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Abstract: Natural fibers extracted from plants are preferred as an alternative to synthetic products.
The main reasons for this preference are their affordable cost, light weight and good mechanical
properties. However, finding new natural raw materials is challenging due to growth limitations in
different geographical areas. Platanus orientalis L. (Eastern plane tree) is a tree with abundant fruits that
can grow in many regions of the world. The aim of this study was to determine the mechanical (tensile
strength, tensile modulus, elongation), physical (density, fiber diameter) and chemical (cellulose,
hemicellulose and lignin) properties of Platanus orientalis L. fruit’s stem by fiber extraction from
the stems of the tree. It was determined that the extracted fiber had good mechanical properties
and cellulose content of 42.03%. As a result of thermogravimetric analysis, it was determined that
the plane tree fruit’s stem fiber had thermal resistance of up to 299 ◦C. The tensile strength value
was 157.76 MPa, the tensile modulus value was 1.39 GPa and the elongation value was 22.01%. It
was determined that it is suitable for use in fiber reinforcement in thermoplastic-based composites
at temperatures below 299 ◦C. According to the results obtained by the mechanical, chemical and
physical analysis of Platanus orientalis L. fruit’s stem fiber (PoLfs), it could be recommended as a
suitable alternative as a reinforcing fiber in thermoplastic and thermoset composites.

Keywords: Platanus orientalis L.; mechanical properties; extracted new fiber; composite fibers;
sustainability; morphology and chemistry of Platanus orientalis L.

1. Introduction

Belonging to the Platanaceae family, the plane tree (Platanus orinetalis L.) takes on
a rounded form as it ages and a pyramidal form when it is younger. The plane tree is
a large deciduous tree with a very thick and short trunk that spreads thick and long
branches upward and to the sides. It grows to a height of about 30–50 m and a diameter of
1–2.5 m [1,2]. Older trunks have deeply fractured bark that is covered in tiny scales that do
not fall off over time. The lobes on leaves with three to seven lobes are coarsely toothed
or entire-edged, and the grooves between them are narrowly angled and penetrate all the
way to the middle of the leaf blade, even near the petiole. The leaves are deeply dissected.
The lengths of the petioles are 2.5–7.5 cm [1]. The plane tree has ball-shaped fruits. Fruits
stem from these “globose heads”; the female flowers of the plant develop into walnut-sized
beans following pollination [3]. Three to seven fruits hang together on a long stem (13 to
19 cm). The tree originated in Western Asia and Southeast Europe. Its distribution area is
very wide, ranging from sea level to an altitude up to 1100 m in the majority of Turkey. It
is primarily found near streams, river banks, river deltas, seepage and gravelly slopes [4].
Due to its long lifespan, the plane tree is particularly favored [5]. While some of these
species’ very old members have been lost to history, others have been preserved as natural
monuments [4]. It is reported in the literature that the Oriental plane tree is used in folk
medicine [5]. For example, Oriental plane roots are reported to be used as an antidote
for snake bites, while the leaves are used to treat a variety of inflammatory, rheumatic,
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gastrointestinal and dermatological disorders. However, it has also been reported that
sycamore pollen is a source of airborne allergens and can cause reactions such as asthma,
allergic rhinitis and allergic conjunctivitis [6].

