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Abstract: Thermogravimetric analysis (TGA) is crucial for describing polymer materials’ thermal
behavior as a result of temperature changes. While available TGA data substantiated in the literature
significantly focus attention on TGA performed at higher heating rates, this study focuses on the
machine learning backpropagation analysis of the thermal degradation of poly (vinyl alcohol), or
PVA, at low heating rates, typically 2, 5 and 10 K/min, at temperatures between 25 and 600 ◦C. Initial
TGA analysis showed that a consistent increase in heating rate resulted in an increase in degradation
temperature as the resulting thermograms shifted toward a temperature maxima. At degradation
temperatures between 205 and 405 ◦C, significant depths in the characterization of weight losses were
reached, which may be attributed to the decomposition and loss of material content. Artificial neural
network backpropagation of machine learning algorithms were used for developing mathematical
descriptions of the percentage weight loss (output) by these PVA materials as a function of the heating
rate (input 1) and degradation temperature (input 2) used in TGA analysis. For all low heating
rates, modelling predictions were observably correlated with experiments with a 99.2% correlation
coefficient and were used to interpolate TGA data at 3.5 and 7.5 K/min, indicating trends strongly
supported by experimental TGA data as well as literature research. Thus, this approach could provide
a useful tool for predicting the thermograms of PVA materials at low heating rates and contribute to
the development of more advanced PVA/polymer materials for home and industrial applications.

Keywords: poly (vinyl alcohol); TGA; experiment; machine learning

1. Introduction

Recent years have seen a significant rise in the use of polymeric and polymer-modified
materials as the world’s population continues to grow. This has been achieved through
continued harnessing and formulation of resources available within the context of man’s
environment. As compared to ceramic or metallic structures, polymer materials have the
advantage of being lighter, more resistant to water and grease and possessing multiplier
characteristics of parts derived from the combination of monomers [1]. These combined and
unique characteristics of polymer materials enabled their utilization in several applications,
such as making polyethylene cups and plates, epoxy glue, polyurethane foam cushions,
Teflon-coated cookware, fiber glass, and plastic bags [2]. Examples of polymeric materials
include polyethylene, polypropylene, polystyrene, polyvinylchloride, Teflon, nylon, poly
(methyl methacrylate), and poly (vinyl alcohol) [3].

Among the different examples of polymeric materials, poly (vinyl alcohol) is a focus
of considerable interest due to wide applications in construction and woodworking, food
packaging, cosmetics and biomedical industries [4,5]. In general, poly (vinyl alcohol)
is abbreviated to PVA, and this material is considered a synthetic water-soluble linear
polymer (hydrophilic characteristic) that forms copolymers of vinyl alcohol and vinyl
acetate with idealized chemical formulas [CH2CH(OH)]n [6,7]. Abdullahi et al. [5] noted
that in addition to PVA’s high tensile strength, other desirable properties of these materials
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allowed for a variety of applications in man’s daily life. These characteristics include
good adhesion, good chemical resistance, film-forming ability, and biocompatibility. In
many cases, the degradation of this material is attributed to weight changes, resulting
from oxidation and decomposition reactions and from physical processes like desorption,
vaporization, or sublimation [8–10]. Hence, it is critical to estimate its thermal degradability
by measuring the weight changes in the material in response to temperature and heating
rate (thermogravimetric analysis, TGA).

