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Abstract: The total rate of plastic production is anticipated to surpass 1.1 billion tons per year by
2050. Plastic waste is non-biodegradable and accumulates in natural ecosystems. In 2020, the total
amount of plastic waste was estimated to be 367 million metric tons, leading to unmanageable waste
disposal and environmental pollution issues. Plastics are produced from petroleum and natural
gases. Given the limited fossil fuel reserves and the need to circumvent pollution problems, the focus
has shifted to biodegradable biopolymers, such as polyhydroxyalkanoates (PHAs), polylactic acid,
and polycaprolactone. PHAs are gaining importance because diverse bacteria can produce them as
intracellular inclusion bodies using biowastes as feed. A critical component in PHA production is
the downstream processing procedures of recovery and purification. In this review, different bio-
engineering approaches targeted at modifying the cell morphology and synchronizing cell lysis with
the biosynthetic cycle are presented for product separation and extraction. Complementing genetic
engineering strategies with conventional downstream processes, these approaches are expected to
produce PHA sustainably.

Keywords: bacteria; biopolymers; biotechnology; cell division; cell morphology; polyhydroxyalkanoates

1. Introduction

Plastic products are used in almost all aspects of life and have become an integral part
of our lives. Because of their unique thermochemical properties, such as their plasticity,
adaptability, durability, and flexibility, they are convenient to use. Conventional plastics
are derived from petroleum and natural gases. The high consumption rate of fossil fuels
for their production has aggravated the energy crisis [1]. Being non-biodegradable, plastic
waste accumulates in nature at a staggering rate, posing major management and environ-
mental concerns [2]. Therefore, it poses a major threat to ecosystems and the environment.
In addition, its negative impacts on human health cannot be ignored [3,4]. In 2020, the
total amount of plastic waste was estimated to be 367 million metric tons. This number is
anticipated to increase exponentially over the next few decades [5,6]. In principle, plastic
waste can be managed through (a) recycling, which is not economically feasible, and (b) an
energy recovery process, which emits greenhouse gases and toxic compounds, in addition
to environmental pollution [7,8]. Therefore, strategies are needed to find alternatives to
circumvent these issues.

The potential candidates envisaged to replace plastics are naturally biodegradable
polymers. Based on biodegradability as the major criteria, the strong contenders are poly-
caprolactone (PCL), poly(butylene succinate), poly(ethylene succinate), poly(butylene adi-
pate terephthalate, polyhydroxyalkanoates (PHAs), polylactic acid (PLA), starch, cellulosic
esters, and proteins [9]. Of these, PHAs, PLAs, and starch are bio-based and -degradable
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polymers, which can be used for a wide range of biotechnological applications [10]. The
various strategies for enhancing PHA production, include the genetic engineering of mi-
crobial cells to manipulate the cell morphology and size, modify metabolic pathways
associated with PHA biosynthesis, downregulate unnecessary byproducts, and ease the
recovery process [11–16]. In this article, the bioengineering of cell morphology and cell
division machinery has been shown to have the potential to simplify downstream pro-
cessing procedures and reduce production costs. In contrast to most of the published
literature targeting sustainable PHA production strategies, the present article provides
information on enhanced downstream process efficiency via exploiting genetic engineering
to synchronize the processes of cell division, PHA biosynthesis, cell lysis, and product
separation. The major emphasis is placed on developing methods for enhanced production
and economic recovery for the sustainable production of biopolymers.

A bibliographic search was performed for research and review articles published in
scientific journals and book chapters listed primarily on Scopus, PubMed, and Google
Scholar, based on the following keywords: biopolymers, polyhydroxyalkanoates, inclusion
bodies, cell morphology, cell division, genetic engineering, PHA biosynthesis, sustainability,
down streaming, depolymerases, and recovery. The final text matter was written after
critically reading and evaluating around 700 articles published primarily during the last
ten years.

2. Biopolymers

Past research studies have focused on developing bioplastics based on renewable
resources. Bioplastics and biopolymers can be produced from biomaterials of diverse
origins [17,18]. The most used bioplastics are based on PHAs, PLA, and PCL. Other
materials suitable for bioplastic production include starch, cellulosic esters, and proteins [9].

2.1. Polyhydroxyalkanoates

Polyhydroxyalkanoates are a large group of biodegradable thermoplastic polymers [19].
Many microbes that can produce PHA have been identified, including Bacillus, Cupriavidus,
Pseudomonas, Aeromonas, engineered Escherichia coli, and Halomonas spp. [9,17,20–23]. Poly-
hydroxybutyrate (PHB) is a naturally produced biopolymer. PHB is also a homopolymer
that is highly crystalline and brittle. These properties limit its range of biotechnological
applications. In contrast, PHAs comprise more than 160 monomeric units [24]. PHAs are
produced from pure chemicals and biowaste through fermentation under environmental
stress conditions, primarily owing to the limitations of nitrogen, oxygen, phosphorus,
and potassium. Pure microbial cultures and their consortia have been used to ferment
diverse biowastes to produce copolymers of PHAs [22]. The diversity of monomeric units
in copolymers of PHA confers them with properties like those of conventional plastics
and has been demonstrated to have thermochemical properties suitable for applications
in medicine, agriculture, and tackling diverse environmental issues [25–28]. A detailed
description of these PHAs is presented in the following sections.

