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Abstract: The enzyme catalysis conversion of lignocellulosic biomass into valuable chemicals and
fuels showed a bright outlook for replacing fossil resources. However, the high cost and easy
deactivation of free enzymes restrict the conversion process. Immobilization of enzymes in metal–
organic frameworks (MOFs) is one of the most promising strategies due to MOF materials’ tunable
building units, multiple pore structures, and excellent biocompatibility. Also, MOFs are ideal support
materials and could enhance the stability and reusability of enzymes. In this paper, recent progress
on the conversion of cellulose, hemicellulose, and lignin by MOF-immobilized enzymes is extensively
reviewed. This paper focuses on the immobilized enzyme performances and enzymatic mechanism.
Finally, the challenges of the conversion of lignocellulosic biomass by MOF-immobilized enzyme
are discussed.
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1. Introduction

Lignocellulosic biomass is a renewable, food non-competitive, and sustainable alter-
native for replacing fossil resources [1,2]. It is mainly composed of cellulose (40–50%),
hemicellulose (20–30%), and lignin (20–30%) (Figure 1). Cellulose is a highly crystallized
polymer. The basic unit of cellulose is D-glucosyl units, which are linked with β-(1-4)
connections. The chemical structure of hemicellulose is more complicated than cellulose,
which includes glucans, xylans, mannans, and xyloglucans, with glucose, xylose, mannose,
glucose, galactose, rhamnose, and arabinose as the basic units. Aside from polysaccharides,
another main component of lignocellulosic biomass is lignin. Lignin is the second most
abundant natural polymer, which has a cross-linked polyphenol structure and is difficult
to determine. The main basic units of lignin are p-hydroxyphenyl (H), guaiacyl (G), and
syringyl (S). Lignocellulosic biomass chemical structures and compositions are varied based
on the species of plants [3].

However, due to the compact structure, the decomposition of lignocellulosic biomass
into available small compounds needs harsh conditions. Different strategies have been de-
veloped for the conversion of lignocellulosic biomass components into chemicals, materials,
and energies [4]. Chemical conversion methods and biological conversion methods are the
two main routes for realizing this objective. Both conversion methods have their advantages
and disadvantages (Figure 2). For chemical conversion methods, the conversion reaction
normally needs harsh reaction conditions such as high reaction temperature and/or high
reaction pressure. Also, alkali, acid, metal catalysts, and hydrogen are sometimes needed
for the conversion process [5]. Furthermore, during the chemical reaction process, various
kinds of products can be obtained, so the separation and purification of the complicated
products are also a challenge for the valorization of lignocellulosic biomass [6].
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Figure 1. The chemical structures of lignocellulosic biomass main components. (a) Cellulose; (b) 
hemicellulose; (c) lignin basic units. 

 
Figure 2. Comparison of the advantages and disadvantages between chemical and biological con-
version methods. 

Biological conversion methods have attracted the attention of researchers due to their 
mild reaction conditions and high selectivity [7]. On the other hand, because of the com-
plicated structure of lignocellulosic biomass, several specialized enzymes are required for 
lignocellulosic biomass, which are mainly classified into cellulases, hemicellulases, and 
ligninases [8–10]. The free enzyme is extremely fragile and is readily inactivated by heat 
and many disinfectants, including organic solvents, strong acids or bases, and some metal 
ions. There are several technologies that have been proposed to improve the stability of 
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Figure 2. Comparison of the advantages and disadvantages between chemical and biological conver-
sion methods.