There is a considerable amount of research in the literature dealing with the ther-
mal degradability of polymer materials, using either prediction or experimental methods.
As an example, Varma and Sadhir [11] investigated the thermal properties of polyvinyl
alcohol (PVA) and polyvinyl acetate (PVAc) with dynamic thermogravimetry. A direct
correlation was found between the stability of PVAc and its molecular weight, whereas
that of PVA decreased with decreasing molecular weight. According to Hayashi et al. [12],
thermal degradation of PVA involves a complex and multiple process of chain scission,
cross-linking, and dehydroxylation, all of which occur simultaneously and at varying tem-
peratures and environmental conditions. Tsioptsias et al. [13] found that thermogravimetric
analysis of physical cross-linked PVA films at carefully selected temperatures (50–600 ◦C)
revealed an increasing number of hydrogen bonds, higher thermal stability, and a slower
decomposition rate than raw PVA powder. In [14], the kinetics of thermal degradation of a
mixed polymer composite comprising PVA, alcohol, starch, carboxymethyl cellulose, and
clay (PVA/S/CMC/MMT) was studied experimentally. By applying the Ozawa method
at heating rates between 7.5, 10, and 15, activation energies between 69 and 76 KJ/mol
were obtained for decomposition temperatures ranging from 250 to 350 ◦C. In addition,
PVA/S/CMC/MMT blends were reported to have high thermal stability when compared
with PVA/S/CMC blends, indicating that the MMT material confers an advantage [14].
Thermogravimetric analysis of PVA nanofibrous membranes made via electro-spinning was
examined by Ozturk et al. [15]. Their study [15] revealed that degradation of cross-linked
PVA and pure PVA nanofibers starts at 240 ◦C and 290 ◦C, respectively, for 10 ◦C/min
heating. The thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)
of polyvinyl alcohol and starch (PVA–SF) fiber blends were investigated in [16]. The char-
acteristic of cyclic hemiacetals provided by the starch was reported [16] to prevent thermal
attacks on the polymer blends and, as such, their thermal behavior shifted to a higher
temperature when degradation onset occurred as compared with values recorded for pure
PVA materials. The study by Jadhav et al. [17] evaluated the thermal degradation of pure
polyvinyl alcohol (PVA) and nanocomposite (polyvinyl alcohol [PVA]–polypyrrole [Ppy]–
gold [Au]) films that were synthesized by in situ chemical oxidants with variable gold
particle loadings. PVA–Ppy and PVA–Ppy–AU nanocomposites showed better thermal
stability without rapid degradation after an experiment conducted at 10 ◦C/min heating
and degradation temperatures between 25 and 900 ◦C. According to [17], the gold particles
served as a mass transport barrier that inhibited PVA–Ppy degradation.

Researchers have examined the thermal stability of polymer materials through kinetic
studies, resulting in kinetic triplet estimates: reaction model, pre-exponential factor (A) and
activation energy [18–20]. Studying polymer materials from a kinetic perspective offers
numerous advantages, including understanding the rate at which the reactant decreases
or the product is formed, the mechanism of reactions at different conversion rates, the
number of reaction steps, the number of reactions, the duration of reactions, cross-linking
polymerization with diffusion control, and competing or independent steps. However, it is
dependent on known thermograms to determine these kinetic triplets, which help reveal a
depth of understanding of polymer thermal stability. In other words, experimentation is
essential to the estimation of these kinetic parameters. Recently, machine learning artificial
neural networks (ML-ANN) have also been adopted by analogous research in polymer
and material engineering. Both academics and researchers in tertiary institutions and
industry have applied ML-ANN to describe patterns in experimental data of polymeric
materials, typically their TGA analysis. For example, Dubdub and Al-Yaari [21] applied a
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feed-forward backpropagation ANN approach with ten (10) neurons, two hidden layers,
and logsig–logsig transfer function to forecast TGA data of low-density polyethylene for
heating rates of 5, 10, 20 and 40 K/min. Their modelling data correlated well with experi-
ments, and a correlation value of R2 → 0.9999 . Kianfar et al. [22] reported a correlation
value of R2 → 0.9913 between experimentally measured and modelled TGA data of al-
ginate/polyvinyl alcohol using the Levenberg–Marquardt algorithm of artificial neural
networks (ANN). Using a multilayer perceptron neural network (MLP), Araujo et al. [23]
assessed the contribution of several kinetic models to accurately describe TGA experimental
data for chitosan biopolymers at different heating rates: 2.5, 5.0, 7.5 and 10 ◦C/min. Their
predictions nearly overlapped experiments and categorized contributions from volume
contraction and surface area contraction models.