2.2. Polylactides

Polylactides are lactic acid (2-hydroxy propionic acid) polymers. Bacteria ferment
carbohydrates to produce lactic acid. The biosynthesis of lactic acid is preferred because
of the presence of L-stereoisomers in greater yields, leading to cheaper PLA production.
These can be produced with diverse crystallinities, microstructures, and molar masses.
However, they can also be synthesized chemically. Their synthesis can be completed
through the polycondensation of lactic acid and polymerization of lactides via a ring-
opening mechanism [29]. The major limitation is in the preparation and purification of
pure lactic acid. During polymerization, certain undesirable side reactions take place.
The presently available PLAs are based on linear macromolecules. For better physical
features, there is a need to produce branched, dendrigrafic, or dendritic PLAs. It is difficult
to produce high-molecular-weight PLAs with desirable mechanical properties, and the
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maximum molar masses have been limited to 6 × 104 [30]. PLA is used for packaging and
producing fibers and fabrics. As a blend, its use can be extended to implants, screws, nails,
and plates for applications in the medical sector [28,31].

2.3. Polycaprolactones

Polycaprolactones are synthesized from crude oils. Although they are synthetic poly-
mers, they are biodegradable, hydrophobic, and semicrystalline. Their crystallinity can
be manipulated by regulating the low-molecular-weight alcohols. These excellent blends
have low melting points and high rates of solubility, absorbability, and compatibility. Their
viscoelastic and rheological properties are superior to those of other polymers. These
characteristics enable their application in tissue engineering. However, their use in med-
ical devices is limited because only a few fungal and bacterial species contain enzymes
that degrade them [32]. These materials have excellent long-term degradation applica-
tions, such as in drug delivery through encapsulation. Efficient drug delivery systems
can be complexed with polylactic acid-co-glycolic acid, PLA, cellulose acetate, butyrate,
and propionate [33].

2.4. Other Polymers

Starch-based polymeric films are composed of 5–30% starch along with water or
plasticizers (sorbitol and glycerol). Such starch-based biodegradable thermoplastics are
both crystalline and amorphous. They can be produced easily in large quantities; however,
they require high temperatures (91–180 ◦C) to melt and their biodegradation rate is limited
to 30%. The starch-based bioplastic products include grocery bags, food and fruit packing
trays, paper foam, egg boxes, and packaging electronic devices [34,35].

Cellulose is the most abundant naturally produced biodegradable polymer. Cotton
linters and wood pulp are the major contributors to polysaccharide cellulose. Cellulose-
based films are easy to produce, whereas bioplastics are difficult to make [36–38]. Cellulosic
bioplastics are produced on an industrial scale as esters or ether derivatives [39]. The
generally produced derivatives include nanofiber cellulose, cellulose nanocrystals, cellulose
acetate, cellulose acetate butyrate, and biopolyethylene. There is a critical requirement for
additives in the production of thermoplastics [36,38]. Cellophane, either transparent or
pigmented, is commonly used to wrap candies and flowers, for lamination, and to pack
food products such as coffee, cheese, and chocolate [28].

Protein-based polymers are heteropolymers of amino acids with unique characteristics,
such as high mechanical strength and the ability to resist the diffusion of gases and aromatic
compounds. Blending these polymers with keratin results in a mechanically strong, highly
thermostable, and flame-resistant material. Biopolymers can be produced via physico-
chemical and thermoplastic processes [40,41]. Their availability in large quantities, high
nutritional value, biodegradability, and use to prepare films make them highly desirable
for the packaging industry [41]. Their use as matrices for the well-regulated release and
immobilization of enzymes and their high-water retention capacity widen the scope of their
application in agriculture, horticulture, and health. The time-resolved small-angle X-ray
scattering technique allows in situ observations, particularly of molecular rearrangements
and orientations [42].

Polyamide 11 is a biopolymer produced from renewable sources. This polymer has
greater longevity than other biopolymers. Its unique thermochemical properties, such
as its high stability and melting point (200 ◦C), make it suitable for manufacturing in
industrial sectors. Its other desirable properties include its resistance to chemicals, water,
oil, salts, fuels, and radiation. It has strong resistance to cracks and abrasion. Other features
of this polymer include its low rigidity and poor resistance to volatile fatty acids and
phenols, radiation, and heat. Its applications range from the aerospace and automobile
sectors (electrical cables, water tubing, and natural gas piping) to other industries, such
as footwear, metal badminton racket strings, coatings, and shuttlecocks. Although it
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is non-biodegradable, its recycling efficiency rate is high. Compared with polyamides,
it is costly [41,43].