Biological conversion methods have attracted the attention of researchers due to
their mild reaction conditions and high selectivity [7]. On the other hand, because of the
complicated structure of lignocellulosic biomass, several specialized enzymes are required
for lignocellulosic biomass, which are mainly classified into cellulases, hemicellulases, and
ligninases [8–10]. The free enzyme is extremely fragile and is readily inactivated by heat and
many disinfectants, including organic solvents, strong acids or bases, and some metal ions.
There are several technologies that have been proposed to improve the stability of enzymes,
such as immobilization, protein engineering, and chemical modification [11–13]. Among
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those technologies, immobilization is a feasible and effective strategy, which is achieved
by fixing the enzyme to a suitable support through physical adsorption, entrapment,
chemical cross-linking, or covalent binding [14,15]. An ideal support for this objective
should have good associativity, stability, physical strength, and reproducibility and should
be chemically inert. Many conventional support materials, such as chitosan, resin, silicon,
etc., were studied for this aim [16]. However, poor mechanical and chemical stability, non-
uniform pore distribution, poor biocompatibility, and/or lack of functional groups limited
the utilization of the above materials for enzyme immobilization. Hence, developing a new
carrier matrix to meet all of these needs is essential for enzyme immobilization.

A metal–organic framework (MOF) is a type of organic–inorganic hybrid crystalline
porous material with large surface area, adjustable pore sizes, and good biocompatibility,
and it has been widely applied in gas adsorption and separation, drug delivery, catalysis,
and other fields [17,18]. In light of the active sites and ligand functionalization, MOFs and
their derivatives could be used to catalyze lignocellulosic biomass to various products
through hydrolysis, dehydration, isomerization, oxidation, etc. Recently, MOFs attracted
considerable attention as potential materials for enzyme immobilization [19–22]. Various
organic linkers and metal nodes are available to tailor MOFs with tunable properties so
that MOFs can be adapted for the fixing and protection of enzymes [23]. Herein, this
paper reviewed recent progress on the conversion of lignocellulosic biomass by MOF-
immobilized enzymes, summarizing the bioconversion of cellulose, hemicellulose, and
lignin, respectively. The prospect of the conversion of lignocellulosic biomass by MOF-
immobilized enzymes is discussed. In contrast to other review papers using MOFs or MOF
derivatives as chemical catalysts, this review aims to provide constructive suggestions for a
better understanding of the utilization of immobilized enzymes in MOFs for lignocellulosic
biomass conversion.

2. Conversion of Cellulose by MOF-Immobilized Enzyme

Cellulose is a linear polysaccharide consisting of 3000 or more glucose units linked by
β-1,4-glycosidic bonds. There are multiple intramolecular and intermolecular hydrogen
bonds in natural cellulose, resulting in poor accessibility for enzymes [24]. Therefore, most
of the literature has applied microcrystalline cellulose (MCC) as the substrate, which is a
kind of freely flowing powder particle with a degree of polymerization (DP) of 15–375 [25].

The most widely used enzyme for the bioconversion of cellulose is cellulase. Cellulase
is a multi-component enzyme, including endo-β-1,4-glucanase (EG), exo-β-1,4-glucanase
or cellobiohydrolase (CBH), and β-glucosidase (BG) [26]. The generally accepted enzymatic
mechanism is that EG arbitrarily breaks the interior β-1,4-glycosidic bond, CBH breaks the
β-1,4-glycosidic bond from the reducing or non-reducing end to produce cellobiose, and
BG resolves the cellobiose to glucose [27]. Lytic polysaccharide monooxygenase (LPMO)
is a newly discovered oxidase and is classified as an auxiliary active (AA) enzyme. It
could break glycosidic bonds to generate more glycoside binding sites, thus accelerating
the enzymatic reaction process (Figure 3). However, the exact catalytic mechanism of
LPMO has not been well understood, and it opens a new way for enzymatic degradation
of the cellulose.

