 (P)

Utilized Glucose,
g L−1 (S)

The yield
Coefficient for

Biomass P/X, %

The yield
Coefficient for

Substrate P/S, %

A. pullulans C7 3.59 ± 0.13 12.53 ± 0.48 17.12 ± 0.81 349.02 73.19

B. thuringiensis C8 1.86 ± 0.06 3.97 ± 0.15 10.15 ± 0.61 213.44 39.11

Values are given as the mean ± SD.

The strain B. thuringiensis C8 produced 3.97 g L−1 of exoglycan (Table 3). The yield
coefficient for bacterial biomass indicates the potential of this strain as a producer of EPS.
The ability of strains of the genus Bacillus, including B. thuringiensis, to produce EPS is
confirmed in the works of other researchers [44,45].

Further, measurements of dynamic viscosity were made for polymer solutions ob-
tained by cultivation of A. pullulans C7 and B.thuringiensis C8.

The dynamic viscosity of each concentration solution produced by B. thuringiensis C8
obviously decreased with the increase in shear rate (Figure 3), showing a shear-thinning
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behavior, which means that this kind of polysaccharide solution belongs to non-Newtonian
fluid (or pseudoplastic flow behavior). Solutions of polymers in water and at the same con-
centrations can sometimes have oppositional behaviors, i.e., Newtonian or non-Newtonian
fluids, depending on their structures, molecular weights, and polymer microbial produc-
ers [46,47].

Polymers 2024, 16, x FOR PEER REVIEW 9 of 17 
 

 

Strain The Dry Weight 
of Cells, g L−1 (X) 

Production of 
EPS, g L−1 (P) 

Utilized 
Glucose, g L−1 

(S) 

The yield 
Coefficient for 
Biomass P/X, % 

The yield 
Coefficient for 

Substrate P/S, % 
A. pullulans С7 3.59 ± 0.13 12.53 ± 0.48 17.12 ± 0.81 349.02 73.19 

B. thuringiensis C8 1.86 ± 0.06 3.97 ± 0.15 10.15 ± 0.61 213.44 39.11 
Values are given as the mean ± SD. 

The strain B. thuringiensis C8 produced 3.97 g L−1 of exoglycan (Table 3). The yield 
coefficient for bacterial biomass indicates the potential of this strain as a producer of EPS. 
The ability of strains of the genus Bacillus, including B. thuringiensis, to produce EPS is 
confirmed in the works of other researchers [44,45]. 

Further, measurements of dynamic viscosity were made for polymer solutions 
obtained by cultivation of A. pullulans C7 and B.thuringiensis C8. 

The dynamic viscosity of each concentration solution produced by B. thuringiensis 
C8 obviously decreased with the increase in shear rate (Figure 3), showing a shear-
thinning behavior, which means that this kind of polysaccharide solution belongs to non-
Newtonian fluid (or pseudoplastic flow behavior). Solutions of polymers in water and at 
the same concentrations can sometimes have oppositional behaviors, i.e., Newtonian or 
non-Newtonian fluids, depending on their structures, molecular weights, and polymer 
microbial producers [46,47]. 

 
Figure 3. Viscosity of exopolysaccharide solutions produced by B. thuringiensis C8 in different 
concentrations. 

It was also noted that the viscosity increased with increasing polymer solution 
concentration; however, at lower concentrations, the rheological measurements became 
erratic. The shear-thinning phenomenon could be due to the rate of formation of new 
entanglements lower than the externally imposed disruption rate with an increase in shear 
rate. Another distinguishing feature is that the microbial solution showed comparatively 
high viscosity rates at all dilute concentrations. 

The measurement of the dynamic viscosity of the polymer solution obtained by the 
cultivation of A. pullulans C7 showed the dependence on dynamic viscosity at the shear 
rate at different concentrations ranging from 2% to 12% (w/v) at 25 °C (Figure 4). The shear 
rate increased with increasing polymer concentration, thereby demonstrating that 
viscosity strongly depends on concentration. 