The study by Janković et al., 2018 [7] aimed to examine a potential solid sorbent for a
sorption process for harmful gases like CO2; the purpose of the study was to choose
experimental techniques for the characterization analysis of raw and pyrolyzed sam-
ples of plane tree (Platanus orientalis L.) seeds and to assess the results. A study by
Dodevski et al., 2020 was reported to characterize and analyze the activated carbons
produced by the horizontal tubular reactor-based pyrolysis of plane tree seeds [8]. As they
stated, since woody-based biomass and wood charcoals can also be used for cadmium
adsorption, their research is significant. In particular, it is possible to use the ash and
leaves of Platanus orientalis L. (PoLfs) as adsorbents to remove cadmium from aqueous
solutions. The purpose of another study [9] was to determine how well raw Platanus
fruit fibers adsorb various kinds and concentrations of oil in water. As a result of the
investigation, it was determined that the temperature of the oil, the amount, the concen-
tration and the surface characteristics of the fibers all affected how well they removed oil
from water. Güler et al., 2017 [5], in their study, aimed to ascertain the profile of volatile
compounds present in Platanus orientalis leaves and stated that Platanus orientalis leaves
contained 140 different volatile compounds in total. Yang et al., 2016 [10] successfully used
Platanus fruit fibers, which have distinctive hollow tubular structures, for the first time to
create effective oil sorbents by chemically modifying them with acetic anhydride. Addi-
tionally, the researchers not only reported on the utilization of plane tree fibers to create
porous pipe walls for tubular structures but also proposed an inexpensive and effective
oil-absorbing substance created by a hydrophobic alteration process [11]. By utilizing the
precursor of sycamore fruit seeds and altering the carbonization conditions, a novel type
of biomass hard carbon was produced [12], and the authors stated that sycamore fruit
seed hard carbon anode material has practical uses in the industrialization of sodium-ion
batteries, in addition to having the potential to replace lithium-ion batteries due to its easy
preparation, cheap cost and the plentiful supply of raw materials. Some other studies
reported on the creation of a dye removal adsorbent and solar evaporator by utilizing 3D
spherical carbonized fibers and fruits [13,14]. By using short natural fibers from plane tree
(Platanus orientalis L.) fruits, Atabek Savas 2022 [2] examined the mechanical characteristics
of polypropylene composites. Moreover, it is possible to utilize numerical methods to eval-
uate the mechanical performance of the new extracted fibers in the literature [15] instead of
time-consuming and expensive experimental techniques. Considering earlier studies, it is
evident that most of the studies in the literature have focused on the fruit of the plane tree
or its fiber. However, in this study, unlike the literature, the characterization of the fibers of
the fruit stem of the plane tree has been investigated instead of the fruit of the plane tree.

In order to promote sustainability and a greener environment, there has been a lot of
interest worldwide in the use of natural fibers as substitute materials in various industrial
sectors. In particular, the problems caused by global warming are pushing the world’s
industries to search for more sustainable solutions. For this reason, there are considerable
scientific studies on possible composites created by combining natural fibers or polymers. In
particular, cellulosic-based characterization studies are of great importance for this reason
because it is even argued that this century will be the century of cellulose [16]. Composite
materials are new structures formed by combining two materials in the macro dimension.
The main purpose here is to provide maximum benefit by bringing the properties of
two materials together [17,18]. Polymeric resins have been combined with various natural
fibers, such as kenaf, sugar palm, flax, jute, hemp, etc., to create new materials known as
natural fiber composites [19–23]. According to this perspective, the use of natural fiber
composites has attracted the interest of material scientists and engineers because of the
benefits they provide [24–31].

Numerous fields focused on mechanical, medical, and industrial applications are
affected by the wide range of applications of cellulose [32]. Cellulose is utilized in the
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manufacturing of degradable polymers by reinforcing matrixes. Additionally, applications
for cellulose include packaging, tissue engineering, electronics, optics, sensors, pharma-
ceuticals, cosmetics, insulation, water filtration, hygienic uses and vascular grafts [33–35].
Moreover, chemical treatment processes (alkalization, enzymes, etc.) can be applied to the
surface of natural fibers to increase fiber/matrix surface compatibility. It is thought that
fiber/matrix surface compatibility will improve by removing the impurities on the surface
as a result of increasing the existing cellulose ratio of natural fiber with chemical treatment
processes [36]. Therefore, cellulosic fiber characterization studies are in great demand as
they have the potential to be used in different industries, and the number of studies on
characterization continue to increase in the literature [37–39].