Spider silk is fabricated from renewable resources using spiders. It has unique me-
chanical properties such as a strength of up to 1.7 GPa (gigapascal) and an extensibility rate
of up to 500%. It has a natural capacity to self-assemble into hydrogels, films, capsules, and
spheres but has several limitations, including its poor solubility and storage and assembly
abilities [44]. However, it is still suitable for manufacturing sports goods, ropes, textiles,
robotic components, and composite materials. In the medical sector, its applications range
from wound healing and the bridging of nerve defects to fascial replacements [39,45,46].
At present, the commercial-scale production of this biopolymer is limited by the follow-
ing factors: (i) the cannibalistic nature of spiders, (ii) the farming of the spiders, (iii) the
time-consuming nature of silk harvesting, and (iv) low yields. The silk protein spidroin is
genetically expressed in microbes, such as bacteria, yeast, plants, and animals [36,46,47].

The demand for PHAs is increasing because of their diverse potential applications
in agriculture, medicine, and the environment. The primary issues with PHAs are their
production costs and the difficulties in recovering intracellularly produced biopolymers.
These targets can be achieved through (i) bioengineering the morphology and size of
microbes and (ii) downstream recovery. Different strategies are anticipated to contribute to
the sustainable production of PHAs.

3. Sustainable Production of Biopolymers

The scope of the biotechnological applications of PHAs has been reported in the
fields of medicine, horticulture, agriculture, and food, which has increased the demand
for PHAs. However, their production on an industrial scale is restricted by their poor
quality and the high cost of production using natural PHA-producing bacteria. In ad-
dition, there are issues with the polymers’ instability and the high variability in their
thermomechanical properties [20,47,48]. Most research efforts have targeted the screening
of naturally occurring microbes with high PHA yields, exploiting biowastes to produce
copolymers [24,49,50]. Recently, researchers have shifted their focus to genetic engineer-
ing, genome mining, genome reduction, and genome editing [11]. For sustainable PHA
production, there are a few possibilities that can be adopted. These proposals include
modifying the cell morphology, downregulating the associated biosynthetic pathways, and
focusing on the downstream process [12–16]. Here, we focused on genetic modifications to
manipulate the cell morphology, size, and extraction of intracellularly produced PHAs.

Bioprocesses can be divided into two major groups—upstream and downstream [13].
Upstream metabolic processes are limited by the cost of the substrate, pretreatment, and
energy input. Other important components are the microbial cell factories. The screening
and selection of robust organisms that can resist environmental stress can be comple-
mented by the genetic modification of the microbial strain [51]. Equally important are
the costs and parameters of the downstream processes [52,53]. The recovery and purifi-
cation of intracellular biomolecules through various physiochemical processes are more
expensive than for extracellularly produced bioproducts [54]. Overall, for the sustainable
production of polymers, it is important to develop methods for enhanced production and
economic recovery [49].

3.1. Bioengineering of Microbial Cells

The manipulation of microbes using genetic engineering and systems biology has been
envisaged to be economical. Efforts have been focused on modifying the cell morphology
and size (Figure 1) [55–59]. This strategy enables the greater accumulation of intracellular
molecules, making the separation process convenient and economical [52].
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Figure 1. Diagrammatic representation of the effects of bioengineering cell division genes on the
cell morphology and size: (A) binary cell division; (B) enlarged cell formation through inhibition of
Z-ring formation via the overexpression of sulA or deletion or downregulation of genes involved in
the biosynthesis of cell walls (murA, murC, murD, murE, mraY, dxs, glmU, idi, pgi); (C) filamentous
cell formation via multiple fission through the deletion and downregulation of genes involved in
the divisome (ftsZ, ftsA, ftsW, minC, minD, pbp1, pbp3, sulA, slmA, and zipA), hydrolases (pbp5, pbp7,
ampD, amiA, and amiB), and rod complex (mreB, rodZ, rodA, and pbp2). Cell densities (A–C) vary by
size and type [55–69].

3.1.1. Cell Morphology

The small size of bacterial cells makes their separation from the broth challenging.
Furthermore, the rigid cell wall is a major limitation for the greater accumulation of
inclusion bodies. These factors substantially increase the separation costs. A weak cell
wall structure is likely to allow cells to expand, thereby providing more space for the
storage of PHA granules. Large-sized cells can reduce recovery costs. Furthermore, to
allow for the greater accumulation of intracellular biomolecules, enlarged cells can prove
helpful. The primary focus of cell morphology is the modification of the cell shape and
size [49]. This cell morphology engineering strategy showed that PHA production using
enlarged bacteria is an effective technique for enhancing the product yield and easing
downstream activities.

