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Abstract: Poly(acrylonitrile-co-methyl acrylate) (PAN-co-MA) electrospun nanofiber (ENF) was used
as the support for the formation of polyamide (PA) thin films. The ENF support layer was post-treated
with heat-pressed treatment followed by NaOH hydrolysis to modify its support characteristics.
The influence of heat-pressed conditions and NaOH hydrolysis on the support morphology and
porosity, thin-film formation, surface chemistry, and membrane performances were investigated.
This study revealed that applying heat-pressing followed by hydrolysis significantly enhances the
physicochemical properties of the support material and aids in forming a uniform polyamide (PA)
thin selective layer. Heat-pressing effectively densifies the support surface and reduces pore size,
which is crucial for the even formation of the PA-selective layer. Additionally, the hydrolysis of the
support increases its hydrophilicity and decreases pore size, leading to higher sodium chloride (NaCl)
rejection rates and improved water permeance. When compared with membranes that underwent
only heat-pressing, those treated with both heat-pressing and hydrolysis exhibited superior separation
performance, with NaCl rejection rates rising from 83% to 98% while maintaining water permeance.
Moreover, water permeance was further increased by 29% through n-hexane-rinsing post-interfacial
polymerization. Thus, this simple yet effective combination of heat-pressing and hydrolysis presents a
promising approach for developing high-performance thin-film nanocomposite (TFNC) membranes.

Keywords: electrospinning; thin-film composite membrane; desalination; heat-pressed; hydrolysis

1. Introduction

Thin-film composite (TFC) membranes are commonly created using interfacial poly-
merization (IP) on a support layer as a prevalent method for producing effective membranes,
particularly for water purification and desalination applications. TFC membranes typically
consist of the following three major layers: the uppermost polyamide (PA) thin selective
layer, the middle porous support layer, and the bottom non-woven fabric. The separation
performance of the TFC membrane is largely dependent on the properties of the thin
selective film, leading many research studies to focus on investigating the parameters influ-
encing film formation, aiming to achieve and control the desired characteristics of the thin
film [1–5]. Indeed, the formation of the PA-selective layer is significantly influenced by the
properties of the support layer, such as pore size and hydrophilicity [6,7]. Conventionally,
the support layer is produced using the phase-inversion method, but this technique is
limited in terms of the support pore size range, often resulting in lower porosities and
higher hydraulic resistances [8]. To address these limitations in phase inversion support,
researchers have developed various modifications, including the addition of hydrophilic
additives, such as polyvinyl pyrrolidone (PVP) [9,10], polyethylene glycol (PEG-400) [11]
and titanium dioxide nanoparticles (TiO2) [12,13], as well as plasma treatment [14], to
enhance the hydrophilicity and porosity of the hydrophobic support layer. Other studies
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applied 1D (carbon nanotubes/CNTs) and 2D (graphene oxide/GO) fillers [15,16] to pro-
vide additional water channel transport. Furthermore, the most recent strategy has been
reported by incorporating the interlayer using the polyethyleneimine (PEI) interlayer [17]
and 2D layered double-hydroxide (LDH) nanosheets [18] over the hydrophobic support
layer to enhance membrane hydrophilicity and adhesion between the thin selective film
and support, thus resulting in enhanced membrane selectivity.

An alternative to phase-inversion-produced support is the use of electrospun nanofibers
(ENFs), which offer an interconnected pore structure, high porosity (>80%), large sur-
face area, and ease of surface modification without the need for additional pore-forming
agents [10,19]. However, the large and broadly distributed pore sizes of ENFs can lead to
defects in the TFC membrane, including poor adhesion strength between the ENF support
and the thin selective layer, potentially causing failure under high-pressure conditions.

Various research efforts have been undertaken to enhance membrane performances,
such as modifying the top PA film using different monomers and fabricating the transition
layer using chitosan [20], cellulose nanofiber [21], and polyethyleneimine (PEI) [22] onto
the ENF support. Nonetheless, these strategies are complex and necessitate additional
material processing, making them inefficient. Moreover, the additional transition layers
can potentially decrease water permeability due to increased mass transfer resistance in
the TFC membrane. There is a scarcity of studies focusing on support modification and its
impact on PA film formation and overall membrane performance.

In this study, the PAN-co-MA copolymer was utilized because of its low cost, hy-
drophilic nature, good thermal stability, and great nanofiber spinnability [23–25]. While the
PAN-co-MA copolymer has been extensively utilized in creating electrospun nanofibers for
wastewater filtration applications [26], its application as a support layer for TFC membranes
in desalination remains unexplored. A combination of heat-pressed treatment followed
by alkali treatment was applied to ENF support before depositing the PA thin film. The
heat-pressed treatment could enhance the mechanical integrity between the ENF support
and the polyester non-woven back support, thus increasing the membrane’s strength [6,27].
The fiber diameter and support pore size can be tuned accordingly. The sodium hydroxide
(NaOH) solution was utilized to alter the physicochemical and wetting properties of the
nanofiber support through hydrolysis treatment [3]. This facile and efficient method is
expected to produce thin-film nanofiber composite (TFNC) membranes with good water
permeability and high salt rejection due to strong covalent and ionic bond interactions
between the ENF support and PA film [28,29]. The effect of heat-pressed temperature and
alkali hydrolysis temperature on the properties of the ENF support and TFC membrane
was investigated. The performance of the obtained TFC membrane was examined and also
compared to other studies.