Every year, a single Platanus tree produces 300 spherical fruits and, accordingly, stem
fibers on average. These fruits’ stems are typically disposed of as waste in the environment
and as potential sources of allergies for vulnerable groups [2,40]. Vast amounts of plane
tree fruits have been scrapped as bio-waste material, despite the fact that plane trees can
be grown anywhere in the world and used for a variety of purposes (furniture, flooring,
medicine, printing, the greening of streets and gardens, etc.). They produce harmful gas
emissions and carbon dioxide emissions when disposed of in landfills, and they are inedible
to humans [11,41]. However, both plane tree fruit and fruit stalks, which become waste as
a result of seasonal transitions, have great potential as fiber materials. Therefore, in this
study, the fiber characterization of the plane tree’s fruit stem, which has been ignored so far,
was investigated instead of the plane tree fruit, which is frequently studied in the literature.
Density determination and physical characterization determination of fruit stem fibers
obtained after stems were kept in water for about 3 weeks with the natural decay of the
bark component were carried out. In addition, thermogravimetric analysis (TGA), X-ray
diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared
spectroscopy (FTIR) tests were applied for chemical characterization.

2. Materials and Methods
2.1. Fiber Extraction

Platanus orientalis L. fruit stems, from which fibers were to be extracted, were collected
from the plane trees in early November when the fruits were at their ripest. The ripest state
of the fruits and hence the stems could be ascertained from the brown color of the fruits
in Figure 1a and the yellowing of the leaves. The fruits were harvested from the plane
trees (Figure 1a) located within the borders of Altınşehir Campus of Adıyaman University.
A latitude of 37.744331 and a longitude of 38.229885 are the location specifications for
the campus. The altitude (height above sea level) of the campus is 670 m, and the GPS
coordinates are 37◦44′39.5916′′ and 38◦13′47.5860′′. After separating the harvested fruits
and stems with scissors, the fruit stems were left to decompose in a bucket filled with water
for three weeks. The time of decay was determined by observing the decay of the stem bark
(Figure 1b). The stems were washed one by one in water, as shown in Figure 1c, and the
fibers were extracted. The general appearance of the extracted fibers is shown in Figure 1d.
After the process, the fibers were sent to laboratory centers for relevant tests.

2.2. Mechanical, Physical and Chemical Analysis of PoLfs Fiber

The fibers were pulverized by ball-milling prior to chemical analysis. A Fritsch
Planetary Micro Mill from PULVERISETTE 7 (Fritsch GmbH, Oberstein, Germany) was used
for ball-milling. For five minutes, the fibers were ball-milled at 800 rpm. The powdered stem
fibers were dried in an oven at 100 degrees Celsius for four hours to remove excess moisture,
which was probably present during both decomposition and washing [37]. Post-dried stem
fibers, free of excess moisture, were used for chemical composition analysis. Thus, the
cellulose, lignin, wax, and moisture contents in the structure of the fibers were determined.
The Mylsamy and Rajendran method was then performed after the drying process [42].
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Figure 1. Platanus orientalis L. fruits and its stems (a), after the decaying process of stems (b), single 
stem of the plane tree fruit with rotted bark in water to be extracted for fibers (c), extracted fibers 
after washing (d). 
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Figure 1. Platanus orientalis L. fruits and its stems (a), after the decaying process of stems (b), single
stem of the plane tree fruit with rotted bark in water to be extracted for fibers (c), extracted fibers
after washing (d).

Tensile tests of Platanus orientalis L. fruit stem fibers were conducted on 10 mm long
fibers at a speed of 0.1 mm/min using an Instron Universal Tester universal testing machine
consisting of a 50 N load cell. Under standard atmospheric conditions, every test was
carried out in accordance with ASTM D 3822-07 [43] guidelines. Because natural fibers typ-
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ically have an irregular shape, thirty repetitions of the single fiber test were conducted [44].
The tensile strength and tensile modulus were calculated by Equation (1).

σ =
Fb
S0

(1)

where σ represents the tensile strength and Fb and S0 denotes max force at fiber break and
the cross-sectional area of the fiber, respectively. The tensile modulus and elongation at
break were calculated from the test data.