Many genes are involved in cell wall synthesis and division, and those responsible for
maintaining the cell shape are critical for the overall morphology (Table 1) (Figure 1) [60–65].
Several proteins are associated with these cellular characteristics. The cell wall compo-
nent, peptidoglycan, is a network of cross-linked glycan chains [66]. It provides mechan-
ical strength to the microbial cells, especially for withstanding environmental stresses.
Many genes are involved in the biosynthesis of the cell wall (murA (encodes for UDP-N-
acetylglucosamine enolpyruvoyl transferase), murC (encodes for UDP-N-acetylmuramate-
alanine ligase), murD (encodes for UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase),
murE (encodes for a ligase), mraY (encodes for phosphor-N-acetylmuramoyl-pentapeptide
transferase), dxs (encodes for 1-deoxyxylulose-5-phosphate synthase), and glmU (encodes
for N-acetylglucosamine-1-phosphate uridyltransferase)) [65], and the associated pro-
teins include (i) the divisome (ftsZ (encodes for tubulin-like protein), ftsA, ftsW (encodes
for a lipid II flippase), minC, minD, pbp1, pbp3, sulA, slmA, and zipA, (actin-related pro-
teins)), (ii) hydrolases (pbp5, pbp7, ampD, amiA, and amiB), and (iii) the rod complex
(mreB (the cytoskeletal protein), rodZ (transmembrane protein), rodA (the transglycosy-
lase), pbp2 (penicillin-binding protein), and transpeptidase) [67–69]. The major advantages
of these genetic manipulations are enhanced product accumulation and the ease of the
downstream processes [55,70].
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As the cell wall rigidity continues to limit PHB accumulation, manipulating the cell
wall’s biosynthetic pathway remains a key goal. The cell rigidity can be manipulated by
inserting the PgltA constitutive promoter for the gltA gene (which encodes for citrate syn-
thase) before the genes responsible for cell wall synthesis. Using CRISPRi technology, the
expressions of the following 10 genes involved in cell wall synthesis were downregulated:
(i) ftsW, (ii) dxs, (iii) glmU, and (iv) idi, which encode for isopentenyl diphosphate isomerase;
(v) pgi (encodes for phosphoglucose isomerase); (vi) murA, (vii) murC, (viii) murD, (ix)
murE, and (x) mraY. In E. coli cells, the overexpression of the sulA gene resulted in Young’s
modulus increases of 1.32- to 1.60-fold compared to the parent cells. Depending on the
cell wall rigidity and thickness, the PHB accumulation rate was almost 4-fold (93%) in
weakened cell walls compared to 25% in thickened cell walls [65].

3.1.2. Cell Division

Cell division via binary fission involves mass duplication and partitioning into
two daughter cells via cytokinesis [71]. Inhibiting cytokinesis results in the formation
of enlarged filamentous-shaped bacterial cells [72]. The most critical protein is FtsZ, which
is responsible for forming a Z-shaped ring structure in the middle of the bifurcating cell.
It interacts with other proteins to form a divisome [64]. Deleting the ftsZ gene inhibits
FtsZ activity, leading to the abortion of the cell division process [73,74]. In addition, FtsZ
protein interactions with other proteins encoded by sulA, minC, minD, slmA, and EzrA can
help achieve higher PHA yields. The overexpression of sulA blocks FtsZ ring assembly
and transforms the rod-shaped E. coli cells into filamentous cells shapes. This leads to
the availability of a larger intracellular space [72,75]. This approach has been exploited to
enhance the PHA yield in diverse bacteria (Table 2). In E. coli, filamentous cells showed
100% increases in PHB accumulation and total cell dry weight. An interesting feature of
the cell enlargement strategy was the production of copolymers of PHA P(3HB-co-4HB)
when using engineered E. coli harboring the phaCAB operon and the knockout of genes
sad and gabD, as well as the essential genes folK and ispH. The resultant P(3HB-co-4HB)
copolymer’s accumulation rate was greater than 78% of the cell dry weight. Thus, PHA
facilitates recovery from the broth [75]. The overexpression of minC and minD is also instru-
mental in inhibiting FtsZ’s function [76]. Cell division enzymes (hydrolases) are necessary
for daughter cell separation. The separation process is regulated by EnvC and NlpD, which
regulate the amidase activity [77]. E. coli cells with deletions of envC and nlpD were found
to inactivate amidase, resulting in their inability to separate daughter cells, leading to their
filamentous shape [74]. This approach was further improved to obtain longer filamentous
cells by overexpressing sulA, which inhibited the functioning of FtsZ. A switch from binary
to multiple fission modes was observed in E. coli with a minCD deletion complemented
by the overexpression of sulA. The mutants had 70% PHB storage capacity, which was
higher than the 51% recorded with the wild type, along with a rate of 64% in filamentous
cells growing in the binary fission mode. Thus, it supports the easy separation and greater
recovery of PHB [74]. Halomonas bluephagenesis TD08 was engineered to overexpress minC
and minD during the stationary phase of the cell cycle. The higher quantities of these
proteins led to 1.4-fold longer cells, with the PHB content increasing from 69% to 82%,
while the cells were 1.4-fold larger than those of the parent, attaining a cell size of a few
hundred micrometers. Filamentous cells aggregate and settle in the fermenters within 12 h,
facilitating cell separation without centrifugation or filtration [57].