Figure 3. Viscosity of exopolysaccharide solutions produced by B. thuringiensis C8 in different
concentrations.

It was also noted that the viscosity increased with increasing polymer solution concen-
tration; however, at lower concentrations, the rheological measurements became erratic.
The shear-thinning phenomenon could be due to the rate of formation of new entangle-
ments lower than the externally imposed disruption rate with an increase in shear rate.
Another distinguishing feature is that the microbial solution showed comparatively high
viscosity rates at all dilute concentrations.

The measurement of the dynamic viscosity of the polymer solution obtained by the
cultivation of A. pullulans C7 showed the dependence on dynamic viscosity at the shear
rate at different concentrations ranging from 2% to 12% (w/v) at 25 ◦C (Figure 4). The shear
rate increased with increasing polymer concentration, thereby demonstrating that viscosity
strongly depends on concentration.
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Figure 4. Viscosity of pullulan solutions produced by A. pullulans C7 in different concentrations.

At lower concentrations (<8.0%, w/v), viscosity virtually remained unchanged with
increasing shear rate, thus suggesting that the pullulan aqueous solution exhibits New-
tonian flow behavior. It is known that Newtonian fluid viscosity is constant no matter
the shear rate or applied shear stress experienced by the fluid. However, with increasing
concentration to 8% w/v, the flow behavior was changed to pseudoplastic. Such flow
behavior of pullulan can happen because of the separation of exopolysaccharides from each
other or the alignment of them with the shear field and thereby a decrease in viscosity up
to an approximately constant value [48]. Also, it is known that the viscosity is dependent
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on the structure and concentration of the polymer, its molecular weight and distribution,
the conformation of macromolecules in the solution and its interaction with solvents, the
type of intermolecular and intramolecular aggregation, and the flexibility of the chains
with temperature. A similar change in flow behavior with increasing concentration was
reported for pullulan and other polysaccharides [49,50].

The data obtained allow us to suggest the microbial polymer, pullulan, produced by
A. pullulans C7 as a potential seed coating binder due to rheological characteristics. It is
already known as an excellent film former and is functional for a variety of applications,
including for use as an adhesive, binder, and thickener to modify or maintain the texture
of food.

It has also been reported that pullulan has considerable mechanical strength and other
functional properties such as adhesiveness, film and fiber formability, and enzymatically
mediated degradability [51]. High flexibility and a lack of crystallinity provide pullulan
with the capacity to form thin layers, electrospun nanofibers, nanoparticles, flexible coatings,
stand-alone films, and three-dimensional objects [51,52]. Due to its peculiar characteristics,
pullulan is extensively used in different sectors, the three main realms of application
pertaining to the pharmaceutical, biomedical, and food fields.

3.4. The Use of Various Antifungal Formulations for Seed Treatments in Pot Experiments

Seed coating is a method that involves applying exogenous materials to the surface
of seeds to enhance their properties and/or deliver active components (such as plant
growth regulators, nutrients, and microbial inoculants). This process can protect seeds
from phytopathogens, increase germination rates, improve plant resistance to stress factors,
and enhance overall plant growth [37,52–54].

In the next stage of the research, various antifungal formulations for seed coating
were developed, and their impact on barley growth under phytopathogenic conditions was
assessed (Figure 5).

Polymers 2024, 16, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 5. Scheme of pot experiments. 

As active components, a microbial inoculant consisting of a suspension of four 
compatible strains was used: Ps. flavescens D5, B. aerophilus A2, S. proteamaculans B5, and 
Ps. putida D7. As polymer components, PHA produced by the strain Ps. flavescens D5, and 
pullulan, produced by the yeast strain A. pullulans C7, were used. PHA was included in 
the mixture due to its antifungal properties, as previously identified in earlier studies 
[15,16]. 