Many studies have been conducted on TGA analysis of pure poly (vinyl alcohol) or
blends of it with other polymers, but few predictions have been made for pure PVA and at
low heating rates. Accordingly, this study provides a machine-learning backpropagation
description of the thermal degradation of PVA materials based on TGA measurements
conducted in a laboratory. The first aspect of this study involves examining and pro-
viding TGA data and procedures for experiments involving thermal degradation at low
heating rates, typically 2, 5 and 10 K/min. The second aspect of this study involves math-
ematical formulations and discussions of predictions obtained from machine learning
backpropagation.

2. TGA Experimental Procedure and Data

The thermogravimetric analysis (TGA) experiment was conducted according to the
procedures described in [1]. In brief, the thermal decomposition of the PVA materials was
studied in a thermogravimetric analyzer consisting of three different components supplied
from Mettler Toledo. For this study, the poly(vinyl alcohol) used was that of Industrial
and Scientific grade 1788L powder with the following characteristics: molecular weight of
74,800 kDa, 88% alcoholysis and 1700 polymerization degree. Samples in powder form of
this material were used for this experiment, with each sample placed on the TGA pan and
weighted at the beginning. A 40 mL/min nitrogen (N2) gas was injected into the device’s
oven to study decomposition in an inert environment at three different heating rates of
2, 5, and 10 K/min. Purging nitrogen gas into the TGA chamber makes the surrounding
area inert and prevents weight loss due to oxidation [11]. All three test samples were
labelled with PVAx labels throughout this paper to indicate their different heating rates.
Decomposition weight changes in materials were studied over time at decomposition
temperatures ranging between 25 and 600 ◦C. TGA data for weight loss of these PVA
samples as well as temperature data for degradation were extracted from the TGA device
and prepared for modelling.

Figure 1a shows thermograms of percentage weight losses by these samples against
degradation temperature performed at different low heating rates of 2, 5, and 10 K/min. In
Figure 1b, some selected datasets along the various thermograms (from 25 to 600 ◦C with
an equal scale difference of 10 ◦C) are extracted for use in the backpropagation modelling
approach (to be discussed later), whereas Figure 1c shows the percentage weight loss for a
heating rate of 2 K/min along the degradation temperature. Figure 1 shows that the percent-
age weight loss changes non-linearly with degradation temperature and this supports the
generalized behavior of materials in TGA analysis described in [24–26]. The weight losses
observed in the pure PVA materials used in this study can be attributed to dehydration
(evaporation of water), nitrogen gas loss, and decomposition of the polymer materials as
the degradation temperature increases [27]. The research described in [9,15] indicated that
variations in furnace heating rate, furnace temperature, and sample characteristics (weight
and particle size) contributed to this non-linear decrease in polymeric material weight
percentage as degradation temperature increased. This study utilized nitrogen gas to keep
the oven inert to reduce the decomposition temperature [27,28] and minimize the exposure
of the polymer sample to atmospheric air. As opposed to an oxidative environment largely
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dominated by air, the decomposition temperature is often reduced in a TGA system with
an inert environment containing nitrogen (N2), carbon dioxide (CO2), and argon (Ar) [27].
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Figure 1. Characteristic thermograms showing typical plots of actual weight percentages [wt%]
against degradation temperature [◦C] for (a) raw experimental data for different low heating rates
of 2.0, 5.0 and 10.0 K/min, (b) selected experimental data for temperatures of 25 to 600 ◦C at 10 ◦C
difference and (c) percentage weight losses at a 2 K/min heating rate.

Figure 1a illustrates the increase in degradation temperature as the furnace heating
rate is increased. At 2 K/min, the onset of degradation observably started immediately
after room temperature of 25 ◦C for sample 1, which weighs 7.80 mg (100 wt%). As shown
in Figure 1c, the percentage weight loss for this sample at 30, 100, 210, 380, and 590 ◦C
was 0.16, 3.4, 6.0, 63.2 and 91.4, respectively, bringing the final weight of the first sample,
when heated at 2 K/min, to 0.62 mg (8.2 wt%) at the maximum degradation temperature
recorded (600 ◦C). TGA curves shifted to higher temperatures when heating rates were
5 and 10 K/min with similar non-linear trends. Detectable degradation began at 248 ◦C