2.3. SEM Analysis of PoLfs Fibre

Despite coming from the same plant, natural fibers can differ in their chemical com-
position, microfibrillar angle, structure, physical attributes, crystalline cellulose diameter,
flaws, and isolation method. There may also be notable differences in the mechanical
properties and characteristics [31]. Therefore, like many natural fibers, stem fibers have
an irregular shape and typically show a heterogeneous cross-section. The accurate mea-
surement of each fiber’s mechanical properties may for that reason become problematic as
a result. The diameter measurement was performed by using an SEM-ZEISS/EVO LS10
device from random locations. As per the widely used ASTM D8171-18 [45] standard
in the literature, the density measurement of the extracted fiber was performed. Using
Archimedes’ principle, the ASTM D8171-18 [45] method measures the buoyancy created by
submerged fibers in a fluid. This information allowed for the calculation of the sample’s
volume and, consequently, its density [46].

2.4. FTIR Analysis of PoLfs Fiber

Fourier Transform Infrared (FTIR) spectra of the stem fibers of the fruit were deter-
mined by using a Perkin Elmer Spectrum BX Fourier Transform Infrared Spectrometer
(PerkinElmer Life and Analytical Sciences, Bridgeport Avenue Shelton, CT, USA). To record
the data in the range of 4000 cm−1 to 400 cm−1, a signal-to-noise ratio resolution of 2 cm−1

and a scan rate of 32 scans per minute were used.

2.5. XPS Analysis of PoLfs Fiber

The atomic concentration of the PoLfs fiber was measured using an X-ray photoelec-
tron spectroscopy (Thermo Fisher Scientific Inc., East Grinstead, UK) apparatus that had the
characteristics of a monochromatic Al-Ka (1486.7 eV) X-ray source and a 300 µm diameter
beam. The range used to gather XPS data was 1361–10 eV, with a precision of 0.1 eV and
pass energy of 50 eV. Ionic Ar gas was sputtered before the fiber sample was examined on
the surface, and 10 scans were made from a single spot to collect the data.

2.6. XRD Analysis of PoLfs Fiber

For determining the crystalline structure of Platanus orientalis L. stem fibers, the Rigaku
miniflex600 (Rigaku Corp., Tokyo, Japan) device was used. Prior to the measurement pro-
cedure, the moisture was extracted for 24 h at 105 ◦C from the grounded stem fibers. With
Cu-Kα radiation (λ-Kα = 1.54 Å) as the X-ray source, the device ran at 40 kV and a 15 mA
current. Each sample was scanned at a width of 2θ = 5–55 degrees with a step speed of 0.02◦

and at a rate of scanning speed of 0.75◦ per minute (therefore, a total 67 min duration).
A common tool for quantifying the amount of crystalline fraction in cellulosic materials

and measuring how much they have changed after undergoing various physicochemical
and biological treatments is the crystallinity index (CI) [47]. The crystalline phase content,
or CI, is just the percentage that is present. Consequently, determining cellulose structure
depends heavily on measuring CI. The data generated by the reflection of the stem fiber’s
X-ray diffraction (XRD) pattern were used to calculate the crystallinity index. Segal’s
equation in Equation (2) was used for determining the crystalline structure of Platanus
orientalis L. fruit stem fibers [48]. The 200 peak, located between the scattered angles of
2θ = 22◦ and 23◦, represents the total of the crystalline and amorphous components. The
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amorphous-only component in this empirical method is represented by the intensity at the
minimum, approximately 18◦, between the overlapped peaks (110 and 110) and 200 peaks.

CI (%) =
I200 − Iam

I200
(2)

where Iam stands for the 2θ intensity at roughly 18◦ which is the low value between the
overlapped peaks (110 and 110) and (200) peak. I200 is associated with the (200) lattice
plane between 22◦ and 23◦ and shows the peak at maximum intensity [48].

2.7. TGA Analysis of PoLfs Fiber

The Seiko SII TG/DTA 7200 (Seiko, Chiba, Japan) instrument was used to measure
the TG and DTA of Platanus orientalis L. fruit stem fibers in order to evaluate their thermal
stability. The chemical stabilization characteristic of the fibers was ascertained by heating
5 mg weights of fiber specimens in a nitrogen environment at a rate of 10 ◦C per minute
from 30 ◦C to 700 ◦C.