Pseudomonas species are also well-known for their mcl-PHA-producing abilities. Initial
efforts to manipulate the cell morphology did not enhance the mcl-PHA yield. Taking
cues from other studies, many genes known to regulate the cell morphology, such as nlpD
(peptidoglycan degradation) and mreB (cytoskeleton protein), as well as z-ring formation
(ftsZ) and inhibition (sulA), were overexpressed in a minCD (regulates the z-ring location)
knockout mutant of Pseudomonas mendocina NK-01, which increased the mcl-PHA yield by
45.62% (up from 0.28 to 0.41 g/L). This rate can reach up to 60.87% with the overexpressed
mreB [78]. Apart from most studies focusing on the cell morphology and size, an additional
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feature that can complement these strategies and contribute to enhanced PHA yields is the
manipulation of the PHA granule size. Phasin (PhaP), a protein located on the surfaces
of PHA granules, regulates the granule number and size. The overexpression of minCD
genes and deletion of phaP resulted in a lower number of PHA granules but enhanced the
granular size. PHA granules of up to 10 µm were reported for the first time in Halomonas
bluephagenesis TDH4-minCD-∆phaP1. Thus, genetic engineering techniques have enabled
the production of larger cells possessing larger PHA granules. In addition, the 4HB mol%
in the PHA copolymer was 14% higher than that of the wild-type strain (Table 2) [16].

Table 1. Potential bacterial cell morphology and divisiome genes affecting polymer production.

Gene Gene Product Cell Function/Activity Reference

dxs 1-deoxyxylulose-5-phosphate synthase Cell wall synthesis

[65]

glmU N-acetylglucosamine-1-phosphate
uridyltransferase Cell wall synthesis

murA UDP- N -acetylglucosamine
enolpyruvoyl transferase Cell wall synthesis

murC UDP-N-acetylmuramate-alanine ligase Cell wall synthesis

murD UDP-N-acetylmuramoyl-L-alanine:D-
glutamate ligase Cell wall synthesis

murE Ligase Cell wall synthesis

murJ Putative lipid II flippase Regulates peptidoglycan incorporation
to the septum [67]

ftsZ Bacterial fission ring formation protein Recruiting divisiome proteins and
z-ring stabilization [64,73,74]

ftsA Cell division protein Divisiome [69]

ftsW Peptidoglycan glycosyltransferase,
lipid II flippase Divisiome [65]

ftsL, ftsN, ftsQ Cell division proteins Divisiome [67]

sulA Cell division inhibitor protein Divisiome, induces FtsZ inhibition [72,75,78]

slmA Nucleoid-associated FtsZ binding
protein Divisiome [60]

minC Z-ring positioning protein Divisiome: actin-related proteins,
inhibits FtsZ polymerization [57,76]

minD Z-ring positioning protein Divisiome: actin-related proteins,
recruits MinC [57,76]

envC Murein hydrolase activator Divisiome [74]

zipA Integral inner membrane protein Divisiome [62]

PBP1, PBP3 Penicillin binding proteins Divisiome [68]

envC Regulate amidase activity Cell division [68,77]

nlpD Murein hydrolase activator,
peptidoglycan degradation Cell division [74,77,78]

mreB Dynamic cytoskeletal protein Rod complex and cell division [55,59,72]

RodZ Transmembrane protein Rod complex [69]

RodA Transglycosylase, lipid II flippase Rod complex [63]

PBP2 Penicillin binding protein, murein
DD-transpeptidase Rod complex, cell elongation [68]

gltA Citrate synthase Manipulate cell rigidity [65]
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Table 1. Cont.

Gene Gene Product Cell Function/Activity Reference

idi Isopentenyl diphosphate isomerase Cell wall synthesis [65]

mraY
Translocase 1, phosphor-N-

acetylmuramoyl-pentapeptide
transferase

Cell wall synthesis [65]

pgi Phosphoglucose isomerase Cell wall synthesis [65]

PBP5, PBP7 DD-carboxypeptidases and
DD-endopeptidases Hydrolases [61]

ampD, amiA, amiB MurNAc-L-Ala amidases Hydrolases [61]

Table 2. Genetic manipulation of cell morphology for enhanced biopolymer production.