Polymers 2024, 16, 437 5 of 12

(1.9 wt% loss) and 262 ◦C (2.0 wt% loss) for heating rates of 5 and 10 K/min, respectively.
At 380 ◦C, percentage weight losses were, respectively, 62.8 wt% and 60.0 wt%, indicating
a gradual decline with increasing heating rate for these materials. However, the highest
heating rate of 10 K/min increased the degradation time the most, followed by 5 and
2 K/min, respectively. Further, the initial weight of the sample recorded at 5 K/min was
7.69 mg (100 wt%), which was ultimately reduced to 0.45 mg (5.7 wt%) at 600 ◦C as the
final weight of the residue after the TGA experiment. At a final degradation temperature
of 600 ◦C, the weight of the sample was reduced from 7.10 mg (100 wt%) to 0.57 mg
(8.0 wt%) at a rate of 10 K/min. Across all thermograms for the three different heating rates,
significant weight losses are observed at mid-range degradation temperatures, typically
between 205 and 405 ◦C, which could be explained by the sudden loss of weight caused by
the decomposition of carbon–hydrogen molecules in the PVA materials. A key insight is
that at a low degradation temperature, typically between 25 and 100 ◦C, the percentage
weight loss in these materials can be attributed to the dehydration of the pure PVA material,
whereas after this temperature, the decomposition of the material is responsible for the
loss [14,15].

3. Machine Learning Backpropagation Neural Network and Data

The machine learning backpropagation technique of the artificial neural network (ML-
ANN) adopted for this study was first performed by formulating mathematical models
describing the input and output variables for the TGA experiments for pure PVA materials,
followed by trainings of the experimental datasets using the formulated ANN models.
Figure 2 illustrates the ML-ANN framework that guided the formulation of the mathemati-
cal models. This figure shows that two input neurons and an output signal are linked by
four hidden neurons (a1 − a2), twelve synaptic weights (nerves, [wi]) and five biases (bi).
Weight loss of the PVA materials during the TGA experiment represents the output signal
(yi), while heating rates (Qi) and degradation temperatures (Ti) represent inputs 1 and 2,
respectively. A preliminary assessment and sorting of the raw data from the TGA experi-
ment was performed by selecting some data points along the thermograms for the three
different heating rates and considering the initial and final degradation temperatures (25
and 600 ◦C) used in the experiment. As discussed in [29–31], the introduction of the hidden
neurons (layers) into the framework in Figure 2 was performed to improve convolution and
non-linearity between input and output signals that have been determined experimentally.

To accurately represent datasets for machine learning training, input and output
variables are usually converted to values between 0 and 1. In this context, Sigmoid [32]
is selected as the activation function in Equation (1b), which is a test function of the sum
weight (Equation (1a)) and overall cost function of the ML-ANN framework. According to
Panneerselvam [32], the activation functions in machine learning are chosen to compute
synaptic weights and biases that most accurately describe reality (the real signal), which
should be monotonic, differentiable, and easily converging. In general, they can be divided
into linear and non-linear activation functions [32]. While there are a variety of non-linear
activation functions, the Sigmoid function was selected because of its simplicity in allowing
complex data combinations and its ability to output data between 0 and 1 when input
data is given. By dividing by the maximum values, the real inputs (heating rates and
degradation temperatures) and outputs (weight loss) can be converted to values between 0
and 1. Because of this, the percentage weight losses of the PVA materials were converted
into their fractional values (yi). The input heating rates were also divided by a maximum
value of 35 K/min (Qmax) and served as input 1 (x1), whereas temperature data were
divided by the maximum degradation temperature of 600 ◦C used in this experiment and
served as input 2 (x2). Though the TGA experiment was conducted at low heating rates
between 2 and 10 K/min, 35 K/min was selected as the maximum heating rate for the
ML-ANN modelling so that the mathematical formulations accurately capture the behavior
of pure PVA materials under higher heating rates (extrapolation). A detailed mathematical
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formulation for this framework (Figure 2), along with the cost optimization function, is
available in the Supplementary Material.

Polymers 2024, 16, x FOR PEER REVIEW 6 of 12 
 

 

 

Figure 2. Machine learning backpropagation network analysis framework showing typical input, 

hidden and output neurons. 