Because of the sensitivity and relatively high price of enzymes, immobilization of
cellulase in MOFs is a facile approach to improve its stability and recyclability [28]. There
are three main immobilization ways, which include surface immobilization, in situ encapsu-
lation, and infiltration (Figure 4). For the surface immobilization method, cellulase is fixed
in MOF through physical adsorption or chemical binding. It is the most frequently used
method due to its easy operation and minimal effect on cellulase activity. For microporous
MOF materials, cellulase is usually immobilized on external surfaces, and the leaching of
cellulase easily occurs during the reaction process, which in turn results in a loss of activity
upon reuse. To strengthen the linkage, MOF is modified by functional groups, such as
NH2, and then forms covalent bonds with cellulase via glutaraldehyde cross-linking [29].
The disadvantage of this method is that it is difficult to use MOF’s rich pore structure to
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realize the surface immobilization method. For the in situ encapsulation method, cellu-
lase is added during the formation of MOF and then encapsulated in the framework of
MOF through coprecipitation [30]. The preparation of MOF must be conducted under
mild conditions. Otherwise, cellulase will be easily inactivated during immobilization.
The optimal operation conditions of cellulase are at pH 5.0 and 50 ◦C [31]. Therefore,
researchers have focused on developing new MOFs prepared in slightly acidic solution
at lower temperatures. This method enhances the binding between cellulase and MOF,
and the framework has great protection against cellulase. However, the activity of the in
situ encapsulated enzyme was questioned by some researchers. The third immobilization
process is infiltration, and cellulase diffuses into the pores or cages of MOFs [32]. The short
axis and long axis of cellulase are 3.8 nm and 17.6 nm [33]. Only MOF with a considerable
pore size could immobilize cellulase in pores without leaching. So far, there are a few
macro- or mesoporous MOFs reported owing to the conventional technical restriction [34].
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Table 1 summarizes the progress of the conversion of cellulose by MOF-immobilized
enzymes. Surface immobilization and in situ encapsulation are the main immobilization
methods. The NH2-functionalized MOF exhibits higher enzyme loading due to the extra
anchor sites of NH2 groups [35]. With increasing enzyme concentration, the loading
capacity of immobilized cellulose increases. But the specific activity first increases and then
decreases, which may be attributed to the tight and compact loading of the proteins that
result in serious steric hindrance. Hence, both the loading capacity and specific activity
should be considered to optimize the dosage of enzyme and MOF. Qi et al. reported that
magnetic MOF could be easily recovered from the solution, but magnetic nanoparticles
(Fe3O4, etc.) reduced the number of available binding sites of the enzyme [29]. The
immobilized cellulase has higher stability than free cellulase, which could keep a high
activity at a wide range of pH values and temperatures. All immobilized enzymes shown
in Table 1 can be reused many times, and for some of them, the residual activity is up to
90%. The storage stability is also improved (data not listed). For example, the activity of
cellulase@UiO-66-NH2 could retain 65% after 30 days of storage [35]. The results have
suggested the promising future of cellulase–MOF composites for practical applications.

Table 1. MOF-immobilized enzymes for cellulose conversion.

MOF Immobilization
Method

Maximum
Loading (mg/g)

Optimal Reaction
Conditions Recycling Times Residual

Activity (%) Reference

Fe3O4@UIO-66-NH2
Surface

immobilization 126.2 pH 5.0, 50 ◦C 5 70 [29]

UiO-66-NH2
Surface

immobilization 350 pH 5.0, 55 ◦C 10 72 [35]

Cu-MOF In situ
encapsulation 162.95 pH 5.0, 60 ◦C 10 90 [36] 1

ZIF-8 Surface
immobilization 176.16 pH 5.0, 60 ◦C 5 56 2 [37]

Zn-mIm In situ
encapsulation 350 pH 4.8, 50 ◦C 4 77 [30]

MOF(PABA) In situ
encapsulation 176.9 pH 4.8, 110 ◦C 5 86 3 [38] 1

MOF-Fe In situ
encapsulation 224.8 pH 4.8, 120 ◦C 5 30 3 [39] 1

1 The enzyme is β-glucosidase in the references. 2 The reusability of immobilized cellulase is utilized in the
process of saccharification with 25% [Emim]DEP. 3 The reusability of immobilized β-glucosidase is utilized in the
hydrolysis of cellobiose in ionic liquid.