3. Results and Discussion
3.1. Mechanical, Physical and Chemical Analysis of PoLfs Fiber

Chemical and physical analysis results of Platanus orientalis L. fruits stem fiber and
other fibers are presented in Table 1 and mechanical analysis results are presented in Table 2.
The mechanical properties of natural fibers and their degradation under environmental
conditions are directly related to the chemical composition of the fiber [49–51]. The cellulose
content of Platanus orientalis L. fruit’s stem fiber given in Table 1 is higher than wheat straw,
rice straw, rice husk, bamboo and coir fibers and lower than Coccinia indica, Cocos nucifera
Peduncle, Cortaderia selloana grass and Sida mysorensis fibers. The mechanical properties
of Platanus orientalis L. fruit stem fiber with sufficient cellulose content will contribute
positively [50,52–58]. However, the reason why the tensile strength value given in Table 2
is as high as expected is that it is thought to be affected by the cellulose content of 42.03%
as well as other chemical contents [49]. Hemicellulose content negatively affects fiber
strength as it alters microfibrils. In addition, hemicellulose content can affect thermal
resistance, moisture, and biodegradability [51,59]. Platanus orientalis L. fruit stem fiber’s
13.5% hemicellulose content is lower than other fibers except for coir, jute and Ageratina
Adenophora fibers. Lignin affects the fiber’s moisture absorption and strength properties
such as stiffness [49]. Platanus orientalis L. fruit’s stem fiber contains lower lignin content
(28.35%) than bamboo, coir fibers but higher content than wheat straw, rice straw, rice husk,
Ageratina Adenophora, Coccinia indica Cocos nucifera, Peduncle, Cortaderia selloana
grass, jute, flax, hemp, kenaf, sisal and Sida mysorensis fibers [50,52–58].

The chemical contents that make up the structure of natural fibers vary depending on all
environmental conditions, such as climate and soil, affecting the plant [50,52–58]. Therefore,
the cellulose ratio, which covers most of the basic chemical content of the fiber, is the most
important parameter affecting the mechanical properties of fiber-reinforced composites.

The density of Platanus orientalis L. fruit stem fiber was determined as 1.36 (g/cm3). It
is seen that this is similar to the density values of other natural fibers given in Table 1. In
fiber-reinforced composites, low-density fibers are more advantageous than higher-specific-
gravity fibers because they contribute to the production of lightweight materials [51].

Platanus orientalis L. fruit’s stem fiber has moisture content of 10.86%, which is higher
than the bamboo, coir, Ageratina Adenophora, Coccinia indica and Cortaderia selloana
grass fiber values given in Table 1. Low moisture content is desired in fiber-reinforced
composites. Plane-tree-fiber-reinforced composites should pay attention to the removal of
moisture content for better fiber/matrix surface compatibility [52–65].

The fineness value of the obtained fibers was obtained as 181.01 ± 9.81 µm. When
this value is compared with the average of the fineness values of traditional natural fibers
quoted in the literature, it is seen that this value is smaller than kenaf, ramie, jute and sisal
fibers, but larger than hemp and flax fibers.
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Table 1. Comparison of chemical ratios and density of Platanus orientalis L. fruit’s stem fiber and
other natural fibers [50,52–58,60,61].

Natural Fibers Density
(g/cm3)

Fineness
(Micron)

Moisture
Content (%)

Cellulose
(%)

Hemicellulose
(%)

Lignin
(%)

PoLfs 1.36 181.01 ± 9.81 10.86 42.03 13.5 28.35
Bamboo 0.910 9.16 26–43 30 1–31

Coir 1.15 8 32–43 0.15–0.25 40–45
Wheat straw - - 38–45 15–31 12–20

Rice straw - - 41–57 33 8–19
Rice husk - - 35–45 19–25 20

Ageratina Adenophora 1.32 7.4 65.7 11.2 12.5
Coccinia indica 1.37 7.27 64.56 14.09 12.55

Cocos nucifera Peduncle 1.3–1.4 11.1 50.1 24.9 11.9
Cortaderia selloana grass 1.26 7.6 53.7 14.43 10.32

Sida mysorensis 1.29 10.48 53.36 15.23 9.46
Jute 1.3 25–200 64.4 12 11.8
Flax 1.5 40–600 64.1 16 2.0

Hemp 1.47 25–500 68 15 10
Kenaf 1.45 12–36 31–72 20.3–21.5 8–19
Sisal 1.5 25–200 60–78 10–14.2 8–14

Ramie 1.5 25–50 68.6–85 13–16.7 0.5–0.7

Table 2. Mechanical properties of Platanus orientalis L. fruit stem fiber and other natural
fibers [37,44,58,60,66,67].