2. Materials and Methods
2.1. Materials and Chemicals

Poly(acrylonitrile-co-methyl acrylate) containing copolymer acrylonitrile with 8.5%
methyl acrylate (PAN-co-MA, Mw 150,000 g/mol, commercial grade) was provided by
Haihang Industry (Hainan, China). N, N-dimethylformamide (DMF, 99.9%, reagent grade)
was obtained from Carlo Erba (Cornaredo, Italy). Sodium dodecyl sulfate (SDS, ≥99%),
triethylamine (TEA, ≥99.5%), and 1,3-phenylenediamine (MPD, 99%) were purchased
from Sigma Aldrich (St. Louis, MO, USA). 1,3,5-benzenetricarbonyl chloride (TMC, 98%)
was obtained from Acros Organics (NV, Geel, Belgium). N-hexane (analytical grade)
was purchased from Anapure (Bangkok, Thailand). Sodium chloride (NaCl, 99%) was
obtained from Ajax Finechem (Taren Point, NSW, Australia). Sodium hydroxide pellets
(NaOH, 99%, Grade AR) were purchased from QReC (Auckland, New Zealand). Novatexx
2470 (polypropylene/polyester (PP/PE) non-woven backing support) was supplied by
Freudenberg (Weinheim, Germany).
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2.2. Fabrication of Electrospun Nanofiber Support
2.2.1. Electrospinning and Heat Treatment

The electrospinning solution with a concentration of 8 wt.% was prepared by dissolv-
ing PAN-co-MA powder in DMF for 24 h at room temperature (25–28 ◦C) under continuous
stirring to obtain a homogeneous solution. The polymer solution was injected into a syringe
attached to a spinneret made of a 24G dull metallic needle. The solution was electrospun
onto a PP/PE non-woven backing support, which was attached to the drum collector with
a diameter of 7.5 cm and width of 35 cm. The PP/PE non-woven backing support was
pre-wetted by dropping 5 mL of DMF onto the entire surface of the backing support before
electrospinning to provide the adequate physical attachment of nanofiber webs to the basal
region of the backing support. Electrospinning was carried out at an applied voltage of
23 kV, a flow rate of 1.50 mL/h with a 6 h duration, and a distance between the needle
and the collector of 20 cm. After electrospinning, the obtained ENFs were air-dried at
room temperature overnight to eliminate any residual solvent. The ENFs were sandwiched
between two Teflon papers and heat-pressed at 120, 140, and 160 ◦C for 3 min (hereinafter
labeled as hp-ENF 120, hp-ENF 140, and hp-ENF 160) using a commercial, compact fabric
screen-printing machine (width 30 cm), equipped with an adjustable pressure knob, digital
temperature, and time controls. It is worth mentioning that the pressure pressing on the
ENF support was a controlled constant and equal to the weight of the top lid (10.36 kg).

2.2.2. Hydrolysis Treatment

The hot-pressed nanofiber was immersed in a sodium hydroxide (NaOH) solution
(2 M) at designated hydrolysis temperatures (30 ◦C and 50 ◦C) for 2 h. Then, the hydrolyzed
nanofiber was rinsed with deionized (DI) water until the pH value of the residue reached
neutral (pH~7). Afterward, the hydrolyzed nanofiber was dried in an oven at 60 ◦C for
10 min.

2.3. Fabrication of Thin Film Composite Membranes

The polyamide (PA)-selective layer was fabricated on the ENF support layer via
interfacial polymerization (IP) between the MPD and TMC monomers. The aqueous MPD
solution was prepared by adding 2 wt.% of MPD flakes, 2 wt.% of TEA, 0.1 wt.% of SDS
into 95.90 wt.% of deionized (DI) water under a stirring condition at room temperature.
The TMC organic solution was prepared by dissolving 0.15 wt.% of TMC into n-hexane. At
room temperature, the amine aqueous solution was introduced to the electrospun nanofiber
for 30 min. The excess solution was removed after draining the amine aqueous solution
by gently wiping the surface of the ENF support with tissue paper, and it was left to dry
partially under a fume hood for 80 s at room temperature. The amine-saturated ENF
support was mounted on the gasket frame and held with clamps on each edge to deter the
solution leakage during the reaction process. A PA thin film was deposited on the ENF
support layer after the TMC solution was poured over the reaction surface area to conduct
the IP reaction for 80 s. The TMC solution was drained out, and the PA TFNC membrane
was subsequently and thermally cured in an oven at 60 ◦C for 10 min. The prepared PA
TFNC membrane was immersed in DI water until further use. For the PA TFNC membrane
with an n-hexane rinse, 30 mL of n-hexane was poured onto the ENF support, and the
TFNC membrane was rinsed for 5 s after the IP reaction. The rest of the protocols were
followed, as previously mentioned. The schematic diagram of the fabrication of TFNC
membranes is depicted in Figure 1. The PA TFNC membrane prepared on untreated ENF
is labeled as pristine TFNC, and TFC membrane prepared on heat-pressed nanofibers
(hp-ENF) is labeled as hp-TFNC, and the membrane with heat-pressed and hydrolyzed
nanofibers (hp-ENF x) is referred to as TFNC y, where x and y refer to the heat-pressing
temperature and hydrolysis temperature, respectively.
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Figure 1. Schematic diagram of the fabrication of the electrospun nanofiber (ENF) support and
thin-film nanofiber composite (TFNC) membranes via interfacial polymerization.

2.4. Material Characterization
2.4.1. Scanning Electron Microscopy (SEM)

The surface morphology of the ENF support and PA TFNC membrane was observed
using scanning electron microscopy (SEM, Hitachi S-3400N, Tokyo, Japan) with a secondary
electron detector. Observations were conducted at an accelerating voltage of 15 kV, achiev-
ing a resolution of up to 100 nm. Image-J software (Java 8, National Institutes of Health,
Bethesda, MD, USA) was used for analyzing the averaged fiber size and size distribution.
The cross-section morphology for the PA TFNC membrane was also observed.
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2.4.2. Pore Size Measurement

The pore diameter and pore size distribution of the ENF support were characterized
by a capillary flow porometer (Porolux 1000 series, Aptco Technologies, Nazareth, Belgium).
The bubble point pressure method was used to determine the pore size.