3. Conversion of Hemicellulose by MOF-Immobilized Enzyme

Hemicellulose is a hetero-polymerized polysaccharide composed of two or more
monosaccharides with side chains and branched chains [40]. It has a very low DP (100–200)
compared with cellulose. The monosaccharides mainly include hexoses (D-glucose, D-
mannose, and D-galactose) and pentoses (D-xylose, L-arabinose, and D-arabinose). The
composition of hemicellulose varies among different plant species, which could be divided
into glucomannans, xylan, galactoglucomannans, xyloglucans, etc. [41]. D-pyranyl glucose
and pyranyl mannose are linked by a 1,4-β form bond to form the backbone of gluco-
mannans. Xylan is linked by xylose via a β-(1→4) glycosidic bond, and substitution of
glucuronic acid, 4-O-methyl-glucuronic acid, or arabinose may occur in C2 and C3.

In view of the complex constituents and linkages of hemicellulose, it requires the
combination of multiple specific enzymes to degrade hemicellulose to oligosaccharides,
disaccharides, and monosaccharides [42]. Each hemicellulase is a composite enzyme. For
example, xylanase includes β-1,4-endoxylanase, β-xylosidase, α-L-arabinosidase, α-D-
glucuronidase, acetyxylanase, and phenolylesterase. Similar to cellulase, each component
has a distinct action site that ultimately degrades hemicellulose into monosaccharides [43].
Although it requires various enzymes, the enzymatic reaction of hemicellulose is relatively
easy for its lower DP and incompact structure [44].

Few investigations about the bioconversion of hemicellulose have been reported to
be attributed to its complex compositions. Most of the reported studies use isolated xylan
as model hemicellulose for the study. It is because on the one hand, xylan is the main
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constituent of hemicellulose. Meanwhile, xylooligosaccharides (XOSs) and xylose, as
degradation products of xylan, have a wide market perspective. XOSs could promote
calcium absorption, reduce cholesterol levels and the risk of colorectal cancer, and have
antioxidant and antibacterial activity [45]. Xylose is a precursor for the production of
important chemicals such as xylitol, ethanol, and lactic acid. Kaushal et al. reported an
efficient bioconversion method to obtain xylotetrose (X5) and xylopentose (X6) by both free
and Cu-BTG-immobilized xylanase. The results suggested that the immobilization of the
xylanase enzyme helps the enzyme selectively produce XOS from the extracted xylan in
large quantities, with the conversion yield being at 11.8% X4 and 64.2% X5 [46]. Gui et al.
developed an MOF-immobilized enzyme Fe3O4@PDA@MOF-Xy, which has significant
advancement loading capacity (80.67 mg/g) in protein and exhibits remarkable tolerance
to acidic and alkaline conditions. Furthermore, the yield of xylooligosaccharides from
corn cob xylan was 1.15 times higher than that of the free enzyme system [47]. Table 2
summarizes conversion of xylan by enzyme immobilized in MOFs. Compared with free
enzyme, the immobilized enzyme not only has superior stability and reusability but also
has higher catalytic activity [47,48]. The reasons may be the change in microenvironment
and partition effects after immobilization, which effect conformational, steric, and mass
transfer processes and then effect the catalytic activity.

Table 2. MOF-immobilized enzyme for xylan conversion.

Enzyme MOF Immobilization
Method Recycling Times Residual

Activity (%)
Product Conversion

Efficiency (%) Reference

Xylanase Cu-BTC Surface
immobilization - - 87.4 (XOS) [46]

GH 11 endo-β-1,4-xylanase Fe3O4@PDA@MOF Surface
immobilization 10 60 23 (XOS) [47]

Xylanase
ZIF-67

In situ
encapsulation

8 70 94.73 (Reducing
sugar) [48]

Mn/ZIF-67 8 70 84.13 (Reducing
sugar)