Uniform seed emergence and early crop development are crucial aspects for 
achieving high crop yields. Seed coating is an effective method that improves seed-sowing 
qualities and activates the internal resources of the seed material [52]. In the conducted 
research, pre-sowing seed treatment, in most cases, enhanced their germination energy 
and germination capacity. The greatest effect was observed when applying a bacterial 
suspension in combination with a polymer mixture, where germination energy and 
germination capacity reached 95% and 97%, respectively (Figure 6). 

 
Figure 6. Influence of various pre-sowing treatments on barley seed germination energy and 
germination capacity. 

The pre-sowing treatment of seeds demonstrated a pronounced growth-stimulating 
effect on barley plants, as evidenced by a significant (p < 0.05) increase in morphometric 
indicators (Table 4). 

80

85

90

95

100

Энергия прорастания, % Всхожесть, %

Т1 Т2 Т3 Т4 Т5

Figure 5. Scheme of pot experiments.

As active components, a microbial inoculant consisting of a suspension of four com-
patible strains was used: Ps. flavescens D5, B. aerophilus A2, S. proteamaculans B5, and Ps.
putida D7. As polymer components, PHA produced by the strain Ps. flavescens D5, and
pullulan, produced by the yeast strain A. pullulans C7, were used. PHA was included in the
mixture due to its antifungal properties, as previously identified in earlier studies [15,16].
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Uniform seed emergence and early crop development are crucial aspects for achieving
high crop yields. Seed coating is an effective method that improves seed-sowing qualities
and activates the internal resources of the seed material [52]. In the conducted research,
pre-sowing seed treatment, in most cases, enhanced their germination energy and germina-
tion capacity. The greatest effect was observed when applying a bacterial suspension in
combination with a polymer mixture, where germination energy and germination capacity
reached 95% and 97%, respectively (Figure 6).
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Figure 6. Influence of various pre-sowing treatments on barley seed germination energy and germi-
nation capacity.

The pre-sowing treatment of seeds demonstrated a pronounced growth-stimulating
effect on barley plants, as evidenced by a significant (p < 0.05) increase in morphometric
indicators (Table 4).

Table 4. Influence of various pre-sowing seed treatments on growth parameters of barley.

Treatment
Variants

Dry Mass of
stem, g

Dry Mass of
Root, g

Length of Stem,
cm

Length of Root,
cm

T1 1.2 ± 0.03 d 0.9 ± 0.04 a 22.0 ± 0.9 c 11.5 ± 0.5 b
T2 0.6 ± 0.02 a 0.8 ± 0.03 a 15.0 ± 0.7 a 8.5 ± 0.3 a
T3 1.1 ± 0.04 c 0.9 ± 0.04 a 22.5 ± 0.9 c 12.5 ± 0.2 c
T4 0.9 ± 0.03 b 1.3 ± 0.02 c 20.8 ± 0.8 b 11.0 ± 0.5 b
T5 1.0 ± 0.03 c 1.2 ± 0.03 b 23.8 ± 0.9 c 13.6 ± 0.5 d

Values are given as the mean ± SD. Values represented by the same letter are not significantly different according
to the Tukey test (p ≤ 0.05).

The barley’s response varied depending on the type of treatment. Root length is
a crucial morphometric indicator as roots are in contact with soil and soil microflora,
absorbing water with mineral compounds. The greatest root elongation was observed in
variant T5 with the application of a bacterial suspension and a polymer mixture (1.6 times),
followed by treatment T3, where root elongation was noted at 1.5 times. Stem length is also
a significant characteristic when assessing the plant’s response to different pre-sowing seed
treatments. Treated variants showed an increase in stem length by 20–53%. The greatest
increase in stem length was observed in variants T3 and T5 (Figure 7). It is shown that
the stem mass of treated plants was more than 1.5–1.8 times greater, and root mass was
1.1–1.6 times greater compared to the untreated control (Table 4).