Fiber Tensile Strength (MPa) Tensile Modulus (GPa) Elongation (%)

Platanus orientalis L.
fruit’s stem 157.76 ± 23 1.39 ± 0.42 22.01 ± 3.7

Oil Palm 80–248 0.5–3.2 17–25
Feather 100–203 3–10 6.9

Coir 135–240 4–6 15–40
Bagasse 222–290 17–27.1 1.1
Banana 1.7–7.9 - 1.5–9.0

Date palm 90–176 3–7.7 3.8–4.8
Chrysanthemum

morifolium 65.12 1.55 ± 0.7 4.51 ± 0.95

Napier grass 88.40 13.1 0.99
Veldt-grape stem fiber 61.42 1.1 5.6
Hierochloe Odarata 105.73 2.56 2.37
Glycyrrhiza glabra 132.40 4.47 4.48

Jute 393–773 1.5–1.8
Flax 345–2000 1–4

Hemp 368–800 1.6
Kenaf 240–930 1.6
Sisal 350–700 2–7

Ramie 400–1000 1.2–3.8

Scanning electron microscope images were used to determine the diameter of Platanus
orientalis L. fruit stem fiber. The average of 15 measurements was taken from the surface of
different fibers and the diameter was determined as 181.01 ± 9.81 µm. The average fiber
length of 15 measurements was determined to be 12.43 ± 2.6 cm. The physical properties
of natural fibers generally vary depending on their age and type [35,58,68]. Fiber diameter
is used to calculate the tensile strength value by determining the fracture surface area. In
the literature, it has been determined that the cellulose ratios of the fibers obtained from
different parts of the plant such as roots, stems and leaves vary, and this obviously affects
the mechanical properties [69]. The mechanical properties of the fiber can be improved by
removing non-cellulose contents with chemical surface treatment applications [25,38,64,70].
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The tensile strength value of Platanus orientalis L. fruit’s stem fiber was found to be
157.76 ± 23 MPa. The tensile modulus value was 1.39 ± 0.42 GPa, and the elongation value
was 22.01 ± 3.7%. It was found to have a higher tensile strength value than Chrysanthemum
morifolium Napier grass, Veldt-grape stem fiber, Hierochloe Odarata and Glycyrrhiza
glabra fibers, shown in Table 2, and a lower value than Bagasse fiber. In addition, the tensile
modulus value was low due to the high lignin ratio, which is one of the characteristic
features of stem fibers, but the elongation value was higher than the other fibers except for
Oil Palm fiber [37,44,58,66,67].

It was concluded that Platanus orientalis L. fruit’s stem fiber can improve the me-
chanical properties of a material by using it as a reinforcing fiber in composite and
biocomposite applications.

3.2. SEM Analysis of PoLfs Fibre

SEM images of Platanus orientalis L. fruit’s stem fiber at 100×, 500×, 750× and
1000× biomass are given in Figure 2. The surface of PoLfs fiber showed roughness and
ripples. Figure 2a shows a longitudinal section obtained at 100× magnification, which
shows a complex arrangement of microfibrils, lignin and non-cellulosic impurities [49].
The image obtained at 500× magnification Figure 2b shows cellulose microfibrils and
lignin [71,72].
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In addition, agglomerates of amorphous substances or impurities, including hemi-
cellulose and lignin, were observed on the surface of the fiber, which did not resemble a
specific geometric shape [73]. In addition, the wavy and rough surface structure of the
surface structure can be an advantage in composite contexts. It can contribute positively to
interfacial compatibility by mechanically combining the fibers with the matrix [32,72].