Xylanase MOFCu-BTC Surface
immobilization 21 61 57.97 (Reducing

sugar) [49]

β-Xylosidase/endoxylanase UiO-66-NH2
Surface

immobilization 5 70 30 (Reducing sugar) [50]

4. Conversion of Lignin by MOF-Immobilized Enzyme

Lignin is a three-dimensional net polymer cross-linked by phenyl propane monomer
through ether bonds and carbon–carbon bonds (Figure 5). The most common linkages
are β-O-4 (45–50%), 5-5 (18–25%), β-5 (9–12%), β-1 (7–10%), α-O-4 (6–8%), and 4-O-5
bonds (4–8%) [51]. Lignin contains a variety of active functional groups, such as methoxy,
hydroxyl, epoxy, carboxyl, and the like, which provide lignin with an additional functional
property [52]. Lignin degradation is very difficult. The complete degradation of lignin in
nature is the result of the combination of fungi, bacteria, and the corresponding microbial
communities [53]. Due to its complex structure and high molecular weight, the natural
degradation rate of lignin is extremely slow. Researchers have focused on exploiting new
microorganisms for effectively bioconverting lignin. In the presence of microorganisms
or enzymes, the connection bonds between the monomers are broken and decomposed
into low molecular compounds. The most studied degrading enzymes of lignin are laccase
(Lac), lignin peroxidases (LiP), and manganese peroxidase (MnP) [54].
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Lac is thought to be the starting enzyme and is an oxidant for degrading phenolic
lignin without requiring H2O2 [55]. The optimum pH and temperature of Lac are 2–10 and
40–65 ◦C. Lac has four copper atoms and is divided into three types (Type I Cu2+, Type II
Cu2+, and Type III Cu2+). The degradation mechanism of Lac needs four single-electron
transfers. Lac removes four electrons from the hydroxyl groups of phenolic compounds to
transfer to Type I Cu2+ under the action of oxygen in the environment. This process also
forms four phenoxy radical intermediates. Then, electrons are transferred to Type II Cu2+

through a Cys–His pathway, where it binds oxygen and is reduced to water. Meanwhile,
the four phenoxy radicals are unstable and undergo non-enzymatic reactions, resulting
in further cleavage of lignin [56]. LiP plays a key role in lignin biological degradation.
LiP could oxidize phenolic or non-phenolic aromatic ring multimers and break Cα-Cβ

bonds in side chains of lignin into monomers. LiP has an optimum pH of 2–5 and an
optimum temperature of 35–55 ◦C. The reaction mechanism of LiP is that LiP is firstly
oxidized by H2O2 to the unstable intermediate LiP I, and then LiP I accepts a single electron
extracted from the substrate to form LiP II, which reduces Fe4+ to Fe3+ by transferring
an electron from another substrate to restore the initial state. The generated two cationic
radicals could attack other chemical bonds of lignin through subsequent non-enzymatic
reactions, thus causing polymerization of lignin [57]. MnP is another key enzyme for lignin
degradation and only oxidizes phenolic lignin in the presence of H2O2. The optimal pH



Polymers 2024, 16, 1010 8 of 13

and temperature of MnP are 4–7 and 40–60 ◦C. Mn2+ of MnP is oxidized to Mn3+, and Mn3+

in turn oxidizes phenol to phenoxy residues, which undergo a series of reactions to crack
the lignin structure [58].

However, the degradation rate of lignin is low when using the above enzymes indi-
vidually, and Lac has the highest lignin percentage degradation, with a degradation of
only 11.73%. When Lac, LiP, and MnP are used synergistically, the lignin degradation rate
improves up to 25.79% [59]. This is because Lac can oxidize a wide range of substrates and
therefore break different linkages of lignin. Meanwhile, Lac has the role of depolymerizing
and polymerizing lignin, and a high lignin degradation rate is achieved in the presence of
LiP or MiP, which can prevent the polymerization of lignin [60]. Lac also plays a positive
role in promoting the enzymatic action of LiP and MnP. The key degradation pathways by
Lac, LiP, and MnP are shown in Figure 5. Lignin or monomers as model lignin are oxidized
under enzymatic catalysis to form radicals, which could attack other chemical bonds of
lignin for further depolymerization. Meanwhile, the enzymes could also break the unstable
aromatic ring to form aliphatic compounds, such as acids, alcohols, ketones, esters, etc.