Organism Gene Edited b Characteristics Affected
Impact on

Polyhydroxyalkanoate c

Production
Reference

Escherichia coli
JM109SGIK sulA

Transformation of rod to
filamentous cell with larger

internal space

PHB accumulation showed 100%
increase [75]

E. coli JM109SGIK sad, gabD, ispH folk, and
sulA

Transformation of rod to
filamentous cell with larger

internal space

Copolymers of PHA
[P(3HB-co-4HB)] were 10%

higher (78% in cell dry weight,
CDW).

[75]

E. coli JM109SG
(∆mreB/pTK-

mreB/pBHR68) a
ftsZ, mreB, and sulA

Enlarged cell space due to
reduced restriction on

space. Larger volume to
size ratio.

PHB d production was observed
to increase from 5.72 g/L to

(9.29 g/L, with a yield of 73.53%
of CDW) e in a shake flask

[59]

E. coli envC and nlpD Switch from binary to
multiple fission mode

PHB storing capacity enhanced
from 51 to 70% [74]

E. coli JM109 ftsZ and mreB Enlarged cell volume Enhanced PHB accumulations
(up to 80%) [73]

E. coli JM109
ftsW, dxs, glmU, idi, pgi,

murA, murC, murD,
murE, and mraY

Cell wall thickening
PHB accumulation of 93% in
weakened cells and 25% in

thickened cell walls
[65]

Pseudomonas mendocina
NK-01

ftsZ, mreB, sulA, minCD,
and mreB

Modified bacterial shape
and growth pattern

Increased mcl-PHA f yield by
45.62% and up to 60.87%

[78]

Halomonas
bluephagenesis TD08 minCD Enlarged cells (1.4-fold

longer than the parent)
PHB content enhanced from

69 to 82% [57]

Halomonas campaniensis
LS21 ftsZ and mreB Enlarged cell morphology Increase in PHB yield

accompanied by normal growth [72]

H. bluephagenesis
TDH4-minCD-∆phaP1

phaP1, phaP2, phaP3,
and minCD

Bigger PHA granules and
larger cell size

PHA granules up to 10 µm. PHA
copolymer with 14% higher 4HB

mol%
[16]

Note: a: E. coli strains were engineered using the phbCAB operon encoding PHA synthase, beta-ketothiolase,
and acetoacetyl-CoA-reductase; b: genes (encoding enzyme): dxs, (1-deoxyxylulose-5-phosphate synthase); envC,
(murein hydrolase activator); ftsL, ftsN, and ftsQ, (cell division proteins); ftsW, (peptidoglycan glycosyltransferase);
ftsZ, (bacterial fission ring formation protein); glmU, (N-acetylglucosamine-1-phosphate uridyltransferase); gltA,
(citrate synthase); idi, (isopentenyl diphosphate isomerase); minC and minD (Z-ring positioning protein); mraY,
(translocase 1); murA, (UDP-N-acetylglucosamine enolpyruvoyl transferase); murC, (UDP-N-acetylmuramate-
alanine ligase); murD, (UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase); murE (ligase); mreB (dynamic
cytoskeletal protein); nlpD (murein hydrolase activator); pgi,(phosphoglucose isomerase); sulA (cell division
inhibitor protein); c: polyhydroxyalkanoate; d: polyhydroxybutyrate; e: cell dry weight; f: medium chain
length PHA.
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3.1.3. Cytoskeletal Protein

The bacterial cell morphology is also influenced by the cytoskeletal proteins encoded
by the genes mreB, mreC, mreD, and rodZ [79]. The binding of MreB to the cytoplasmic
membrane is regulated by PBP2, a cell wall biosynthesis enzyme [80]. The overexpression,
deletion, and disruption of MreB and its associated proteins result in an abnormal cell
morphology [81]. MreB deletion transforms rods into spherical cells. This transformation
results in an enhanced volume-to-size ratio, enabling a larger space to accommodate
intracellular molecules. Despite this benefit, the cell growth is drastically reduced, leading
to a lower PHA yield. However, engineering the PHB biosynthetic pathway and expressing
mreB in E. coli JM109SG at a low level helped restore the cell shape, improve the rigidity,
and enhance the PHA yield by 60% (Table 2) [55,59]. These improved features can be
exploited for the easy recovery of the cell biomass.

Growth retardation is a major limiting feature that is frequently encountered when
engineering cell shapes. Thus, the expression of the genes ftsZ and mreB may play a vital
role in optimizing these parameters [69]. Halomonas campaniensis strain LS21 with dele-
tions of ftsZ or mreB genes was complemented with a plasmid expression system for these
two genes. This enabled the mutant bacteria to grow even at 30 ◦C. Switching the growth
temperature to 37 ◦C restricted the expression of the genes carried by the plasmid. This
strategy resulted in greater PHB accumulation. The basic advantage of morphologically en-
gineered cells is their rapid ability to settle to the bottom of the bioreactor and facilitate cell
separation [72]. Synthetic biology techniques using clustered regularly interspaced short
palindromic repeats (CRISPR) and their interference (CRISPRi) are efficient approaches
for genome editing. The CRISPR system comprises the Cas9 protein and a single guide
RNA (sgRNA) [82]. CRISPRi mutates the Cas9 protein, thereby allowing DNA binding to
interfere with the transcription process [83]. CRISPR-based regulation was used to interfere
with the expression of ftsZ and mreB in E. coli. This resulted in the production of long fat
cells. The cell length and width were controlled using different sgRNAs. A wide range of
morphologically diverse cells with enlarged cell volumes enabled the accumulation of PHB
by up to 80% [73].