In the conducted research, the observed stimulating effect on the growth parameters
of barley can be attributed to several reasons. One of the mechanisms of the positive
influence on plants is the ability of the strains included in the composition to produce the
phytohormone IAA, which regulates cell division and elongation, their proliferation and
differentiation, as well as the development of vascular tissues and apical dominance [55].
Another mechanism for improving morphometric plant parameters under conditions of
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phytopathogenic stress is the biocontrol properties of strains and the protective role of
biopolymers.
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The state of the photosynthetic apparatus is an indicator of the physiological condition
of plants. One of the primary characteristics of photosynthetic activity is the content
of chlorophyll pigments [56]. In previous studies, fluorescence visualization analysis of
chlorophyll was applied to assess the condition of the plant photosynthetic system under
the influence of biotic [56–58] and abiotic [59–61] stress. High chlorophyll content may
indicate potentially high agricultural productivity [56].

In the present study, under conditions of biotic stress induced by the phytopathogen F.
oxysporum, the total chlorophyll content in barley leaves decreased by 2.7 times compared
to the indicator for plants grown under normal conditions, reaching 1.03 ± 0.03 mg g−1

(Table 5). This likely indicates changes in the pigment–protein complexes of light-harvesting
antennae and reaction centers of photosystems. Seed treatment had a positive effect on
the photosynthetic activity of barley under phytopathogenic stress. This positive effect
was to increase the content of chlorophyll a in leaves by 1.4–2.1 times, chlorophyll b by
2–2.4 times, and the total content of chlorophyll (a + b) by 1.6–2.2 times. The maximum
effect was achieved in variant T5 with the application of a bacterial suspension and a poly-
mer mixture (Table 5). The observed differences in pigment content may be associated with
the production of certain compounds by the studied bacteria, influencing the biosynthesis
and/or degradation processes of chlorophylls, as well as creating more favorable growth
conditions for plants under stress.

Table 5. Influence of different pre-sowing seed treatments on proline and chlorophyll content
in barley.

Treatment
Variant

Proline Content,
mg g−1

Chlorophyll a
Content, mg g−1

Chlorophyll b
Content, mg g−1

Total Chlorophyll
Content (a + b),

mg g−1

T1 0.94 ± 0.03 a 1.89 ± 0.07 e 0.94 ± 0.02 e 2.83 ± 0.1 e
T2 1.70 ± 0.07 e 0.69 ± 0.02 a 0.34 ± 0.01 a 1.03 ± 0.04 a
T3 1.4 ± 0.03 d 1.23 ± 0.04 c 0.57 ± 0.02 b 1.8 ± 0.07 b
T4 1.22 ± 0.04 c 0.94 ± 0.03 b 0.68 ± 0.03 c 1.62 ± 0.05 c
T5 1.1 ± 0.03 b 1.42 ± 0.03 d 0.81 ± 0.04 d 2.23 ± 0.07 d

Values are given as the mean ± SD. Values represented by the same letter are not significantly different according
to the Tukey test (p ≤ 0.05).
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It is known that stress factors lead to a disruption in the balance between the gen-
eration of reactive oxygen species (ROS) and their neutralization. Among the essential
mechanisms of plant tolerance mediated by bacteria is the involvement of these microorgan-
isms in detoxifying ROS through the modulation of the natural antioxidant defense systems
of plants—both non-enzymatic (proline, ascorbic acid, glutathione, cysteine, flavonoids,
carotenoids, and tocopherol) and enzymatic (superoxide dismutase, peroxidase, catalase,
ascorbate peroxidase, guaiacol peroxidase, and glutathione reductase), all components of
which are in complex functional interaction [62,63].