So far, little research about the conversion of lignin by MOF-immobilized enzyme have
been reported. The related literature mainly focuses on phenolic compounds degraded
by Lac immobilization in MOFs [61]. As shown in Table 3, surface immobilization and
in situ encapsulation are also the main immobilization methods for Lac because of its
larger size (6.5 nm × 5.5 nm × 4.5 nm) [62]. After immobilization, the stability of Lac is
remarkably improved, and the immobilized Lac has a wider range of pH and temperature
than free Lac. The reusability and storage stability of immobilized Lac are also enhanced.
The kinetic parameters are determined to study the effect of immobilization on the rates
of enzyme-catalyzed reactions. In general, the Vmax values of immobilized Lac are lower
than that of the free Lac. The Vmax value of immobilized Lac was 86.7% that of free Lac [63].
The decrease in Vmax might be attributed to the mass transport constraint [64,65]. The Km
value of Lac mostly increases, indicating the weaker binding ability of immobilized Lac
to the substrate [66,67]. The reasons may be the structure alteration and loss of enzyme
flexibility. However, the Km value could also decrease after immobilization, and the
alteration of enzyme structure may generate more active sites. The Km values of the free
and immobilized Lac are 436.8 µM and 306.1 µM, and the immobilized Lac has a stronger
affinity [68]. Significantly, the residual catalytic activity of immobilized Lac can remain high,
being up to 63.42% and 46.17% for OPEO and NPEO after four cycles [69]. Lac/Co-MOF
can remove 78% RB171 and 61% RB198 at the fifth cycle [70].

Table 3. MOF-immobilized enzyme for lignin conversion.

MOF Immobilization
Method

Maximum
Loading (mg/g)

Optimal
Reaction

Conditions
Recycling Times Residual

Activity (%)

Substrate
Conversion

Efficiency (%)
Reference

Zr-MOF, MMU Surface
immobilization 221.83 pH 4.0

40 ◦C 10 50 - [63]

Cu-MOF Surface
immobilization 502 pH 4.0

50 ◦C 7 50 - [64]

NH2-MIL-53(Al) In situ
encapsulation 625 pH 3.0

30 ◦C 10 63 - [65]

meso-MIL-53(Al) Surface
immobilization 218 pH 5.0

45 ◦C 8 60 99.24 (Triclosan) [66]

Fe3O4-NH2@MIL-
101(Cr)

Surface
immobilization 69 pH 4.0

65 ◦C 3 40 85 (2,4-
Dichlorophenol) [67]

Fe3O4@ZIF-8 Surface
immobilization - pH 7.0

80 ◦C 7 - 100 (Indigo
carmine) [68]

Fe3O4-NH2@MIL-
100(Fe)

Surface
immobilization 61.60 ± 2.92 pH 5.0

50 ◦C 4 - 100 (OPEO) 1

98.16 (NPEO) [69]
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Table 3. Cont.

MOF Immobilization
Method

Maximum
Loading (mg/g)

Optimal
Reaction

Conditions
Recycling Times Residual

Activity (%)

Substrate
Conversion

Efficiency (%)
Reference

Co-MOF Surface
immobilization

- pH 4.5
50 ◦C 12 56.5 88 (RB171)

77 (RB198) [70]

Cu-MOF - pH 5.0
50 ◦C 12 55.8 89 (RB171)

39 (RB198)

Cu2O@MOF Surface
immobilization 148 pH 4.0

55 ◦C - - 82.5 (2,4-
Dichlorophenol) [71]