2.4.3. Fourier-Transform Infrared Spectroscopy (FTIR)

The chemical composition of the ENFs and TFNC membranes was analyzed by atten-
uated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR, Thermo Scien-
tific, Nicolet iS50 spectrometer, Waltham, MA, USA) at a scanning range of 400–4000 cm−1

(Diamond crystal, resolution 4 cm−1).

2.4.4. Contact Angle

The membrane surface hydrophilicity was evaluated at room temperature by a contact
angle goniometer (Dataphysics, OCA-25, Filderstadt, Germany) with a sessile drop method
using 5 µL of DI water.

2.4.5. X-ray Photoelectron Spectroscopy (XPS)

The elemental compositions and their chemical states on the ENF support and TFNC
membrane were analyzed using XPS (Kratos Axis Ultra DLD, Manchester, UK) with Al-K
alpha as an X-ray source (10 mA, 15 kV). The O/N ratio of the PA thin film can be measured
from atomic compositions obtained by XPS.

2.4.6. Confocal Laser Scanning Microscopy (CLSM)

The top surface of TFNC membranes was examined using CLSM (Olympus LEXT
OLS5000, Tokyo, Japan) to visualize 2D and 3D morphologies with a scanned area of
644 µm × 648 µm. The lateral scanning detection was performed by locating the area with
an edge boundary between each region of nanofiber support and PA thin film with optical
images captured at 20× and 50× magnification. The image profile was generated by the
Olympus OLS5100 data acquisition application.

2.4.7. Mechanical Strength Testing

The mechanical properties of TFNC membranes were measured with a universal
testing machine (ZwickRoell ProLine, Ulm, Germany) with a sample size of 60 × 10 mm, a
load cell of 500 N, and an elongation rate of 1.0 mm/s. The specimens were tested according
to the ASTM D1708 standard [30].

2.5. Membrane Performance Evaluation

Water permeance and NaCl rejection were evaluated by a crossflow filtration mem-
brane module (Sterlitech CFO16D-CF, Auburn, WA, USA) at 5 bars with a membrane
effective area of 14.44 cm2. Sodium chloride (NaCl, 2000 ppm) was fed to the system at
0.8 L min−1. The salt concentration in the feed and permeate side was measured by a
conductivity meter (Metler Toledo, FiveEasyTM FE30, Columbus, OH, USA). The water flux
and water permeance (or pressure-normalized flux) were estimated by Equations (1) and (2),
respectively [31].

JW =
V

AM ∆t
(1)

A =
JW

(∆P − ∆π)
(2)

where JW is the water flux (Lm−2h−1 or LMH), V is the volume of permeated water (L),
AM is the effective area of the membrane (m2), ∆t is the permeation time (h), A is the
pressure-normalized flux or water permeance (Lm−2 h−1bar−1 or LMH bar−1), ∆P is the
transmembrane pressure (bar), and ∆π is the feed osmotic pressure difference (bar).
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The salt rejection (R, %) was calculated by Equation (3).

R =

(
1 − CP

CF

)
× 100 (3)

where CF is the salt concentration of feed (ppm), and CP is the salt concentration on the
permeated side (ppm).

2.6. Membrane Stability Testing

Using the same setup and procedure described in Section 2.5, the performance of the
developed membranes over a longer operating duration was examined to evaluate the
stability of the TFNC membrane over 24 h.

3. Results and Discussion
3.1. The Effect of Heat Treatment on the Support Properties

The SEM surface morphology of the ENFs before and after heat-pressing is shown in
Figure 2. From the SEM images, it was observed that the average fiber diameter increased
from 150 nm to around 220 nm after the heat treatment. The ENF support appeared to
be more compact and denser after heat-pressing, creating a stable and strong inter-fiber
connection and preventing the fibers from slipping under high-pressure operation [6].
Moreover, it was also observed that the nanofiber could attach well to the backing materials,
making them easier to handle compared to the untreated ones. The higher the temperature,
the flatter the fibers [32]. The opening between the fibers was, thus, reduced due to the
heat-induced contraction of the nanofibers [33]. Consequently, the mean pore size of the
ENF support was significantly decreased with heat press temperatures, contributing to
an increase in the pressure required for determining the mean pore size (Table 1). It was
speculated that the reduction in pore size could be attributed to both nanofiber flattening
and partial melting occurring in some areas of the PP/PE non-woven backing support
(See Figure S1). Similar observations were also reported by Wu et al. and Yao et al., where
smaller pore sizes were obtained after applying the heat-pressed treatment on electrospun
PVDF nanofibers [32,34].
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Table 1. Characteristics of the ENF support after thermal treatment at different temperatures.

Support Fiber Diameter (nm) Mean Flow Pore
Pressure (bar) Mean Pore Size (µm)

As-spun ENF 150 ± 30 0.51 1.26
hp-ENF 120 200 ± 30 0.70 0.91
hp-ENF 140 220 ± 40 0.79 0.81
hp-ENF 160 240 ± 60 1.02 0.63

To check the change in the chemical structure of ENF after the heat treatment, the ATR
FTIR analysis was carried out, as depicted in Figure 3. The typical peaks of PAN-co-MA
nanofibers without any sign of chemical structure change after thermal treatment were
observed in all samples. The stretching vibration of C≡N (nitrile group) and bending
of -CH2 (methylene group) was detected at 2242 cm−1 and 1452 cm−1, respectively [35],
whereas the peak at 1737 cm−1 was determined by the carbonyl bonds of the methyl acrylate
co-monomer [36,37]. This indicated that the heat-pressed treatment in the experimental
range of 120–160 ◦C on the ENF support only allowed physical alteration, but no chemical
decomposition was involved.
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3.2. Effect of Heat Treatment on Thin-Film Formation and Membrane Performance

The TFNC membranes were successfully fabricated by interfacial polymerization,
forming a PA thin selective layer over the prepared ENF support. The SEM images in
Figure 4 illustrate the top surface of these membranes.
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Figure 4. SEM images of (a) pristine TFNC, (b) hp-TFNC 120, (c) hp-TFNC 140, and (d) hp-TFNC 160
at 1000× magnification (insert pictures: 5000× magnification).

