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Abstract: Additive manufacturing (or 3D printing) of continuous carbon fiber-reinforced plastics
with fused deposition modeling is a burgeoning manufacturing method because of its potential as
a powerful approach to produce lightweight, high strength and complex parts without the need
for a mold. Nevertheless, it cannot manufacture parts rapidly due to low throughput. This paper
proposes a high-throughput additive manufacturing of continuous carbon fiber-reinforced plastics
by multifilament with reference to fiber tape placement. Three filaments were fed and compaction
printed simultaneously by a robotic manufacturing system. The coupled thermal-mechanical model
of the filament deformation during printing was developed to eliminate the initial interval between
the filaments and improved mechanical properties. Furthermore, the mathematical relationship
between filament deformation and printing parameters consisting of printing temperature, printing
speed and roller pressure was proposed using response surface methodology with the line width as
the response. The tensile tests demonstrate that the tensile properties of printed parts are positively
correlated with the line width, but not infinitely improved. The maximum tensile strength and
tensile modulus are 503.4 MPa and 83.11 Gpa, respectively, which are better than those obtained
by traditional methods. Void fraction and scanning electron microscope images also reveal that
the appropriate line width achieved by the reasonable printing parameters contributes to the high-
throughput multifilament additive manufacturing of continuous carbon fiber-reinforced plastics. The
comparison results indicate that the high-throughput multifilament additive manufacturing proposed
in this paper can effectively improve the speed of continuous carbon fiber-reinforced plastics additive
manufacturing without degrading the mechanical performance.

Keywords: high-throughput; carbon fiber composite; robotic additive manufacturing; roller; laser

1. Introduction

Continuous carbon fiber-reinforced plastic (CCFRP) is widely used in aerospace,
automobile manufacturing, petrochemical, and other industrial fields due to its higher
strength-to-weight ratio and modulus compared with metals and alloys [1,2]. Additive
manufacturing of CCFRP based on Fused Deposition Modeling (FDM) needs no mold and
presents the characteristics of being low cost, lightweight, and high strength; it has gained
increased attention within the academic and industrial fields in recent years [3].

Additive manufacturing takes layered manufacturing as the molding principle and
integrates CNC, material science, computer-aided design and so on [4]. The continuous
fibers can either be embedded into plastic through coaxial extrusion to create a prepreg
filament suitable for manufacturing with FDM printers, or continuous fibers and plastic
filaments can be fed into the nozzle of the printer simultaneously during the manufacturing
process [5]. The plastic is heated to a molten state and extruded along with the carbon
fibers. The relative movement of the nozzle and platform causes the plastic and carbon
fibers to bond and cure on the platform layer by layer.
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Evidently, CCFRP involves plastic as the matrix and continuous carbon fiber as the
reinforcement. The matrix is a base material that holds the carbon fibers in place for long-
term performance and protects them from external forces such as corrosion, degradation,
abrasion, etc. Matrix materials that are commonly used in the additive manufacturing
of CCFRP are nylon (PA), polylactic acid (PLA), acrylonitrile-butadiene-styrene (ABS),
and polyether-ether-ketone (PEEK) due to their thermoplastic standards and level of
engineering [6–8].

To date, the research on additive manufacturing of CCFRP has emphasized the im-
provement of mechanical properties, techniques such as additive manufacturing in vac-
uumed conditions [9], heat treatment during additive manufacturing [10], annealing as
a post-process [11], and compaction during additive manufacturing [12,13] have been
proposed. The mechanical properties of additive manufactured CCFRP parts have been
significantly improved. Nevertheless, low efficiency is one of the important reasons that
hinder the industrial application of additive manufacturing of CCFRP. Research papers
commonly report printing speeds below 10 mm/s [14–17]. Pappas et al. employed a screw
to extrude PLA and then composited it with carbon fiber in situ, increasing the printing
speed to 16 mm/s [18]. Li et al. melted the resin material by generating an eddy current in
carbon fiber by microwave to effectively boost the printing speed [19]. Tu et al. used laser
heating carbon fiber to melt resin so as to improve printing speed [20].