To accurately represent datasets for machine learning training, input and output var-

iables are usually converted to values between 0 and 1. In this context, Sigmoid [32] is 

selected as the activation function in Equation (1b), which is a test function of the sum 

weight (Equation (1a)) and overall cost function of the ML-ANN framework. According 

to Panneerselvam [32], the activation functions in machine learning are chosen to compute 

synaptic weights and biases that most accurately describe reality (the real signal), which 

should be monotonic, differentiable, and easily converging. In general, they can be di-

vided into linear and non-linear activation functions [32]. While there are a variety of non-

linear activation functions, the Sigmoid function was selected because of its simplicity in 

allowing complex data combinations and its ability to output data between 0 and 1 when 

input data is given. By dividing by the maximum values, the real inputs (heating rates and 

degradation temperatures) and outputs (weight loss) can be converted to values between 

0 and 1. Because of this, the percentage weight losses of the PVA materials were converted 

into their fractional values (𝑦𝑖). The input heating rates were also divided by a maximum 

value of 35 K/min (𝑄𝑚𝑎𝑥) and served as input 1 (𝑥1), whereas temperature data were di-

vided by the maximum degradation temperature of 600 °C used in this experiment and 

served as input 2 (𝑥2). Though the TGA experiment was conducted at low heating rates 

between 2 and 10 K/min, 35 K/min was selected as the maximum heating rate for the ML-

ANN modelling so that the mathematical formulations accurately capture the behavior of 

Figure 2. Machine learning backpropagation network analysis framework showing typical input,
hidden and output neurons.

z5 = b5 + w9·a1 + w10·a2 + w11·a3 + w12·a4 (1a)

a5 = σ′(z5) =
1

(1 + e−z5)
(1b)

C = (yi − a5)
2 (1c)

where z5 is the sum weight, wi is the synaptic weight, σ′(z5) is the logistic function
of the sum weight, ai is the activation function or predicted output signal, yi is the
real/experimental output and C is the cost function.

Experimental and DNN predictions are shown in Figure 3 for percentage weight loss
(%) for pure PVA materials against degradation temperature (◦C) at 2, 5 and 10 K/min.
Table 1 presents numerically simulated arbitrary constants (bi and wi), linearity rates (kP),
reduced cost (∑N

i=1 C) and percentage correlations (R2) derived from comparing experi-
ments with predictions. As shown in Figure 3a, different values of DNN predicted data
have been obtained for the thermogram obtained at 2K/min heating rate at the beginning of
the training (DNN–y1), mid-level trainings (DNN–y1, DNN–y3 and DNN–y4), and finally
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training (DNN–y5). Figure 3b,c illustrate thermogram plots for heating rates of 5 and
10 K/min. In Table 1, equal values of variables (0.01) were chosen at the beginning of the
training and this resulted in unchanging values (typically, in the middle of the experiment)
with increasing degradation temperatures as shown in Figure 3a–c. For a constant linearity
rate of 5.0, continuous training of the DNN framework in Figure 2 resulted in changes
associated with the originally selected synaptic weights and biases from the input to the
output neurons as predicted by the DNN, illustrated in Table 1 by increasing correlation
coefficients (R2). According to this table, 99.2% correlation was achieved for the final
trained DNN data. DNN predictions and experiments overlap completely (Figure 3) for all
the heating rates considered herein as cost functions decrease from an initial value of 26.4
to 0.183 as shown in Table 1.
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Figure 3. Experimental and DNN modelling data of PVA weight percentages against degradation
temperature [◦C] for heating rates of (a) 2 K/min; (b) 5 K/min; (c) 10 K/min; (d) 2, 5, and 10 K/min;
(e) 2, 5, and 10 K/min at a temperature of 205–405 ◦C; and (f) including interpolated and extrapolated
data for heating rates between 3.5, 7.5 and 20 K/min.