A characteristic ridge-and-valley structure is evident across all samples of the ENF
support. The pristine thin-film nanocomposite (TFNC) membranes exhibited a rougher
surface with prominent clusters of polyamide (PA) lumps, as indicated by the red circle in
Figure 4a. In comparison, the TFNC membranes fabricated with a heat-pressed electrospun
nanofiber (ENF) support presented a significantly smoother surface. When ENF supports
with larger pore sizes were used (for instance, as-spun ENF with a pore size of 1.26 µm),
MPD rapidly diffused toward the TMC organic phase. This process is primarily governed
by Marangoni convection, which leads to a larger contact area for the reaction zone and,
consequently, rapid film growth [1,9]. As a result, the PA films formed under these con-
ditions are characterized by larger globular structures and a rougher texture. Conversely,
when the support has smaller pores, the movement of MPD toward TMC is hindered,
resulting in the formation of a smoother surface with smaller PA film structures. This expla-
nation is consistent with Li et al. [2], who used hydrophilic supports made from cellulose
acetate propionate, fabricated via phase inversion, for interfacial polymerization to create
PA TFC membranes. Similarly, Han et al. [28] documented the uniform formation of a
PA-selective layer on a hydrophilic PAN nanofiber support with pore sizes (0.53–0.94 µm)
that are comparable to those in our study. Despite the relatively limited research into the
effects of the hydrophilic ENF support pore size on PA film formation, it is notable that
the ENF supports produced in the current study, with much larger pore sizes than those
made by conventional phase inversion supports (ranging from 10 to 150 nm) [2,9,38], can
still facilitate the development of a uniform, defect-free PA-selective film.

To verify the formation of PA layers on an ENF support, ATR-FTIR was used to
examine the chemical bonding, as shown in Figure 5.
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Figure 5. FTIR spectra of hp-TFNC membranes.

All TFNC membranes exhibited an amide characteristic peak, and there were three
main peaks at 1661 cm−1 (C=O stretching, amide I), 1610 cm−1 (C=O from hydrogen bond,
amide I), and 1541 cm−1 (bending of N-H and stretching vibration of -CN, amide II) [3].
These peaks represented the successful formation of cross-linked and an aromatic dense PA-
selective layer on the ENF support. It is worth mentioning that the low-intensity absorption
bands at 2242 cm−1 and 1737 cm−1, which are the characteristics of the underlying ENF
support, become more pronounced in the samples subjected to heat treatment. Notably,
after heat pressing, the PA film on the support becomes smoother with fewer clusters of
PA lumps, as evidenced by the SEM images (Figure 4). This transformation likely leads
to the thinner layer of the PA film. As a result, the FTIR beam is able to penetrate deeper
into the ENF support layer, making the detection of these specific absorption bands more
pronounced, especially in the heat-treated supports. This enhanced detectability may also
be ascribed to the densification of the ENF support post-heat-pressing, which amplifies the
likelihood of these bands being detected.

The performance of the TFNC membrane prepared from ENF supports heat-pressed
at different temperatures was determined. The prepared membranes demonstrated an
improved NaCl rejection as the temperature of heat pressing increased, although there was
a corresponding decrease in permeance, as illustrated in Figure 6. This outcome presents a
trade-off between enhanced salt rejection and a reduced pressure-normalized flux. A possi-
ble explanation for the observed decrease in pressure-normalized flux could be justified
by the reduction in pore size of the ENF support, which leads to increased mass transfer
resistance, as suggested by previous reports [32,39]. Kaur et al. explained an identical trend
in which the lower water flux of the TFC membrane was associated with smaller pore sizes
of nanofiber support [6]. Additionally, the partial melting of non-woven backing materials
at elevated temperatures (Figure S1) could contribute to diminished water permeance. This
is supported by the significant drop in water permeance of the backing support after being
heat-pressed at 140 ◦C, as detailed in Table S1. Increasing the heat-pressed temperature,
on the other hand, improves the TFNC membrane’s selectivity over monovalent salt [40],
with improvements of up to 94%. This indicates the more effective formation of a dense
polyamide (PA)-selective film. It should be noted that the TFNC membrane prepared
on an untreated ENF support performed poorly in separation and exhibited no selective
characteristics. To avoid the additional mass transfer resistance caused by partial melting,
the ENF treated at 120 ◦C was chosen for further hydrolysis modification.
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3.3. The Effect of Combined Heat Treatment and Hydrolysis on Support Properties

The hp-ENF 120 support layer was treated with 2 M of NaOH solution at 30 and 50 ◦C
for 2 h. From Figure 7, after hydrolysis, it can be seen that there was a marked reduction in
the average fiber diameter, which shrank from approximately 200 nm to around 120 nm.

A similar observation was reported by Han et al. [28]. A previous study by Ilyas et al.
reported similar findings and suggested that the reduction in fiber size could be attributed
to the removal of amorphous regions within the nanofibers during NaOH hydrolysis [41].
However, in our study, the weight loss observed after hydrolysis was negligible (<0.1%) (see
Table S2). Therefore, it is possible that the decrease in fiber size was due to the relaxation
of fibers that had previously been flattened. Additionally, the supports became denser
and more compact due to fabric shrinkage, leading to an increase in fiber density [42,43].
Consequently, the pore size of the electrospun nanofiber (ENF) support experienced a
reduction of about 20–28% following hydrolysis, as detailed in Table 2. This might also
result in the improved entanglement degree of the modified ENF after hydrolysis [44,45].
Electrospun nanofiber film shrinkage during drying typically occurs when the solvent
in the nanofiber film evaporates, causing the film to contract and shrink. The degree of
shrinkage of the film was also reported to be influenced by many factors, including the
wettability of the film.