3.2. Complementary Extraction Processes

The extraction of intracellular molecules is an energy-intensive and expensive process.
The major bottleneck is the breakdown of the cell walls, particularly in Gram-positive
microbes [20,84]. Several studies have attempted to manipulate cell lysis and synchronize
it with the substrate metabolism [20,85]. E. coli cells are susceptible to lysis because of
their high concentrations of intracellular bioproducts. The PHA biosynthesis operon from
Cupriavidus necator was expressed in E. coli, whereby the PHA yield increased to 70% of
the total dry cell mass. The presence of E. coli biomass in a treatment with 0.2 N NaOH at
30 ◦C for one hour allowed the easy recovery of PHAs [86].

The bacteriophage (E. coli phage λ) holin operates by increasing the cell membrane’s
permeability, whereas endolysin (lysozyme) metabolizes the cell wall [85]. Bacteriophage-
based lysis takes place in the absence of Mg2+. PHA synthesis in engineered E. coli proceeds
in the presence of Mg2+. The ion concentration is synchronized with the PHB production cy-
cle, which at undetectable levels activates the phage lytic system and releases PHAs [85,87].
E. coli was engineered to trigger autolysis under stress by introducing a synthetic ribo-
some binding site and λ phage SRRz gene. The autolysis system (pSEVA331 plasmid)
from E. coli was transferred into H. campaniensis LS21 cells to generate the Halomonas
strain DL. This facilitated the economic recovery of PHA [88]. A similar approach was
used to recover mcl-PHAs from Pseudomonas putida KT2440 [89,90]. The recovery rate
of the PHAs was 94.2% [91]. As Gram-positive bacterial cells are more difficult to lyse,
the Bacillus amyloliquefacines phage endolysin and holin system were expressed in Bacillus
megaterium via the E. coli–Bacillus subtilis shuttle vector pX. Here, xylose was used for yeoB
expression to synchronize cell lysis with the exhaustion of glucose and termination of
PHA biosynthesis [20,92–94].
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Bioengineered enlarged cells tend to settle due to gravitational forces, making the cell
separation process easy and convenient to manage [55,75,95]. The efficiency of the cell-
harvesting process can be improved using self-segregating and flocculating agents [96,97].
The bioengineering of Halomonas campaniesis LS21 through the deletion of the etf operon
leads to a reduced cell surface charge and greater hydrophobicity. The net gain is attributed
to self-flocculation, resulting in energy savings. In this way, the biopolymer’s productivity
was enhanced by 1.8-fold to 0.33 g/L/h [98]. Solvent-based PHA extraction involves the
usage of alcohols, ketones, dimethyl carbonates, esters, and cyclic carbonates [99]. The
extraction of PHAs using halogenated solvents such as chloroform results in the excellent
recovery of high-purity polymers from the biomass [99]. The major limitation is the large
quantities required for extraction. Finally, a precipitation step is required to obtain high-
purity PHAs. Here, “PHA anti-solvents” such as acetone, ethanol, heptane, hexane, or
methanol are added in excess, which reduces the solubility of the PHAs in the solvent.
This method is frequently used for PHA recovery from (i) bacterial co-cultures of C. necator
DSM 428 (short chain length, scl-PHA producer) and Pseudomonas citronellolis NRRL B-
2504 (medium chain length, mcl-PHA producer) [100] and (ii) a halophilic yeast Pichia
kudriavzevii VITNN02 (scl-PHA, PHBHV) [101]. Other methods for PHA extraction use
“green” solvents such as alcohols, ketones, cyclohexane, and esters, while a few of the novel
solvents include acetone and non-cyclic ketones. “Green” solvents have been shown to
recover (i) scl-PHA [102] and (ii) PHA-copolymers (poly(3HDD-co-3HD-co-3HO-co-3HHx)
from Pseudomonas chlororaphis at room temperature [103]. Bioengineering cells to produce
either scl- or mcl-PHA helps ease the solvent extraction process for scl-PHA from C. necator
DSM 428 and the halophilic yeast Pichia kudriavzevii VIT-NN02 [101] and mcl-PHA from P.
citronellolis NRRL B-2504 [100]. Because of its unique characteristics, such as its thermal
stability, low inflammability, and low vapor pressure, PHA’s recovery rate is as high
as 98% [104–106].