Table 1. Tabular representation of DNN computed values of arbitrary constant (wi & bi), linearity
rate (kP), reduced cost function (∑N

i=1 C) and percentage correlations (R2).

b1 w1 w2 b2 w3 w4 b3 w5 w6

y1 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010
y2 0.068 0.066 −1.454 0.068 0.066 −1.454 0.068 0.066 −1.454
y3 0.790 0.350 −2.838 0.790 0.350 −2.838 0.790 0.350 −2.838
y4 0.904 1.695 −5.022 0.904 1.695 −5.022 0.904 1.695 −5.022

y5 0.421 1.591 −4.699 0.421 1.591 −4.699 0.421 1.591 −4.699

b4 w7 w8 b5 w9 w10 w11 w12 kp ∑N
i=1 C

R2

[%]

y1 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 5.000 26.427 33.174
y2 0.068 0.066 −1.454 −1.324 1.249 1.249 1.249 1.249 5.000 13.763 47.732
y3 0.790 0.350 −2.838 −3.282 2.734 2.734 2.734 2.734 5.000 1.376 82.616
y4 0.904 1.695 −5.022 −2.740 4.538 4.538 4.538 4.538 5.000 0.187 98.453

y5 0.421 1.591 −4.699 −2.799 6.073 6.073 6.073 6.073 5.000 0.183 99.157

Across input and hidden neurons, the tabulated data in Table 1 indicate that synap-
tic weights associated with heating rates (w1, w3 and w5) and degradation temperature
(w2, w4 and w6) were positive and negative, and the hidden neurons’ biases (i.e., b1 = b2 =
b3 = b5 = 0.421) were equal. The biases pointed to an offset of the training data as well
as an increase in flexibility [32], but the synaptic weights showed an observable increase
along with their signs as training progressed. Input 1 to hidden neurons are linked by
positive synaptic weights, indicating that increasing the heating rate will cause an increase
in the percentage weight loss (output signal). As seen in Figure 1, for a 105 ◦C degradation
temperature, 96.6, 98.1 and 99.5% weight losses are obtained for heating rates of 2, 5 and
10 K/min, respectively. The degradation temperature at 405 ◦C was calculated at 29.9, 32.0,
and 33.6%, respectively, for the different heating rates. Similarly, the DNN predicted data
for heating rates of 2, 5 and 10 K/min and extrapolated DNN data for higher heating rates
(to be discussed later) showed similar trends. Numerically simulated negative values for
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synaptic weights linking input 2 and hidden neurons indicate that increasing degradation
temperature decreases percentage weight loss by pure PVA materials. These trends can be
seen in all the thermograms obtained for the different heating rates considered in both TGA
analysis and DNN prediction presented in Figure 1. Table 1 also shows that the synaptic
weights linking the hidden neurons with the output signal were equal. This can be at-
tributed to the equal values in synaptic weights and biases received by the hidden neurons
(a1 − a4) from the input neurons (x1 and x2) and shows that all the hidden neurons were
equally important in fully describing the convolution and non-linearity in the experimental
datasets for the different heating rates of the pure PVA materials.

Figure 3c shows a nearly complete overlap between DNN predictions and experiments
for mid-range degradation temperatures, typically between 205 and 405 ◦C, which has the
highest weight loss percentage for the varied heating rates considered here. Furthermore,
the final trained synaptic weights and biases were used to predict the weight loss for pure
PVA material at interpolated and projected heating rates of 3.5 and 7.5 and 20K/min for the
selected degradation temperature range between 25 and 600 ◦C, as shown by Figure 3f. Dif-
ferent heating rates resulted in comparable thermograms, which also showed a consistent
shift towards temperature maxima with increasing heating rates. The interpolated thermo-
gram at 3.5 K/min, for example, shifted between experimental and interpolated TGA data
at 2 and 5 K/min heating rates. In addition, it was observed that predicted thermograms at
7.5 K/min heating rates switched between experimental thermograms at 5 and 10 K/min,
proving the validity of this model for predicting PVA thermograms at low heating rates.
The extrapolated thermogram in Figure 3f indicates the onset of degradation at 275 K/min,
slightly higher than that at 10 K/min. The numerically predicted extrapolated thermograms
at 20 K/min show an increase over current experiments at 2–10 K/min heating rates, and
this supports an analogous trend [9–15] on the TGA analysis of polymer materials, which
shows that degradation starts at a higher temperature when the heating rate is increased.
Extending the validity or limitation of these models in predicting the thermal behavior
of PVA material beyond 10 K/min, however, will require more experimental analysis to
confirm their validity. Hence, a future study is proposed to incorporate additional inputs
such as polymer degradation time, composition and expanded heating rates for different
classes of selected polymer and co–polymer materials into machine learning models. A
global model could be developed using this approach, and this research is already in
consideration by this group.