Different from additive manufacturing of CCFRP which employs a filament having
a diameter less than 1 mm, automated tape laying (ATL) and automated fiber placement
(AFP) utilizes tapes usually ranging from 6 to 75 mm in width [21]. The high-throughput
technology lead to rapid manufacturing. Nevertheless, the challenge remains that the strip-
based approach renders ATL and AFP less adept at tackling substantial curvature or sharp
angles, impeding the fabrication of more complex configurations [22,23]. To increase the
throughput and compensate for the low productivity due to the narrow tape, multi-feeding
technology has been applied to AFP [24] and which can be also applied to the additive
manufacturing of CCFRP [25].

This paper presents a pioneering exploration of an in-house developed robot-assisted
high-throughput additive manufacturing of CCFRP using multifilament. To eliminate
intervals between filaments and achieve better mechanical performance, the filament
coupled thermal-mechanical model during printing was established and the mathematical
relationship between line width and printing parameters was proposed. The tensile test,
void fraction and scanning electron microscope (SEM) images reveal that the appropriate
line width achieved by the reasonable printing parameters contributes to the mechanical
performance of printed specimens. The comparative results fully explain the advantages of
high-throughput multifilament additive manufacturing of CCFRP.

2. Materials and Methods
2.1. Materials

Polyacrylonitrile-based continuous carbon fiber 1k T300 of Zhongfu Shenying Carbon
Fiber Co., Ltd. from Lianyungang, China was explored as the reinforcement, and 4032d
transparent polylactic acid (PLA) from NatureWorks of Plymouth, MN, USA was used
as the matrix plastic because of its good printability and recyclability. The CCFRP with
a diameter of 0.5 mm (±0.05 mm) was prepared in self-designed prepreg equipment, as
exhibited in Figure 1. The carbon fiber tows are drawn into the prepreg device by the
winding roller, and the PLA filament is fed into the prepreg device and melted into liquid.
The prepreg device contains five mixture pins which create a normal tension force between
the fibers and the pin surfaces. This normal tension forces compression in the fibers over
the pin surface to spread more and encourages melted PLA to infiltrate between the fiber
bundles. The PLA-impregnated and -coated carbon fiber tows then enter the forming
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device and are compressed into 0.5 mm diameter CCFRP prepreg filaments, which are
cooled and wound into rolls. The fiber volume fraction is about 19.6%, evaluated by:

V f =
k · d2

D2 (1)

where V f denotes the volume fractions of carbon fiber; k and d represent the specification
(1k) and diameter (7 µm) of single tow of carbon fiber, respectively; D signifies the diameter
of the CCFRP.
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Figure 1. Continuous carbon fiber-reinforced plastics: (a) prepreg equipment; (b) carbon fiber-
reinforced PLA.

2.2. Additive Manufacturing System
2.2.1. Hardware Setup

This in-house developed printing system encompasses a six-axis robot, a two-axis
positioner as platform, three filament feeders, a multifilament print head and a PC as
the host controller, as depicted in Figure 2. The rated load at the end joint of the robot
(SR20-1700 from STEP, Shanghai, China) is 20 kg. The print head is installed on the end
joint of the robot and the hot roller is located on the Z-axis extension line of the end joint.
Above the print head are filament cutters to handle discontinuous paths [26]. The guiding
device can restrain the CCFRP to guarantee that it enters the laser irradiation area and is
arranged at fixed intervals. The hot roller provides the pressure required for compaction
printing, and the printing pressure can be measured and adjusted using the pressure sensor
and linear motor. Considering the high absorption of laser energy by carbon fibers, a
solid-state pulse laser with a rated power of 5.5 W is adopted to heat the CCFRP filament
rapidly, as introduced in previous work [20]. An infrared temperature sensor is used to
detect the temperature of the CCFRP and then the laser power is controlled by a pulse
width modulation (PWM) signal based on the measured temperature.



Polymers 2024, 16, 704 4 of 17
Polymers 2024, 16, x FOR PEER REVIEW 4 of 17 
 

 

  

Figure 2. Additive manufacturing system and multifilament print head. 

2.2.2. Software and Control System 

As shown in Figure 3, the information flow commences with the CAD model of the 

part. The model is converted into an initial path file in the slicer. The predetermined print 

parameters are then funneled into path file. The final G-code file is produced after inter-

polation using specialized motion planning algorithms. 

 

Figure 3. Control system of high-throughput multifilament additive manufacturing. 

EtherCAT technology is used for synchronous and coordinated control of the robots 

and the print head. Simple Open EtherCAT Master Library (SOME) is used as an Ether-

CAT master on a Linux computer. The robot controller and print controller are configured 

Figure 2. Additive manufacturing system and multifilament print head.

