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Abstract: In the pursuit of enhancing food packaging, nanotechnology, particularly green silver
nanoparticles (G-AgNPs), have gained prominence for its remarkable antimicrobial properties with
high potential for food shelf-life extension. Our study aims to develop corn starch-based coating
materials reinforced with G-AgNPs. The mechanical properties were examined using a uniaxial
tensile tester, revealing that starch coated with the highest G-AgNPs concentration (12.75 ppm)
exhibited UTS of 87.6 MPa compared to 48.48 MPa of control paper, a significant (p < 0.02) 65%
increase. The assessment of the WVP showcased a statistical reduction in permeability by up to 8%
with the incorporation of the hydrophobic layer. Furthermore, antibacterial properties were assessed
following ISO 22196:2011, demonstrating a strong and concentration-dependent activity of G-AgNPs
against E. coli. All samples successfully disintegrated in both simulated environments (soil and
seawater), including samples presenting G-AgNPs. In the food trial analysis, the presence of starch
and G-AgNPs significantly reduced weight loss after 6 days, with cherry tomatoes decreasing by
8.59% and green grapes by 6.77% only. The results of this study contribute to the advancement of
environmentally friendly packaging materials, aligning with the UN sustainable development goals
of reducing food waste and promoting sustainability.

Keywords: bionanocomposites; green silver nanoparticles; food packaging; food shelf-life; sustain-
able packaging; starch coating; food waste; biopolymers; green chemistry; colloidal silver

1. Introduction

Food spoilage imposes a considerable economic burden, contributing significantly
to food waste—a leading factor in greenhouse gas emissions, estimated at approximately
10% globally [1]. The UN reported approximately 931 million tonnes of food waste from
households, retail, and the food service industry in 2019, accounting for nearly 40% of
all food intended for human consumption [2]. The UK government has long prioritised
food waste reduction, aiming to slash overall waste by 50% by 2030. This initiative aligns
with mitigating economic losses incurred due to food spoilage [1]. Moreover, in line with
the objectives set forth by the UK Plastic Pact to significantly diminish or eliminate the
usage of key plastic materials, and considering the emphasis on reducing fossil fuel depen-
dency prominently highlighted at COP28, the use of biodegradable materials emerges as a
practical and vital solution [3]. Paper and board offer numerous advantages as packaging
materials. However, the current technologies used to enhance their barrier properties for
food packaging rely on synthetic polymer coatings and lamination with plastic, such as
polyethylene (PE), polypropylene (PP), and aluminium foils [4–7]. These methods not only
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have a negative impact on packaging sustainability, but also result in poor recyclability
and a lack of biodegradability [6,7]. Recently, there has been a growing interest in using
biopolymers as coatings for paper, opening up new possibilities for composite formulations
that can meet the specific requirements of food packaging [8–11]. While the research on
biopolymers to enhance packaging material barrier properties is on the rise, only a limited
number of studies have focused on paper-based materials for food packaging [12]. Polysac-
charides such as starch [13], chitosan [14], or pectin [15] stand out as promising candidates
to replace synthetic polymers in food paper coatings. They can form a film, exhibit excellent
affinity for paper substrates, provide suitable barriers against gases and aromas, and even
enhance mechanical strength [11,16,17]. Moreover, these biopolymers are biodegradable,
nontoxic, and can serve as a matrix for incorporating additives with specialised functions
for coated paper, such as active antimicrobial properties [18,19]. Among them, starch, a ver-
satile biopolymer derived from various plant sources, plays a vital role in food packaging
materials [20,21]. Its outstanding film-forming properties, barrier to moisture and gases,
compatibility with other biodegradable materials, low cost, and wide availability make
it an ideal candidate for creating sustainable packaging solutions [20–22]. Starch-based
materials offer the potential to improve food preservation, reduce waste, and contribute
to eco-friendly packaging alternatives [13,21,22]. However, while polysaccharides are
widely employed due to their diverse applications, they often lack intrinsic antimicrobial
activity, rendering them susceptible to bacterial growth and necessitating the use of addi-
tional active agents [21]. To address these challenges, the integration of nanomaterials has
emerged as a promising solution. Specifically designed nanomaterials not only enhance the
physicochemical and optical properties of the packaging material, but also confer bioactive
functionalities, mitigating the inherent limitations of polysaccharides [11,23–27]. This inno-
vative approach holds great potential for advancing materials with improved antimicrobial
characteristics and expanded versatility. Silver nanoparticles (AgNPs), in particular, have
gained attention for their strong antimicrobial properties [28–31]. These nanoparticles
exhibit a high surface area and unique physicochemical characteristics that enable them
to effectively inhibit the growth of bacteria, fungi, and other harmful microorganisms in
food, such as Escherichia coli (E. Coli), Enterococcus faecalis, and Staphylococcus aureus, when
incorporated into packaging materials ranging from rigid plastics polyethylene (PET) [32],
flexible low-density polyethylene (LDPE) [33], paper-based materials, and biopolymers [34].
This innovative approach not only enhances food safety and quality, but also contributes
to reducing food waste by prolonging the shelf life of perishable items [11]. Thus, the
integration of silver nanoparticles into food packaging represents a promising avenue
for improving food preservation and sustainability. However, while biopolymers and
AgNPs offer the potential for enhancing food packaging, it is essential to acknowledge
the challenges associated with the synthesis and applications of AgNPs. Many traditional
synthetic methods involve the use of toxic reducing and stabilising agents such as sodium
borohydride (NaBH4), raising environmental and health concerns [35,36]. This is where
green synthesis methods become crucial. Green synthesis techniques aim to produce silver
nanoparticles using eco-friendly and sustainable processes, minimising the use of harmful
chemicals, and reducing the environmental impact [36]. In the scope of our study, we
employed a straightforward process to fabricate starch-film coatings, integrating AgNPs
synthesised through eco-friendly methods onto paper-based packaging.