3.3. FTIR Analysis of PoLfs Fiber

The FTIR curve of Platanus orientalis L. fruit’s stem fiber is given in Figure 3. It can be
seen that 3332 cm−1 is the broad peak showing hydroxyl groups, indicating the presence of
cellulose, lignin and water [71]. The peaks at 2917 and 1729 cm−1 correspond to alkanes
(C-H) and a carboxyl group (C=O) attributed to cellulose and hemicellulose [70]. The peak
at 1625 cm−1 represents the (C=C) stretching of lignin [74]. The peaks between 1408 and
1163 cm−1 are related to the C=O stretching of hemicellulose, lignin and the carboxyl group.
The presence of polysaccharides in the structure of cellulose corresponds to the stretching
vibration at 1027 cm−1 [49].
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3.4. XPS Analysis of PoLfs Fiber

The carbon and oxygen ratios of Platanus orientalis L. fruit stem fiber are given in
Table 3. The C1 spectrum determined by XPS analysis is given in Figure 4. The carbon
and oxygen ratios of Platanus orientalis L. fruit’s stem fiber were determined as 71.94% and
14.7%, and all other ratios are given in Table 3.

Table 3. Atomic constituents forming the surface of Platanus orientalis L. fruit’s stem fiber.

Cls (%) O1s (%) N1s (%) C/O (%) O/C (%)

Platanus orientalis L. fruit’s stem 71.94 14.7 1.8 4.89 0.20
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Carbon/oxygen (C/O) (4.89%) and oxygen/carbon (O/C) (0.20%) ratios were cal-
culated to determine the surface morphology of the fiber. In cellulosic-based fibers, the
C/O ratio is related to the hydrophobic property of the surface, and this property must
be known for its suitability for use in fiber-reinforced composites [44]. Platanus orientalis
L. fruit’s stem fiber (4.89%) was found to have a higher carbon/oxygen ratio and a more
hydrophobic surface character than jute (2.09%) and kenaf (2.38%) fibers, known to be used
in composites.

The peak at 284.58 in the C1s spectrum shown in Figure 4 corresponds to C-C/C-
C-H and O=C groups representing the presence of cellulose or ether [75]. The peak at
286.18 represents carbonyl groups (C=O/O-C-O), and the peak at 288.28 represents O-C=O,
indicating lignin and carboxylic acid [76].

3.5. XRD Analysis of PoLfs Fiber

The XRD curve of Platanus orientalis L. fruit’s stem fiber is shown in Figure 5. The
first peak at 15.74◦ corresponds to cellulose I formed by the overlap of the (110) and (110)
lattice planes [44,75,77]. The large peak at 20.21 indicates the (200) lattice plane, which is
the characteristic peak of cellulose I [44,75,78]. The low peak in the region between 16 and
22 was observed at 18 and is associated with the amorphous structure of the fiber [79].

This result, obtained by XRD analysis, coincides with the results of chemical and FTIR
analysis, indicating the presence of cellulose and amorphous structures. The crystallinity
index value of Platanus orientalis fruit’s stem fiber was calculated as 52.16% with the Segal
Equation [49]. The crystallinity index value of Platanus orientalis fruit’s stem fiber is higher
than the value of some of the fibers in the literature such as Pandanus amaryllifolius
(37.09%), Cymbopogan citratus (35.20%), Tridax procum-bens (34.46%), Juncus effuses
L. (33.40%) and Ficus Religiosa (42.92%) [49,80–85]. Fibers with high crystallinity index
values can increase the mechanical properties of composites [44]. Platanus orientalis L. fruit’s
stem fiber with a 51% crystallinity index value was found to be a suitable alternative to be
utilized in the fiber-reinforced composite industry.
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3.6. TGA Analysis of PoLfs Fiber