2.2.2. Software and Control System

As shown in Figure 3, the information flow commences with the CAD model of the
part. The model is converted into an initial path file in the slicer. The predetermined
print parameters are then funneled into path file. The final G-code file is produced after
interpolation using specialized motion planning algorithms.
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EtherCAT technology is used for synchronous and coordinated control of the robots
and the print head. Simple Open EtherCAT Master Library (SOME) is used as an EtherCAT
master on a Linux computer. The robot controller and print controller are configured as
two EtherCAT slaves. Robot controllers are used to control the motion of six-axis robots
and two-axis positioners. The print controller is used to control the cutters, heaters, hot
roller and feeders.

2.2.3. Prototyping Principle

Three CCFRP filaments are fed into the guide device from dedicated feeders, which
reduce the distance between the filaments and arrange them at fixed intervals through
curved channels in the guide device, as shown in Figure 4a. The filaments are heated to
a molten state by laser and then compacted by the hot roller. The CCFRP filaments are
deformed by the combination of compression and high temperature from the hot roller. As
shown in Figure 4b, The cross-section of the CCFRP filaments changes from a circle with
radius R to a rectangle with width b and h.
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Figure 4. High-throughput multifilament additive manufacturing of CCFRP: (a) printing process;
(b) filament intervals and deformation.

There are initial intervals D (1.5 mm) due to the limitation of the guiding device
between multifilament before formation. The printing parameters must be reasonably well
defined to allow sufficient deformation of the CCFRP to eliminate the initial intervals and
avoid porosity resulting in performance degradation.

2.3. Filament Deformation Coupled Thermal-Mechanical Model

CCFRP filament deforms and flows under thermal coupling during the additive
manufacturing process. It can be treated as an extrusion flow of resin between parallel
plates if the permeability of the resin between the carbon fibers is ignored. Assuming that
the resin is a Newtonian fluid [27], squeezing the flow between parallel plates does not
change the volume of the resin. The formula is:

V = A(0)·H(0) = A(t)·H(t) (2)

As shown in the Figure 5, V is the volume of resin, A(0) and H(0) are the initial
contact area and height before squeezed, and A(t) and H(t) are the area and height at a
certain moment.
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Figure 5. Extrusion flow of resin between parallel plates.

The combination of the power-law fluid proposed by Scott [28] and the theoretical
model proposed by Leider [29] et al. leads to an equation for the squeezed flow between
parallel plates, which is similar to the automated fiber placement manufacturing [30].

F = mπ
(2 + 1/n)n(−H′)nR3+n

2n(3 + n)H1+2n (3)

where m and n are the model coefficients of the power-law fluid, H is the height of the
fluid, H′ is the first order derivative and R is the radius of the contact area.

If the resin can be assumed to be a Newtonian fluid at a constant temperature and
speed during printing, the above equation can be simplified to:

F =
3πµ(−H′)R4

8H3 (4)

The volume of the fluid in Figure 5 is V = AH = πR2H, which is a fixed constant
when the wire properties are constant. This is obtained by substituting it into Equation (4)
and integrating both sides simultaneously:

∫ t

0
Fdt = − 3µ

8π
V2

∫ H(t)

H(0)

1
H5 dH (5)

During the printing process, the pressure hot roller on the filament is related to the
depth of contact, as shown in Figure 6.
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Figure 6. The contact of hot rollers with CCFRP.

As shown in Figure 7, the length of the CCFRP filament is L, the printing speed is v,
and the pressure of the hot roller on the CCFRP is F(t1) at position 1, which changes to



Polymers 2024, 16, 704 7 of 17

F(t1 + 2L/v) at position 2. Position 1 is the moment when the hot roller just touches the
filament section and position 2 is the end moment.
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Figure 7. Before and after hot roller contact with CCFRP section.

As shown in the Figure 8, in the above printing process, the pressure at the moment
t0 is F(t0) and the contact area is s1, and at the moment t0 + L/v is F(t0 + L/v) and the
contact area is s2.

Polymers 2024, 16, x FOR PEER REVIEW 7 of 17 
 

 

 

Figure 7. Before and after hot roller contact with CCFRP section. 

As shown in the Figure 8, in the above printing process, the pressure at the moment 

𝑡0  is 𝐹(𝑡0)  and the contact area is 𝑠1 , and at the moment 𝑡0 + 𝐿 𝑣⁄   is 𝐹(𝑡0 + 𝐿 𝑣⁄ )  and 

the contact area is 𝑠2. 