In this study, our goal was to develop corn starch-based coating materials reinforced
with green-synthesised silver nanoparticles (G-AgNPs) to enhance food shelf-life, reduce
pathogenic bacteria growth, and strengthen paper mechanical and water barrier properties
of the developed bionanocomposites. The roughness and morphology of the obtained
coated paper materials was assessed by means of AFM analysis, which allowed the identifi-
cation of G-AgNPs within paper surfaces. The characterisation of the mechanical properties
of the resulting materials included parameters such as elongation at the break (EaB) and
ultimate tensile strength (UTS). The assessment of the water vapour barrier was conducted
in accordance with ASTM E96 standards [37], and improvement in paper hydrophobicity



Polymers 2024, 16, 941 3 of 24

was assessed by means of water contact angle (WCA) analysis. Additionally, we investi-
gated the antimicrobial properties of these papers through contact methods, targeting an
Escherichia coli model strain. Finally, the enhanced food shelf-life of developed materials
was investigated in simulated food trials using green grapes, cherry tomatoes, and mush-
rooms, demonstrating the extended shelf life achieved by incorporating green-synthesised
AgNPs into the packaging materials.

2. Results and Discussion
2.1. Product Characterisation
Silver Nanoparticles Characterisation

The G-AgNPs were characterised using UV–Vis spectroscopy, scanning electron mi-
croscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS).

UV–Vis spectroscopy was used to confirm the formation of AgNPs, and the spectrum is
shown in Figure 1. The characteristic peak of Metalchemy’s G-AgNPs is at ~413 nm, which
corresponds to the surface plasmon resonance (SPR) of AgNPs, observed in other synthesis
processes [17]. The intensity of the peak was directly proportional to the concentration of
G-AgNPs in the solution, where a 20 ppm suspension resulted in an absorbance of 0.85.
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Figure 1. UV–Vis spectroscopy of G-AgNPs at a concentration of 20 ppm.