In the hydrolysis process of PAN-co-MA nanofibers, the nitrile groups (-CN) were ini-
tially targeted by NaOH molecules. This resulted in the following two-stage transformation:
first into amide (-CONH2) and then into carboxylic acid (-COOH) [46]. This hydrolysis pro-
cess of the hp-ENF and NaOH is evident in the FTIR spectra (Figure 8). The nitrile group’s
peak at 2242 cm−1 and the ester bond’s peak at 1737 cm−1 decreased in intensity, while the
intensities of the amide (at 1665 cm−1 and 1632 cm−1) and carboxylic acid (at 1565 cm−1)
peaks increased following hydrolysis. Furthermore, a new, significant peak appeared at
3350 cm−1, which corresponded to the -OH bond in carboxylic acid [47]. Additionally,
increasing the temperature during the hydrolysis reaction can speed up the creation of
-CONH2 and -COOH groups as a result of more extensive hydrolysis [48]. Specifically, at
a temperature of 50 ◦C, the reaction became faster, leading to the formation of additional
hydrophilic functional groups. This is evidenced by the appearance of new chemical bond-
ing peaks. The proportions of -CONH2 and -COOH relative to the -CN groups have been
precisely calculated and are detailed in Table 2. Notably, the ratios of -CONH2/-CN and
-COOH/-CN in the sample hydrolyzed at 50 ◦C are greater than those in samples treated at
30 ◦C or in non-hydrolyzed ENF. This indicates the more significant degree of hydrolysis,
signifying enhanced hydrophilic and wetting properties of the hp-ENF support, which is a
fact further supported by the results of the contact angle test (Figure S2). After hydrolysis,
the water contact angle of the support reduced from 25◦ to 0◦.
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Table 2. The properties of hp-ENF support before and after hydrolysis at different temperatures.

Hydrolysis Temperature (◦C) Fiber Diameter (nm) Mean Pore Size (µm) I1665/I2242 I1565/I2242 WCA (◦)

Non-hydrolyzed 200 ± 30 0.91 0 0 25.5 ± 7.2
30 120 ± 20 0.71 0.157 0.055 0
50 120 ± 10 0.66 1.024 5.941 0

X-ray Photoelectron Spectroscopy (XPS) was employed to analyze the chemical struc-
tural changes in the PAN-co-MA nanofiber support following hydrolysis. Figure 9 illus-
trates the high-resolution C1s deconvolution of the PAN-co-MA nanofiber both pre- and
post-hydrolysis. Initially, the C1s peak for the non-hydrolyzed nanofiber displayed three
distinct peaks at 284.4, 285.6, and 286.9 eV, corresponding to the -C-C and -C-H, -CN,
and -CO groups, respectively (as shown in Figure 9a) [49]. Post-hydrolysis, new peaks
were observed at 286 and 287.6 eV, indicative of the formation of amide (-CONH2) and
carboxyl (-COOH) groups (refer to Figure 9b) [50]. Upon increasing the hydrolysis reaction
temperature, a shift in the entire spectrum to lower binding energies was noted, coupled
with a reduction in the intensity of the deconvoluted -CN peak. Conversely, the intensi-
ties of the deconvoluted amide and carboxyl group peaks increased (see Figure 9c). This
XPS analysis, corroborated by previous Fourier-transform infrared spectroscopy (FTIR)
findings, confirms the partial conversion of -CN groups into -CONH2 and -COOH groups.
Moreover, elevating the reaction temperature further enhances the formation of amide and
carboxyl groups.
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3.4. The Effect of Combined Heat-Pressing and Hydrolysis on Thin-Film Formation and
Membrane Performance

The surface and cross-section morphology of TFNC membranes were characterized.
As represented in Figure 10, the PA-selective films, applied to all ENF supports, exhibited
a characteristic ridge-and-valley structure interspersed with leaf-like formations (see red
arrows). However, significant variations were observed in the surface morphology of the
TFNC membranes (see red circles). These differences were attributed to the variations
in pore size and hydrophilicity of the ENF supports. Given that the polyamide thin
selective layer was synthesized following the same procedures, significant variances could
be explained by differences in the ENF support pore size and hydrophilicity.

Specifically, the PA film applied to a non-hydrolyzed ENF support (Figure 10a) demon-
strated predominantly leaf-like structures with a loosely arranged multi-layered PA config-
uration. In contrast, the PA film on hydrolyzed ENF support at 30 ◦C (Figure 10c) showed a
greater abundance of small nodules and dense, crumpled bumps. This difference was likely
due to alkaline hydrolysis, which resulted in the filling of smaller support surface pores
with an amine-aqueous solution. This process slowed the migration of MPD molecules,
thereby limiting their convection towards the organic phase due to the restricted amount
of MPD absorbed in the pores. As a result, the resultant PA thin film had a higher con-
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centration of small nodules. Conversely, larger support pore sizes enhanced the swift
migration of MPD towards the reaction interface through Marangoni convection. This
unstable convection led to an expanded reaction contact area, facilitating rapid film growth
characterized by an extensive ridge-and-valley structure [2,15,51].
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Figure 10. SEM images of the top surface and cross-section TFNC membranes prepared on (a,b) non-
hydrolyzed ENF and hydrolyzed hp-ENF 120 at (c,d) 30 ◦C and (e,f) 50 ◦C with 2 M of NaOH
solution for 2 h. (g,h) Represent the sketch of the PA film deposited on the support with and without
hydrolysis treatment, respectively.