 

Figure 8. Contact between hot roller and CCFRP at 𝑡0 and 𝑡0 + 𝐿 𝑣⁄ . 

The pressures at the moments 𝑡0 and 𝑡0 + 𝐿 𝑣⁄  are, respectively: 

1

2

0
0

0
0

( )

( )

s

s

F t dF

F t L v dF

 =


 + =





 (6) 

where 𝑠1 + 𝑠2 = 𝐿, the complete compaction printing process can be expressed as: 

2 2

0 0 0
( ) ( ) ( )

L L L
t

v v v
L

v

Fdt F t dt F t dt F t dt= = +     (7) 

This simplifies to: 

0

t L
Fdt F

v
=  (8) 

It can be derived from Equations (5) and (8): 

( )2 4 43
( ) (0)

32

L
F V H t H

v





− −= −  (9) 

CCFRP is susceptible to plastic deformation at high temperatures and pressures, 

whereas the hot roller can be treated as a rigid body. There is therefore a geometric rela-

tionship between 𝐿 and the roller radius and depth of contact: 

Figure 8. Contact between hot roller and CCFRP at t0 and t0 + L/v.

The pressures at the moments t0 and t0 + L/v are, respectively:{
F(t0) =

∫ s1
0 dF

F(t0 + L/v) =
∫ s2

0 dF
(6)

where s1 + s2 = L, the complete compaction printing process can be expressed as:

∫ t

0
Fdt =

∫ 2L
v

0
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v

0
F(t)dt +
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L
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L
v

(8)

It can be derived from Equations (5) and (8):

F
L
v
=

3µ

32π
V2

(
H−4(t)− H−4(0)

)
(9)
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CCFRP is susceptible to plastic deformation at high temperatures and pressures,
whereas the hot roller can be treated as a rigid body. There is therefore a geometric
relationship between L and the roller radius and depth of contact:

L =

√
R2 − [R − H0 + H(t)]2 (10)

As shown in the Figure 9, H0 is the initial height of the filament, H(t) is the height
after compaction and R is the radius of the hot roller.
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It can be concluded that without considering the fiber volume content and its distri-
bution characteristics, the line width as well as the layer thickness of the formed CCFRP
is only related to the printing temperature, the printing speed and the pressure of the hot
roller, as shown in the Table 1.

Table 1. Effect of printing parameters on deformation of CCFRP.

Parameters Trends Mechanization Line Width Layer Thickness

Printing temperature Up Reduces resin viscosity Widen Reduction
Printing speed Up Reduced compaction time Narrow Increase

Pressure Up Improved compaction Widen Reduction

2.4. Mathematical Model of Filament Deformation and Printing Parameters

For further quantitative analysis of the above printing parameters in relation to the
deformation of CCFRP filaments during printing, a series of experiments based on response
surface methodology (RSM) were carried out, as shown in Figure 10 and Table 2.
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Table 2. Three-factor four-level experimental results of CCFRP parameters and deformation.

No. Printing Temperature (◦C) Printing Speed (mm/s) Pressure (N) Layer Thickness (mm) Line Width (mm)

1 220 10 0.5 0.148 1.327
2 220 10 2 0.126 1.554
3 200 5 2 0.1210 1.623
4 190 2.5 0.5 0.133 1.478
5 190 10 2 0.139 1.409
6 220 5 1 0.114 1.727
7 200 5 2 0.123 1.602
8 190 2.5 1.5 0.122 1.615
9 200 10 1 0.147 1.338
10 210 7.5 0.5 0.149 1.319
11 220 5 1 0.112 1.757
12 210 2.5 0.5 0.119 1.65
13 200 10 1 0.153 1.283
14 210 2.5 1.5 0.110 1.785
15 210 7.5 1.5 0.132 1.483
16 220 2.5 2 0.098 2.012
17 200 5 1 0.132 1.488
18 210 7.5 1.5 0.131 1.503
19 190 7.5 1.5 0.145 1.357
20 190 7.5 0.5 0.165 1.189

The layer thickness is obtained by averaging several measurements, while the line
widths are calculated following the principle of volume invariance.