SEM images showed the morphology and size distribution of the G-AgNPs. Figure 2
shows randomly selected areas at different magnifications. These revealed that the G-
AgNPs were uniformly distributed and spherical in shape with a diameter range of 5 to
~20 nm, with a mean value of 19 nm. The high-resolution SEM images showed that the
surface of the G-AgNPs was smooth and free from any impurities.

EDS analysis was performed to confirm the elemental composition of the G-AgNPs,
and is shown in Figure 3. The EDS spectrum showed a strong peak for silver, indicating
the presence of AgNPs. The other peaks in the spectrum corresponded to aluminium
originating from the holder stub.

The results of the characterisation analysis showed that the synthesised G-AgNPs
were spherical in shape, with an average diameter of the silver core of 19 nm. The UV–
Vis spectrum confirmed the presence of G-AgNPs, while the SEM images revealed their
morphology and size distribution. EDS analysis confirmed the elemental composition of
the G-AgNPs. The results of DLS analysis evidenced the presence of sharply distributed
AgNPs with a mean diameter of 95.8 ± 2.3 nm with a polydispersity index (PI) of 0.3,
confirming the presence of macromolecules coating and surrounding the silver core. The
particle size distribution in function of intensity % is reported in Figure 4. Indeed, DLS
analysis allows the determination of hydrodynamic volume of NPs composed by the
inorganic core and the stabilising agent. G-AgNPs used in this study were produced
with a green plant extract-mediated method of synthesis based where macromolecules
such as polysaccharides and proteins stabilised the formed AgNPs. The presence of a
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coating surrounding metal nanoparticles is fundamental. It ensures high stability due to the
steric hindrance provided by the macromolecules [36]. Additionally, it maximises possible
interactions, such as hydrogen bonds, within the AgNPs and the polymeric materials once
internalised within thermoplastic matrices [31].
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2.2. Paper-Based Packaging Characterisation
2.2.1. Starch-Based Coating FTIR Analysis

Starch-modified samples evidenced the OH, C-H, C-O-C, and C-O functional groups,
respectively. Furthermore, the characteristic C-O-C ring vibration in starch leads to an
absorbance peak at around 700–900 cm−1 not detected in the paper control sample (Figure 5).
The C-O bending associated with the OH group causes an absorbance peak at around
1648 cm−1.
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Moreover, the absorbance peak at 1415 cm−1 observed in the starch-modified samples
confirmed the presence of C-H symmetrical scissoring of the CH2OH moiety [38].

2.2.2. Morphological Properties of Paper-Based Packaging

The roughness of coated papers has been measured by means of AFM analysis. The
presence of AgNPs did not affect the roughness of starch-coated materials with an average
value of 80.2 ± 12.2 nm for StarchPaperG-AgNPs10%, and 77.9 ± 8.6 nm for control with
starch (Figure 6). Starch mainly contributes to the material roughness, while the AgNPs,
due to the comparable size of the roughness, did not contribute to a statistically increased
value. However, AFM allowed the detection of G-AgNPs on the paper surface not detected
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in the control (Figure 6). The revealed diameter of detected AgNPs was 45.2 ± 6.2 nm. The
higher diameter detected by AFM compared to SEM images can be due to the G-AgNPs
interacting with starch, which can act as a further stabilising agent of the AgNPs, resulting
in a larger size.
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2.2.3. Mechanical Properties of Paper-Based Packaging