Upon increasing the hydrolysis reaction temperature to 50 ◦C, there was a further
reduction in the pore size of the support structure, as detailed in Table 2. A smoother
and relatively thinner film (thinner than that of the non-hydrolyzed one) was observed;
however, unexpectedly, a none-nodular structure was observed (Figure 10e). This ob-
servation contrasts with the trends reported in previous studies using phase-inversion
support layers [4,9,52], where the opposite effect was noted. This might be attributed to the
negatively charged functional groups (-COOH) in the ENF support that were significantly
generated after hydrolysis at 50 ◦C. These negatively charged functional groups can alter
the diffusion rate of MPD to the reaction zone and result in a different film structure.
A similar phenomenon was noted by Liu et al., where polyethersulfone (PES) support,
functionalized with carboxylate cellulose nanocrystals, was used in fabrication [53].

The PA film’s thickness could also be estimated from the cross-section morphological
images shown in Figure 10. It is shown that the PA-selective layer seems to firmly attach to
the underlying ENF support. According to the cross-section images, the thickness of the
PA film decreased from approximately 700 nm (as seen in Figure 10b) to around 400 nm
(Figure 10d,f) once the supports were hydrolyzed. This observation is in agreement with the
findings reported by Park et al. and Ghosh et al. [3,54]. As hydrolysis is carried out, the ENF
support attains a superhydrophilic state. This transformation, coupled with the smaller
pore sizes, creates conditions that are conducive to forming the PA layer predominantly
at the membrane surface [55,56]. The hydrophilic ENF support enables the slow MPD
migration toward the reaction platform to react with the TMC solution, and with a small
support pore size, the absorbed MPD remains trapped inside it [52]. Additionally, in
the case of the non-hydrolyzed ENF support, the PA thin film exhibits voids that appear
to merge with adjacent PA layers. During the interfacial polymerization reaction, the
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MPD solution (in large-pore support) potentially migrates rapidly near the water–hexane
interface to react with the TMC monomer. This leads to the pushing away of the initially
formed PA layer and the formation of a large film pocket [3,9]. The rapid IP reaction
is an exothermic reaction, releasing heat and producing hydrochloric acid (HCl), which,
in turn, allows nanobubbles to form [57]. These nanobubbles are inherently unstable
and tend to burst, releasing from the formed PA film and resulting in a looser PA film
characterized by a leaf-like structure [7]. Furthermore, the formation of a defective PA film
is a notable issue, likely induced by the larger pore sizes of the non-hydrolyzed TFNC
membranes. Such imperfections may account for the considerable variability in permeance
and the diminished sodium chloride (NaCl) rejection observed in the next sections. This
is attributed to the non-uniform distribution of the PA film across the ENF support. To
further confirm the hypothesis and to understand the mechanism of thin-film formation,
its detailed in situ characterization during the film formation is recommended.

Despite this unexpected variation, the TFNC membrane from hydrolyzed support
at 50 ◦C showed better adhesion of the PA thin film to the support compared to its non-
hydrolyzed counterpart. This is evident in Figure S3, which shows the stronger attachment
of the PA film on the hydrolyzed hp-ENF 120 support when tested with double-sided
tape. Such robust adhesion between the PA layer and the ENF support contributed to the
improved performance of the membrane. To further validate the adhesion between the
PA layer and the support, confocal laser scanning microscopy (CLSM) was employed to
capture the optical images of the membrane’s top surface across its depth. Figure 11 shows
distinguishable patterns of the nanofiber support layer (left side) and PA-selective layer
(right side) after being removed from the double-sided adhesive tape. Some imprints of
PA-selective film (indicated by red circles) were still visible on the peeled TFNC surface.
However, a portion of the thin selective layer covering the nanofiber was diminished,
leaving the fiber structure on the half side of hp-TFNC 120-30 and hp-TFNC 120-50. This
proves that the alkali hydrolysis treatment could improve the attachment of PA-selective
film on ENF support. In addition, the 2D top-most surface of all TFNC membranes revealed
a smoother PA-selective layer at a higher hydrolysis temperature (hp-TFNC 120-50), which
correlated with the SEM result.

The characteristic chemical structure of the PA film at 1661 cm−1, 1610 cm−1, and
1541 cm−1 was confirmed, as shown in Figure 12. Accordingly, the C-O stretching of the
linear COOH groups reached 1446 cm−1 due to the hydrolysis of acyl chloride, contributing
to the linear structure of the PA-selective film [58]. Besides the evidence of PA formation,
the peak intensity ratios between the amide and carboxyl groups varied across all TFNC
membranes. To specify the values, the ratio of -COOH (from linear PA)/-CONH (from
cross-linked PA) could be determined by defining the area under the curve from FTIR
spectra, and these are compared in Table 3.

A higher -COOH/-CONH (I1446/I1541) ratio indicates that more acyl chloride was
hydrolyzed with water molecules, forming a more linear form of the PA film. This can affect
the separation performance of the membranes [59]. The results disclosed that the stronger
the alkaline hydrolysis, the higher the ratio of -COOH/-CONH in the PA layer. The surface
elemental composition of TFNC membranes was also determined by XPS, as illustrated in
Figure 13. From the O1s spectra of the prepared TFNC membranes (Figure 13b–d), the two
characteristic peaks were noticed at 531.2 and 532.9 eV, which belong to the -CONH and
-COOH groups, respectively [60]. The O/N ratio estimated from XPS is typically used to
determine the crosslinking degree of the PA film, with typical O/N values ranging from 1 to
2. The O/N ratio close to 1 indicates a highly cross-linked PA structure [61]. However, it
was observed that the O/N ratio for some samples surpassed the upper limit of this range.
It has been suggested that relying on the O/N ratio from XPS to estimate the crosslinking
degree of PA might lead to inaccuracies. This is because the detected oxygen component
could originate from sources other than the sample itself, and the O/N ratio is notably
susceptible to the method of sample preparation [62,63].