πd2 = 4bh + πh2 (11)

where d is the filament diameter of the CCFRP, and b and h are the line width and layer
thickness after compaction printing, respectively, as shown in Figure 11.
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The linear fit model was selected as the response expression model after synthesizing
the comparisons. The line width has the following relationship with printing parameters:

b = −0.157579 + 0.008786 · t − 0.049864 · v + 0.15444 · p (12)

where b is the line width and t, v and p are the printing temperature, printing speed and
hot roller pressure, respectively. The absolute value of each coefficient indicates the extent
to which the parameter affects line width, and the signs indicate positive and negative
correlations. The mathematical model fitting results agree with the analytical results of the
coupled thermal-mechanical model. In theory, the best print quality is achieved when the
line width b is equal to the multifilament initial intervals D (1.5 mm).
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2.5. Printing Experiments and Tensile Properties Test

Several groups of unidirectional CCFRP specimens were printed with different theo-
retical line width and tensile properties were tested to find out optimal print parameters.
All specimens were printed with linear paths, as illuminated in Figure 12. Each path is
400 mm long and consists of three filaments and each layer contains two paths for a total of
six filaments. After each path is printed done, the carbon fiber filaments are sheared off
and the print head returns to the start point to print the next path. Printed as a result of
various combinations of parameters, all specimens consist of 15 layers with thicknesses
ranging from 1.51 mm to 2.63 mm and width ranging from 8.12 mm to 12.16 mm.
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The dimensions of the tensile test specimen were theoretically 120 × 10 × 2 mm
(length × width × thickness) in accordance with GB/T 1447-2005 [31]. Each printed
specimen is cut into three tensile specimens of 120 mm length and varying widths and
thicknesses.

The mechanical properties test was performed using a universal testing machine
(WDW-20KN, Sanfeng, Changzhou, China). The tensile test was conducted at a load-
ing speed of 2 mm/min, and the tensile strain was obtained by attaching an electronic
extensometer to the specimen.

2.6. Void Determination and Scanning Electron Microscopy

Precision electronic balance (AL240, Mettler Toledo) was employed to measure speci-
men mass. The void fraction of the specimens was measured by the Archimedes method.
Specifically, m1 denotes the mass of the specimen in the air after drying; m2 represents
the mass of the specimen after soaking in water for 72 h; m3 signifies the mass of the
water-saturated specimen in water. The void fraction (ε) can be calculated by:

ε =
m2 − m1

m2 − m3
(13)

In addition, the fracture surfaces of the tensile specimens were observed using scan-
ning electron microscopy (SEM) (JSM-IT300, JEOL from Tokyo, Japan) to investigate the
void distribution and bonding surface.

3. Results and Discussion
3.1. Void Fraction and Cross-Sectional Observation

The void fraction of the all-printed specimens was determined using the Archimedes
method described in Section 2.6. Figure 13 demonstrates the void fraction of the specimens
with different line widths. The void fraction of the specimens is negatively correlated with
the line width. Furthermore, the changing rate of void fraction is also negatively correlated
with the line width. It tends to rapidly decrease with the increasing line width when it is
close to 1.5 mm and then decreases gently.
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Figure 13. Specimen void fraction with different line width.

Typical examples of cross-sectional SEM images of printed specimen failure surface
after the tensile tests are illustrated in Figure 14, which explain the formation and variation
of voids. The filament deformation is poor to fill the initial intervals when the line width is
much less than 1.5 mm, resulting in a large gap between the filaments, which is the reason
for the high void fraction.
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As the line width approaches 1.5 mm, the void gradually decreases but still remains.
This could be because the filament sides are semicircular after being pressed and deformed,
resulting in incomplete contact, as shown in Figure 15a.
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Figure 15. Void between filaments: (a) caused by incomplete contact; (b) poor void fraction due to
high roller pressure.

Increasing the line width further means increasing the printing temperature, reducing
the printing speed or increasing the roller pressure, which makes the filaments more
susceptible to deformation and compresses the voids between the filaments as analyzed
in Sections 2.3 and 2.4. When the roller pressure is high enough, the voids between the
filaments would almost disappear, leaving only the pores inside the filaments, just as
shown in Figure 15b.