The assessment of mechanical properties of the developed paper-based coated ma-
terials is integral to determining the material’s fitness for physically safeguarding food
throughout manufacturing, transit, and storage. Two pivotal parameters, elongation at
break (EaB) and ultimate tensile strength (UTS), were measured to gauge the material’s
performance. A higher elasticity, combined with robust tensile strength, is indicative of
superior material quality [39,40]. Table 1 provides an overview of the mechanical properties
of coated papers. Surprisingly, the introduction of G-AgNPs into the paper coating revealed
a significant enhancement in the EaB% of the resulting material (Table 1). This finding
appears contrary to the existing literature, where the presence of metal nanoparticles, par-
ticularly silver, is commonly associated with a typical reduction in elongation at break by
2–3% [41]. This result could be ascribable to the complex interaction between the stabilising
agents and the polymeric matrix of starch coating, such as charge-charge and hydrogen
bonds, which can affect the mechanical properties of the material. Compared to the re-
ported literature, which commonly use synthetic-polymer based capping agent, G-AgNPs
are stabilised by a large natural polymeric coating, which can maximise the interaction with
starch chains resulting in a significant increase (p < 0.05) of EaB values compared to the con-
trol. Indeed, the EaB% increased from 5.05% ± 1.85% in the control paper to 8.34% ± 1.66%
in the sample with the highest silver concentration (StarchPaperG-AgNPs30%).

The UTS results exhibited a fluctuating up-and-down pattern with increasing concen-
trations of AgNPs (Table 2). Interestingly, the most noteworthy increase was observed in the
StarchPaperControl (absence of AgNPs) with a value of 110.54 ± 18.01 MPa, confirming the
contribution of starch integration in the paper improving its mechanical properties [42,43].
This phenomenon exhibited inconsistency upon the introduction of AgNPs, suggesting a
complex interplay that could hinder the strengthening process.

Indeed, varying concentrations of AgNPs did not yield a linear change in UTS results,
as reported in Table 2. Nevertheless, the sample with 30%AgNPs concentration presented
a 1.81-times increase in tensile strength compared to the control base paper packaging. Fur-
ther investigation is required to elucidate the intricate dynamics between polysaccharides
and AgNPs and their collective impact on UTS in paper-based materials. The positive
mechanical property enhancements observed in our study suggest that the incorporation
of starch/G-AgNPs into paper coatings has the potential to elevate packaging mechanical
performance. These improvements could lead to more resilient and durable packaging
materials, addressing critical challenges in food preservation. In food packaging, flexibil-
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ity is a fundamental parameter to avoid bioplastic tears or breaks during handling and
transportation, critical factors in ensuring the safety, freshness, and quality of the packaged
food products.

Table 1. Mechanical properties of samples.

Sample EaB% UTS (Mpa) EaB%
Data Literature [44,45]

PaperControl 5.05 ± 1.85 48.48 ± 5.3
StarchPaper 3.19 ± 0.61 110.54 ± 18.01 7.6 ± 2.5 *

StarchPaperG-AgNPs5% 6.97 ± 2.30 68.38 ± 35.68

6.8 ± 2.0/10.2 ± 2.5 **
StarchPaperG-AgNPs10% 7.14 ± 1.35 45.25 ± 8.17
StarchPaperG-AgNPs20% 7.62 ± 2.46 67.01 ± 26.33
StarchPaperG-AgNPs30% 8.34 ± 1.66 87.63 ± 24.23

* Data reported in the literature for starch surface functionalised materials; ** data reported in the literature for
starch-AgNPs surface functionalised materials; results obtained with a minimum of 10 repetitions per sample
(p value < 0.05).

2.2.4. Water Vapour Permeability (WVP) and Water Vapour Transmission Rate (WVTR)

WVP is a main packaging property that indicates resistance capability to water vapour
transmission of packaging materials. A low WVP is required to minimise moisture transfer
from the surrounding environment to the packaged product, particularly under humid
conditions. The addition of starch as a coating onto the paper decreased (p < 0.05) the
WVP by 2.3% (Table 3). Examining the effects of varying concentrations of AgNPs, samples
with lower AgNP concentrations, such as StarchPaperG-AgNPs5%, StarchPaperG-AgNPs10%,
and StarchPaperG-AgNPs20%, displayed slight deviations in WVP from the sole starch-
coated samples.

For instance, StarchPaperG-AgNPs5% exhibited a WVP of approximately 122.64 g/s·m·Pa,
marginally lower than the sole starch-coated sample (127.92 g/s·m·Pa) (Table 2).