Polymers 2024, 16, 713 15 of 23Polymers 2024, 16, x FOR PEER REVIEW 16 of 25 
 

 

 
Figure 11. CLSM surface images of (a) hp-TFNC 120, (b) hp-TFNC 120–30, and (c) hp-TFNC 120–50 
membrane with (i) 2D optical view and high intensity, and (ii,iii) 2D- and 3D-mapped topography 
of TFNC structure, respectively. 

 
Figure 12. FTIR spectra of TFNC membranes prepared on hydrolyzed ENF at different 
temperatures. 

Figure 11. CLSM surface images of (a) hp-TFNC 120, (b) hp-TFNC 120-30, and (c) hp-TFNC
120-50 membrane with (i) 2D optical view and high intensity, and (ii,iii) 2D- and 3D-mapped
topography of TFNC structure, respectively.
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It is important to recognize that the trends identified in the linear and cross-linked
segment ratio of the polyamide (PA) film, as determined by FTIR and XPS, differ. The FTIR
analysis suggests that the stronger hydrolysis of the support correlates with an increase
in linear PA segments. On the other hand, the O/N ratio of non-hydrolyzed thin-film
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nanocomposite (TFNC) membranes, as indicated by XPS spectra, does not align with this
trend and is, in fact, contradictory to the FTIR results. This discrepancy may stem from the
different penetration depths of the two analytical techniques. The penetration depth of
FTIR varies with the wavelength. Specifically, in the characteristic region for PA, between
1400 and 1700 cm−1, the FTIR beam can penetrate deeper than 1 µm. This depth exceeds
the thickness of the PA film, allowing the beam to reach the underlying ENF support. In
contrast, XPS has a significantly shallower penetration depth, limited to only 2–10 nm
into the PA layer [64]. The presence of linear structures, which include carboxyl groups in
the PA, is well recognized for imparting a more hydrophilic nature to the film, which is
advantageous for water permeance.
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Table 3. Summary table of the properties of the TFNC membrane with different hydrolysis temperatures.

Hydrolysis
Temperature (◦C)

n-Hexane
Rinsing

PA Layer
Thickness (nm)

I1446/I1541
(FTIR)

O/N Ratio
(XPS)

A
(LMH bar−1) R (%)

Non-hydrolyzed no 700 ± 50 0.270 3.24 2.1 ± 0.7 83.0 ± 6.4
30 no 410 ± 50 0.299 1.94 2.0 ± 0.1 97.6 ± 1.0
30 yes 380 ± 40 0.309 1.85 2.9 ± 0.2 96.8 ± 0.4
50 no 430 ± 40 0.314 3.58 2.7 ± 0.0 98.0 ± 0.4

The separation performance of the fabricated membranes was assessed at 5 bars using
2000 ppm of the NaCl solution, as depicted in Figure 14. Both permeance and the NaCl
rejection of TFNC membranes deposited on hydrolyzed hp-ENF support were enhanced,
implying that hydrolysis modification had a positive impact on the film formation. The
improved water permeance of TFNC from the hydrolyzed support was attributed to the
much thinner and more hydrophilic selective film. These results are also in good agreement
with the high ratio of -COOH/-CONH from FTIR previously discussed. Additionally, the
large variation in the separation performance of the TFNC membrane from non-hydrolyzed
support could be due to the uneven film formation and less effective adhesion of the film
to the support, potentially leading to defects.
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The NaCl rejection of TFNC membranes was significantly enhanced by 15% after ENF
support was treated by an alkaline, maintaining a value above 95%. The remarkable salt
rejection can be attributed to the reduction in the support pore size following hydroly-
sis, resulting in a more uniform and compact thin film. Additionally, the improvement
in performance might be due to enhanced interactions between the support and the PA
film, characterized by strong ionic and covalent bonding, as well as increased hydrophilic-
ity [29,65,66]. The underlying mechanism of this enhancement is further elaborated in the
Supplementary Materials (Figure S4).
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Figure 14. (a) Pressure-normalized flux (A) and (b) NaCl rejection (R) of TFNC membranes prepared
on non-hydrolyzed ENF and hydrolyzed ENF at different hydrolysis temperatures.

To further enhance the pressure-normalized flux, an n-hexane rinse is applied after the
IP reaction during the PA formation stage. It is revealed that the pressure-normalized flux
was greatly enhanced while retaining high salt rejection at about >95% (Figure 15) compared
to TFNC without an n-hexane rinse. The n-hexane rinse is beneficial to residual TMC
monomers, creating a thinner PA-selective layer [67]. Based on XPS analysis (Figure S5),
after the n-hexane rinse, the O/N ratio dropped while the amide/carboxyl ratio increased
(Table S3). This led to an enhanced pressure-normalized flux without sacrificing the NaCl
rejection (summary in Table 3). This remarkable result was consistent with the previously
reported paper [68].
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3.5. Performance Stability and Comparison

The performance stability of the prepared TFNC membranes was examined, as shown
in Figure 16. All TFNC membranes developed from this work maintained good water
permeance and high NaCl rejection, implying the good adherence of the film on the ENF
supports. The performance and mechanical properties of the membrane developed from
this work were also compared to other TFNC membranes, and the TFC membrane on PAN
supports was prepared using the conventional phase inversion technique as previously
published and summarized in Table 4.
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Table 4. Performance comparison and mechanical properties of TFC membranes.