The increase in proline content is one of the characteristic responses of plants to various
types of stress, including biotic stress, providing the first stage of plant adaptation. Proline
serves multiple functions, including the regulation of cytosolic acidity, minimization of
lipid peroxidation by scavenging free radicals, and stabilization of subcellular components
and structures (proteins and membranes) [64]. A higher level of proline in barley leaves was
observed when plants were grown in soil with an elevated infectious background compared
to untreated plants in sterile soil (Table 5). In the untreated variant under phytopathogenic
stress, the proline concentration was 1.7 mg g−1, exceeding this indicator in plants grown in
favorable conditions by 1.8 times. In treated plants, the proline content was lower. The most
noticeable decrease in proline was observed in the variant with simultaneous seed coating
in a bacterial suspension and a polymer mixture (Table 5). The obtained results indicate a
reduction in the stress experienced by plants due to the pre-sowing seed treatment. Similar
to our findings, a reduction in proline levels in various plant species under the influence of
microbial treatment has been demonstrated in several studies [65,66].

In the conducted studies, an increase in the activity of antioxidant enzymes was
observed when untreated plants were grown under conditions of phytopathogenic stress
compared to plants grown in stress-free conditions (Table 6). The obtained data indicate that
in response to the action of stress factors, there is an activation of the plant’s defense system.

Table 6. Influence of various pre-sowing seed treatments on the activity of antioxidant enzymes
in barley.

Treatment Variant Catalase, mol min−1

mg of Protein −1

Ascorbate Peroxidase,
mol min−1 mg of

Protein−1

Guaiacol Peroxidase,
mol min−1 mg of

Protein−1

T1 0.12 ± 0.005 a 9.6 ± 0.3 a 4.8 ± 0.2 a
T2 0.23 ± 0.004 b 12.47 ± 0.2 c 7.14 ± 0.3 b
T3 0.34 ± 0.007 d 12.34 ± 0.5 c 6.7 ± 0.3 b
T4 0.35 ± 0.007 d 10.03 ± 0.5 b 6.9 ± 0.3 b
T5 0.29 ± 0.006 c 30.37 ± 0.9 d 19.2 ± 0.7 c

Values are given as the mean ± SD. Values followed by the same letter do not differ according to the Tukey test
(p ≤ 0.05).

The pre-sowing seed treatment (T3–T5) led to an increase in catalase activity by
1.3–1.5 times under stress conditions. For ascorbate peroxidase and guaiacol peroxidase,
an increase in enzyme activity was observed under phytopathogenic stress in the seed
treatment with the bacterial suspension and polymer mixture (T5)—by 2.4 times and
2.7 times, respectively (Table 6). Similarly to the obtained data, previous studies have
reported an increase in the activity of antioxidant enzymes in plants when inoculated
with bacteria as one of the defense mechanisms of plants when grown under stressful
conditions [67–69].

Thus, it was shown that when seeds were treated with the T5 composition, plant
growth parameters (weight and length of roots) significantly increased compared to the
T3 variant with a bacterial suspension. In addition, the use of the T5 composition con-
tributed more to the attenuation of plant stress caused by phytopathogens compared
to the use of microorganisms only (Tables 5 and 6). This indicates that the addition of
biopolymers to formulations for seed treatments enhances microbe-induced plant tolerance
to phytopathogens.
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4. Conclusions

As a result of the research, a microbial association of bio-compatible endophytic bacte-
ria has been created, possessing agronomically valuable properties such as the synthesis
of the phytohormone IAA, antagonistic activity against Fusarium oxysporum and Fusarium
solani, halotolerance, and PHA production. The study of the rheological properties of
polysaccharide solutions showed that pullulan produced by Aureobasidium pullulans C7
can be used as seed coating binder at a low concentration of the polymer solution charac-
terized by low viscosity ratio and exhibits Newtonian flow behavior. The effectiveness of
various seed coating treatments including biopolymers (PHA and pullulan) and beneficial
microorganisms in enhancing the resistance of barley plants to phytopathogens has been
demonstrated. The innovative, eco-friendly antifungal seed treatments provide protection
for barley against Fusarium diseases, significantly improving seed germination and plant
growth in the field. In addition, these polymers will be a new progressive material with
the possibility of use in medicine in the form of capsules for prolonged action of drugs,
as absorbable suture threads, and dressings. In the form of a film material, the obtained
microbial polymers can be used for packaging and storage of food products.
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