4. Perspectives

The replacement of non-biodegradable plastics with biopolymers has been envisaged
as an ecofriendly and economical approach, especially for producing high-value products
such as those required for the medical sector [107]. Biological processes have several
major benefits over conventional chemical processes. The most critical requirement is
mild environmental conditions, which saves on energy, potentially making them more
economical. Although bioprocesses are highly specific and efficient, they are slower than
chemical processes. The low quantity of bioactive molecules such as PHA produced per
cell adds to the cost of the bioprocesses, making them uneconomical and unsustainable.
Several mechanisms can be adopted to make biopolymer production sustainable. The
production cost is primarily linked to the feed and the recovery of the biopolymer [20].
Several studies have focused on exploiting the bacterial ability to produce polymers, such as
PHAs, from waste biomasses of diverse biological origins [17,18]. This also helps improve
the thermochemical properties by producing copolymers of PHA [22,25–28]. However,
the research efforts have focused on manipulating the bacterial morphology, particularly
the cell size and morphology [11,55]. These modifications have proven beneficial for
enhancing the efficiency of bioprocesses, resulting in accelerated growth, a higher cell
density, and increased PHA accumulation [56–59]. These features simplify the downstream
processes, helping to achieve higher yields and reduce costs [69]. In this article, we present
an update on the genetic engineering of a few genes and their products responsible for
the cell morphology [55]. Another potential approach that can facilitate PHA recovery is
to use genetically modified organisms as supplements. Nuclease-producing genes from
Staphylococcus aureus were engineered into C. necator and Delftia acidovorans. Nuclease
enzyme reduced the viscosity of the broth containing disrupted cell biomass [108]. The C.
necator PHA operon transformed the E. coli from a non-PHA producer to a producer state.
The recombinant strain had poor cell integrity after accumulating PHA at up to 70% of the
DCW. Simplified stirring of the 0.2 N NaOH broth at 30 ◦C for 1 h enabled the recovery of
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PHA with 95% efficiency [86]. These aspects are beneficial for separating the cells from the
broth. Studies on genetic engineering to synchronize the cell lysis and substrate exhaustion
process can help to avoid potential losses due to the onset of biodegradation within cells by
depolymerases [84,85,109]. It must be emphasized that there other mechanisms, especially
modifications of metabolic pathways such as biosynthesis, the availability of nutrients,
energy generation, and the PHA granule size [12–16], can complement these approaches
and help make the process economical and sustainable.

Despite the potential benefits associated with cell morphology engineering leading
to higher and more sustainable PHA production rates, there are quite a few challenges
that need to be overcome. Efforts need to be made to improve the following processes:
(i) shortening the cell cycle period; (ii) achieving higher growth rates and cell densities;
(iii) modifying cell membranes to overcome the issue of low osmolarity rates; (iv) separat-
ing cells from broth by reducing the viscosity of the medium; (v) genetically regulating
the termination of the PHA biosynthesis for product exhaustion, auto cell lysis, and the
inhibition of PHA depolymerases; (vi) genetically modifying additional cell division genes
and their associated proteins, especially hydrolases; (vii) searching for phages that can
lyse bacterial cells; (viii) synchronizing PHA production with various processes for other
value-added intracellular and extracellular products.

5. Conclusions

Plastics are some of the most popular and widely used synthetic polymers produced
from natural gas and petroleum. Their non-biodegradable nature causes the accumulation
of plastic waste, leading to environmental pollution. Given the limited fossil fuel reserves
and the need to circumvent pollution problems, the focus has shifted to biodegradable
biopolymers such as PHAs. Because they are produced by bacteria as intracellular inclusion
bodies, their recovery and purification are critical for reducing the production costs. It is
anticipated that bioengineering the cell morphology and cell division machinery can help
simplify the downstream processes. Enlarged cell spaces allow for the greater accumulation
of intracellular bodies and reduce the bioproduction cost. The bioengineering of the cell
size to provide a larger intracellular space and the biosynthesis of PHA copolymers and
other biomolecules can be complemented by engineering metabolic pathways and deleting
the associated pathways that burden them. It must be realized that the TCA cycle is the
main energy-generating mechanism in bacteria under normal environmental conditions.
However, under stressed environmental conditions, especially with an abundance of C in
the milieu, bacteria are provoked to store energy by curtailing the TCA cycle and diverting
it towards PHA synthesis. The two pathways compete for acetyl-CoA and associated
energy-generating reactions. Thus, it is recommended to regulate the energy metabolism,
especially the flux of C, and prevent pathways that limit PHA synthesis. A few other
potential mechanisms for enhancing PHA production are manipulating the PHA operon
and restricting the expression of depolymerases. The overall benefit at the industrial scale
is the sustainable production of biopolymers.
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