Membranes Feed
Solution

Operating
Pressure

(bar)

A
(LMH bar−1) R (%)

Mechanical Properties

RefTensile Strength
(MPa)

Strain at
Break (%)

hp-TFNC
NaCl

(2000 ppm) 5

2.1 ± 0.7 83 ± 6.4 20.1 ± 4.1 27.1 ± 4.4 This work
hp-TFNC 120-30 2.0 ± 0.1 97.6 ± 1.0 16.3 ± 2.5 24.5 ± 3.7 This work

hp-TFNC 120-30-Hex 2.9 ± 0.2 96.8 ± 0.4 21.7 ± 1.0 27.5 ± 0.9 This work
hp-TFNC 120-50 2.7 ± 0.2 98.0 ± 0.4 17.6 ± 7.5 24.7 ± 0.9 This work

TFNC from PVDF NaCl
(1000 ppm) 8 1.9 ± 0.1 91.2 ± 1.3 5.4 ± 0.7 27.1 ± 0.9 [7]

TFNC from PAN/CA NaCl
(500 ppm) 7 2.8 ± 0.9 97.5 ± 0.4 N/A N/A [21]

TFNC from PSU NaCl
(2000 ppm) 20 5.5 ± 0.4 98.7 ± 0.1 40 3.5 [69]

TFC from hydrolyzed PAN
prepared from phase inversion *

NaCl
(5850 ppm) 10 0.91 89.95 N/A N/A [1]

TFC from support prepared
from phase inversion

NaCl
(2000 ppm) 15.5 0.6 ± 1.0 96.7 ± 1.4 N/A N/A [3]

* Tested with dead-end filtration mode. N/A is an abbreviation for not available.

The water permeance of TFC membranes fabricated using nanofiber supports clearly
outperformed those made with phase inversion supports. Additionally, the membranes
developed in this study exhibited a superior separation performance compared to those
prepared from polyvinylidene fluoride (PVDF) ENF supports. The mechanical robustness
of the TFNC membrane developed in this work also exceeds that of the membrane based
on PVDF-ENF support. It is important to note that the overall mechanical strength of
the prepared membrane is primarily derived from the backing support, which provides
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sufficient reinforcement during membrane testing. Additionally, the underlying mechanical
properties of the PA thin selective layer are strongly dependent on the long-term integrity
and durability of the nanofiber support layer. The results from tensile tests, traditionally
employed to assess the mechanical properties of membranes in laboratory settings, do
not fully capture the mechanical behavior under actual operational conditions. To fully
understand the mechanical behavior of TFC membranes, it is necessary to look into the
mechanical properties and deformation mechanisms of each layer. Comprehensive investi-
gations such as biaxial testing under static and fatigue loading to simulate real operational
conditions are recommended [70].

Among the various TFNC membranes compared, those incorporating polysulfone
(PSU) ENF supports exhibited the highest water permeance and mechanical strength. This
superior performance is likely due to the unique cross-hatched pattern of the ENF and the
enhancement of the support’s hydrophilicity through polydopamine modification [69].

Our research, conducted at relatively low-pressure conditions (5 bar) and with modest
salt concentrations, offers a preliminary assessment of the membranes’ effectiveness for
desalination applications. The findings suggest their potential use in treating brackish
water with salt concentrations between 2000 and 10,000 ppm and their applicability in the
final stages of water purification, particularly at lower operating pressures. To verify their
compatibility with reverse osmosis (RO) processes for seawater desalination, further testing
under conditions that closely mirror the real operational environment is recommended.

4. Conclusions

Polyamide TFC membranes were successfully developed on an electrospun nanofiber
support following subsequent treatment modification. In this work, the heat-pressed and
alkaline hydrolysis treatment had important influences on the morphology and physico-
chemical properties of the nanofiber support layer, which subsequently governed the PA
thin film’s structure–properties relationship during the TFNC membrane’s performance.
The proper heat-pressed treatment in ENF support was found to be crucial for the formation
of dense PA thin selective films. Increasing the heat-pressed temperature caused a reduction
in the pressure-normalized flux due to a smaller support pore size. However, the TFNC
membranes demonstrated improved pressure-normalized flux using hydrolyzed ENF as
the support layer while maintaining outstanding NaCl rejection due to the increased amide
and carboxyl group contents, leading to enhanced hydrophilicity support. The support
pore size and hydrophilicity were revealed to play a major role in the enhancement of
both selectivity and permeability. This superior improvement is believed to be due to the
enhanced adhesive force between the PA thin film nanofiber support layers. Furthermore,
rinsing with n-hexane after the IP reaction might boost the pressure-normalized flux by
29%. Finally, the TFNC membranes demonstrate an excellent future as an alternate choice
in desalination, and further investigation into the membrane’s characteristics in separation
performance is highly recommended.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym16050713/s1, Figure S1: SEM images of the backing support
materials (a) without heat-pressing and with heat-pressing at (b) 120 ◦C and (c) 140 ◦C; Figure S2:
WCA of hp-ENF 120 before (left) and after hydrolysis (right); Figure S3: (a) Photograph of peeled
PA film from TFNC membrane on the double-sided tape (b) Photograph of peeled PA film from
TFNC 50 membrane on the double-sided tape; Figure S4: The proposed mechanism of interaction
between hydrolyzed PAN-co-MA ENF support and PA-selective film; Figure S5: (a) Wide-scan XPS
spectra of TFNC 30 (b) O1s deconvolution of TFNC 30 with n-hexane rinse; Table S1: Pure water
permeance (PWP) of backing support heat-pressing at different temperatures; Table S2: Weight loss
of nanofiber support upon hydrolysis; Table S3: XPS elemental composition of O, N, C, O/N ratio
and amide/carboxyl ratio of TFNC 30, (XPS depth measurement of 10 nm). Refs. [3,29,65,71] are
cited in the supplementary materials.

https://www.mdpi.com/article/10.3390/polym16050713/s1
https://www.mdpi.com/article/10.3390/polym16050713/s1
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