1 OPEO: Octylphenol polyethoxylated. NPEO: Nonylphenol polyethoxylated.

Recently, MOF enzyme mimics, with similar catalytic activities to their natural coun-
terparts, are ideal alternatives used in biomass conversion for their tunable structures, high
stability, and low cost [72,73]. Inspired by the multicopper active site of Lac, MOFs contain
multiple metal ions and could be made to mimic Lac. Liang et al. firstly synthesized a
functional Lac mimic based on guanosine monophosphate (GMP)-coordinated copper,
named Cu/GMP. It is an amorphous MOF with a higher Vmax and similar Km to Lac [74].
Shams et al. designed a Lac mimic Cu/H3BTC MOF that possessed fundamental activities
for the oxidation of phenolic compounds. In addition, the degradation of azo dye AB-10B
by Cu/H3BTC was up to 60% after ten cycles [75]. Wang et al. reported an amorphous
MOF-based nanozyme (CA-Cu) with both laccase- and catecholase-like activity. It has
higher degradation efficiency for environmental phenolic pollutants [76]. Liang et al. de-
signed Ce-UiO-66 and Ce-MOF-808, where the internal cerium redox (Ce4+/Ce3+) reactivity
could mimic the active site and catalytic function of Lac. Ce-UiO-66 and Ce-MOF-808 had
superior stability and recyclability toward the oxidation of phenolic compounds [77]. Yang
et al. found that Cu/GMP shows superior Lac-like activity for the C-O bond cleavage of
lignin, which could degrade organosolv lignin (OL) into oligomers with low molecular
weights in a high yield (81.7 wt%) [78].

5. Summary and Prospective

In this review, recent progress on the conversion of cellulose, hemicellulose, and
lignin by MOF-immobilized enzyme was summarized, in which MOF plays a key role in
enhancing the stability and reusability of enzymes. Nevertheless, the bioconversion of
lignocellulosic biomass is limited to its compact structure and complex composition. Most
of the articles cited above summarized the use of isolated components from lignocellulose
biomass or simple model compounds, such as MCC, xylan, etc., as substrates for free and
immobilized enzymes. Given the immobilization technical constraints, the immobilized
enzyme in MOFs suffers from denaturation, leaching, poor biocompatibility, and so on.

Consequently, further work on the conversion of lignocellulosic biomass has focused
on the following aspects: (1) New pretreatment strategies should be developed to improve
the accessibility of enzymes. Pretreatments are vital to lignocellulosic biomass to modify its
structure and chemical composition. Developing effective solvents, such as ionic liquids
and p-TsOH aqueous solution, is a promising strategy to separate three main constituents
from lignocellulosic biomass and transfer its compact structure to an uncompact amor-
phous state at mild conditions [79,80]; (2) New meso- or macro-porous MOFs should be
designed. High transfer resistance is a critical shortcoming for micropore MOF, which
will weaken the enzymatic efficiency. Furthermore, a variety of enzymes are required
to act synergistically to degrade lignocellulosic biomass. It requires MOFs that possess
larger pore sizes to immobilize two or more enzymes; (3) Biocompatible MOFs will become
a focus of research. Many decomposable compounds of lignocellulosic biomass will be
applied in food, medicine, cosmetics, and dresses, so MOFs with good biocompatibility
are ideal enzymes supports [81]; (4) MOFs as enzyme mimetics will gain more and more
attentions in the bioconversion of lignocellulosic biomass due to its high stability and low
cost [82]; (5) MOFs could be used to catalyze the lignocellulosic biomass to value-added
products. When MOFs were used as enzyme supports, their catalytic activities were rarely
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discussed. The synergistic effects of enzymes and MOFs need further research to fully uti-
lize the potential of nanomaterials in the bioconversion of lignocellulosic biomass. Overall,
conversion of lignocellulosic biomass by MOF-immobilized enzyme will be a hot topic
in future.
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