Figure 6 shows the thermogravimetric analysis curve of Platanus orientalis fruit’s stem
fiber. With TGA analysis, the reaction of the fiber against heat is determined. The first
degradation occurred between 0 and 100 ◦C with the evaporation of water in cellulosic
fibers [67]. The second decomposition was observed at 296.84 ◦C, and this is the temperature
at which the fiber can burn without decomposing in the face of heat. After this temperature,
cellulose and hemicellulose start to decompose [78]. The third degradation was detected at
353.56 ◦C. At this temperature, cellulose decomposition is complete, and this indicates the
maximum temperature of the fiber [83]. The degradation of lignin and other substances takes
place at 400–550 ◦C. At the last temperature value at 620 ◦C, it was found that about 12.86%
of the lignin left a residue in the form of charcoal. It is important to determine the thermal
resistance of the fiber in natural fiber composites [83]. Platanus orientalis L. fruit’s stem fiber
was found to be suitable for composite production at temperatures below 296.84 ◦C.
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4. Conclusions

The suitability of Platanus orientalis fruit’s stem fiber for composite applications has
been investigated by characterization with chemical analysis, FTIR, XRD, XPS, SEM, TGA
and fiber density analysis. Platanus orientalis L. fruit’s stem fiber was determined to be
suitable for fiber-reinforced composite production with a cellulose ratio of 42%. A 71.94%
C/O ratio, which is higher than some other natural fibers, could cause an increase in the
hydrophobic character of the surface. A 52.16% crystallinity index value was calculated by
using Segal’s method. Mechanical properties, i.e., the tensile strength, tensile modulus and
elongation value, were calculated as 157.76 ± 23 MPa, 1.39 ± 0.42 GPa and 22.01 ± 3.7%,
respectively. It was determined that PoLfs fiber is suitable for utilization in fiber reinforce-
ment in thermoplastic-based composites at temperatures below 299 ◦C. According to the
results obtained by the mechanical, chemical and physical analysis of Platanus orientalis L.
fruit’s stem fiber, it could be recommended as a suitable alternative as a reinforcing fiber
in thermoplastic and thermoset composites. For future studies, the chemical treatment of
extracted light fiber to improve properties and measurements to evaluate compatibility
with the polymer matrix will be addressed.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The related data as discussed in this article can be requested from the
corresponding author.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Kösa, S.; Atik, M. Bitkisel peyzaj tasarımında renk ve form; çınar (Platanus orientalis) ve sığla (Liquidambar orientalis) kullanımında
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Ormancilik ve Tarimda Yeni Araştirmalar; Bellitürk, K., Baran, M.F., Ahmet, Ç., Eds.; IKSAD Publishing House: Ankara, Turkey,
2021; pp. 127–173.

19. Ayu, R.S.; Khalina, A.; Harmaen, A.S.; Zaman, K.; Isma, T.; Liu, Q.; Ilyas, R.A.; Lee, C.H. Characterization study of empty fruit
bunch (EFB) fibers reinforcement in poly (butylene) succinate (PBS)/starch/glycerol composite sheet. Polymers 2020, 12, 1571.
[CrossRef] [PubMed]

20. Sabaruddin, F.A.; Paridah, M.; Sapuan, S.M.; Ilyas, R.A.; Lee, S.H.; Abdan, K.; Mazlan, N.; Roseley, A.S.M.; Khalil, H.A. The
effects of unbleached and bleached nanocellulose on the thermal and flammability of polypropylene-reinforced kenaf core hybrid
polymer bionanocomposites. Polymers 2020, 13, 116. [CrossRef] [PubMed]

21. Syafiq, R.; Sapuan, S.M.; Zuhri, M.Y.M.; Ilyas, R.A.; Nazrin, A.; Sherwani, S.F.K.; Khalina, A. Antimicrobial activities of starch-based
biopolymers and biocomposites incorporated with plant essential oils: A review. Polymers 2020, 12, 2403. [CrossRef] [PubMed]

22. Alsubari, S.; Zuhri, M.Y.M.; Sapuan, S.M.; Ishak, M.R.; Ilyas, R.A.; Asyraf, M.R.M. Potential of natural fiber reinforced polymer
composites in sandwich structures: A review on its mechanical properties. Polymers 2021, 13, 423. [CrossRef] [PubMed]

23. Omran, A.A.B.; Mohammed, A.A.B.A.; Sapuan, S.M.; Ilyas, R.A.; Asyraf, M.R.M.; Koloor, S.S.R.; Petrů, M. Micro-and nanocellu-
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