3.2. Tensile Properties

The tensile properties of multifilament additive manufacturing of CCFRP should be
systematically characterized with different line widths which are the integrated response
of multiple key printing parameters to evaluate the feasibility of CCFRP high-throughput
prototyping. The effect of line width on the tensile properties of specimens is depicted in
Figure 16a. The longitudinal tensile strength and tensile modulus are generally positively
correlated with the line width. Furthermore, the tensile strength is approximately linear
with line width when it is less than the multifilament initial intervals (D = 1.5 mm). As the
line width approaches 1.5 mm, the tensile strength change rate tends to increase slightly
while the tensile modulus change rate decreases significantly. The rate of change of tensile
strength and modulus tends to zero when the line width exceeds 1.8 mm. Figure 16b shows
the representative stress vs. strain curves of specimen with 1.785 mm line width which was
printed at 210 ◦C, 2.5 mm/s printing speed and 4.5 N (for three filaments) printing pressure.

The minimum tensile strength and tensile modulus are 319.06 MPa and 66.9 GPa,
respectively and the maximum are 503.4 MPa and 83.11 Gpa, respectively. The presence
of voids within the printed carbon fiber composite specimens was discovered to exert
substantial negative impacts on mechanical performance [31]. The narrow line width
specimens are more susceptible to shear failure due to the high void fraction. As shown
in Figure 17a, the specimen with a line width of 1.189 mm fractured in cross section after
splitting from the center with the tensile force of 9.318 kN. In contrast, specimens with wider
line widths are more prone to brittle fracture due to stretching, as shown in Figure 17b.
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Figure 16. Tensile properties of printed specimens: (a) tensile strength and modules with different
line widths; (b) stress vs. strain curves of specimen with 1.785 mm line width.
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Figure 17. Failed specimens: (a) shear and tensile failure; (b) tensile failure. The failure surfaces are
circled with red dotted lines.

Actually, even if the printing speed is increased by more than 20 mm/s, since the
temperature cannot be increased indefinitely, excellent mechanical properties can still be
maintained as long as enough roller pressure is adapted.

3.3. Comparison and Printed Parts Demonstration

The comparison of the changes in tensile strength of additively manufactured CCFRP
parts concerning fiber volume fraction [3,32–41] is provided in Figure 18a. Evidently, the
CCFRP specimens produced in this study exhibit significantly enhanced tensile proper-
ties at certain fiber volume fractions, particularly when compared to traditional printing
processes. On the other hand, the comparison of the filament throughput is also shown.
Given the differences in printing processes and filament specifications, the print path
length per second is used as the standard for comparison [14–16,18,19,25,42–48], as shown
in Figure 18b.
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Figure 18. Comparison of printed parts: (a) tensile strength [3,32–41]; (b) filament throughput [14–
16,18,19,25,42–48].

In Figure 19, several parts produced by high-throughput multifilament additive man-
ufacturing are presented. Square and T-shaped parts are 4.2 mm thick and each layer
contains only one complete path. The number of paths per layer for the notched and
rectangular parts are two and four, respectively. Print times for the parts in this paper are
much shorter than traditional single filament additive manufacturing of CCFRP.
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4. Conclusions

The high-throughput multifilament 3D printing process of continuous carbon fiber-
reinforced plastics (CCFRP) is proposed in this paper. Three CCFRP filaments were fed
and compaction printed simultaneously by a robotic manufacturing system.

The technology’s hardware encompasses a manufacturing system that includes a
two-axis positioner as platform, a six-axis robot, a specialized print head, and the EtherCAT
control system.

The filaments are arranged at fixed intervals by guide device and then heated and
compacted by a laser and hot roller, respectively. The coupled thermal-mechanical model
of the filament deformation during printing was developed to eliminate the initial interval
between the filaments. The mathematical relationship between filament deformation and
printing parameters consisting of printing temperature, printing speed and roller pressure
was proposed using response surface methodology with the line width as the response.
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Furthermore, the void fraction and tensile properties of printed specimens are closely
related to line width and the specific relationship is related to the initial filament intervals.
The results show that the appropriate line width achieved by the reasonable printing
parameters can fully highlight the mechanical properties of the printed specimens. The
maximum tensile strength and tensile modulus are 503.4 MPa and 83.11 GPa, respectively,
which better than the traditional printing method. Several printed parts of different
shapes demonstrate the stability and efficiency of high-throughput multifilament additive
manufacturing of CCFRP.

In summary, the high-throughput multifilament additive manufacturing proposed in
this paper can effectively improve the speed of CCFRP additive manufacturing without
degrading the mechanical performance, which provides technical and theoretical support
for the industrialized application of CCFRP rapid additive manufacturing.
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