A careful approach was used to formulate the mathematical models (Supplementary
Data), utilizing the general artificial neural network model in Equation 1 and working
through the carefully drawn framework of Figure 2 from output to input signals (back-
propagation). As shown in Figure 2, this framework consists of two input neurons, four
hidden neurons (single layer), and one output neuron linked by twelve synaptic weights
and five biases. In this case, the number of neurons or layers determines the hyperpa-
rameters of the machine learning model, which were selected based on prior experience
with deep neural analysis and an analysis of the relationships between input and output
experimental datasets. According to the leading author of this group [30], increasing this
hyperparameter (that is, adding neurons or layers) results in increased accuracy (reduced
true error) and convergence, but at the cost of an increased mathematical formulation
time and model complexity. By reducing the hyperparameter, the true error between the
output signal and reality increases, as well as the convergent time. However, the initial
framework in Figure 2, followed by mathematical models, produced final output signals
which completely overlap reality and also reduced the overall cost function of the models
to nearly zero. A linearity rate of 5.0 was used in training these mathematical models in
Microsoft Excel with code written in its Visual Basic for Applications. The datasets were
continuously trained at a computational and copying time step of 1 s, followed by fast
tracking to a zero time step for about seven consecutive days in order to achieve the desired
and nearly zero cost function. The thermograms for three heating rates were all used at
once during the training of these models, which resulted in millions of iterations (epochs)
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over the seven days. This means that the learning algorithm for the formulated models
required millions of epochs in order to improve the agreement between simulations and
experiments and result in trained synaptic weights and biases. According to Table 1 and
Figure 3, predictions of synaptic weights and biases for the initial guess values were poor,
with an overall cost function of 26.427 indicating a wide margin between predictions and
reality. After a series of iterations, the learning algorithm (mathematical models) in the
Supplementary Data begins to understand these data through the network in Figure 2. As
the overall cost function approaches zero (0.183, see Table 1), predictions nearly overlap
experiments (99.2%). Figure 2 shows that a single hidden layer consisting of four neurons
was able to achieve this close correlation between predictions and experiments. However, a
more complex framework involving more than a single layer and several neurons could still
provide us with similar or greater correlations, but at a cost of computational time in the
development of learning algorithms, resulting in the attainment of more synaptic weights
and biases. In contrast, fewer hidden neurons could have been used in Figure 2, but at the
cost of computational time and accuracy. This is the called Kolmogorov complexity [33],
which identifies the length of the shortest computer program (learning algorithm in this
case) that produces a specified output.

4. Conclusions

In this study, experimental and machine learning backpropagation formulations and
analyses of TGA data obtained for degradation of PVA materials are presented for differing
heating rates of 2, 5 and 10 K/min and degradation temperatures ranging from 25 to
600 ◦C. PVA degradation temperatures increased with increasing heating rates, resulting
in higher percentage weight losses at degradation temperatures between 205 and 405 ◦C.
Training the experimental datasets with the formulated backpropagation neural network
models yielded a 99.2% correlation coefficient between predictions and experiments. With
increasing heating rates, the numerically simulated DNN-trained synaptic weights and
biases showed an increase in the percentage weight loss of pure PVA polymer materials,
whereas, with increasing degradation temperatures, the percentage weight loss decreased.
The trained arbitrary constants were also used to extrapolate thermograms for higher
heating rates, typically between 15 and 35 K/min, and similar trends were observed when
compared to TGA experimental data published in the literature. The extrapolated data
may still require experimental validation and may form the basis for further research.
Nevertheless, the trained arbitrary constants and learning algorithm could provide a
framework for understanding and predicting polymer materials’ thermograms, allowing
them to be designed and applied ideally in both domestic and industrial settings.
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