In contrast, the highest tested concentration of AgNPs (StarchPaperG-AgNPs30%)
showcased a considerable decrease (p < 0.05) in WVP, with the WVP dropping notably by
8.6%, indicating a more pronounced impact on moisture permeation compared to the other
AgNP concentrations due to the higher hydrophobicity of the material. This enhancement
in the moisture barrier should provide increased protection against degradation, spoilage,
and potential contamination, ensuring the integrity and safety of the packaged product [21].

The obtained results are aligned with the literature of starch-based coatings, where
the WVP is commonly 1–3 × 10−6 g/s·m·Pa [46,47]. Nevertheless, a further decrease is
required if it is to compete with synthetic flexible packaging materials such as LDPE, with
WVP ranging between 10–11 and 10–12 g/s·m·Pa [46,48].

Table 2. Results of WVTR and WVP of tested paper-based packaging.

Samples WVTR (g/m2/24 h) WVP (×10−6 g/s·m·Pa) WVP (×10−6 g/s·m·Pa)
Data Literature [44,45]

PaperControl 135.3 ± 7.2 2.22 ± 0.12
StarchPaper 127.9 ± 8.2 2.17 ± 0.08 2.60 *

StarchPaperG-AgNPs5% 122.6 ± 6.4 2.12 ± 0.03

2.45 **
StarchPaperG-AgNPs10% 123.8 ± 5.5 2.15 ± 0.05
StarchPaperG-AgNPs20% 128.4 ± 6.8 2.16 ± 0.10
StarchPaperG-AgNPs30% 117.9 ± 4.8 2.03 ± 0.06

* Data reported in the literature for starch surface functionalised materials; ** data reported in the literature for
starch-AgNPs surface functionalised materials; results obtained with a minimum of three repetitions per sample
(p value < 0.02).
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2.2.5. Hydrophobicity

An effective food packaging material must inherently exhibit hydrophobicity to shield
its contents from water. Previous studies underscored the significance of increased hy-
drophobicity in mitigating the rate of oxidation and deterioration, thereby contributing
to a reduction in the loss of food quality and flavour [49]. In this study, starch-coated
paper-based packaging demonstrated significantly higher WCA values than the control; the
latter exhibited a WCA of 82.3◦ ± 5.3◦, while the starch-coated film increased the angle by
10.4% to 86.9◦ ± 2.5◦. With a significant AgNP concentration, the material’s hydrophobicity
statistically increased by 18%, 25%, 25%, and 32% (p < 0.05) (Table 3). This can be attributed
to the presence of AgNPs within the layer, and is in line with observations by Roy and Rhim,
who documented improved hydrophobicity in starch/agar/AgNP bionanocomposites [50].

Table 3. Results of WCA for paper samples and drop macroscopical aspect.

Samples WCA Water Drop Aspect

PaperControl 82.3◦ ± 5.3◦
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Table 3. Cont.

Samples WCA Water Drop Aspect
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2.2.6. Thermal Analysis

TGA thermograms of the starch paper nanocomposites are shown in Figure 7, and
the thermal degradation characteristics are given in Table 4. The thermograms show
that the addition of nanoparticles affects the thermal stability of the nanocomposites and
decrease it to the lower temperature. Although Rozilah et al. reported that the addition of
silver nanoparticles to sugar palm starch bionanocomposites resulted in improved thermal
properties due to the heat stability of silver nanoparticles [51], in our study, the observed
results were different, which may be due to the multilayer material and the integration
of silver nanoparticles into the bionanocomposite structure. It should be noted that the
presence of a higher concentration of silver nanoparticles resulted in a higher weight
residue due to the thermal stability of the silver nanoparticles.

Table 4. Results of paper starch materials thermal properties.

Sample T Peak Max (◦C) Weight Residue (%)

PaperControl 338.4 ± 2.1 12.5 ± 0.9
StarchPaper 339.6 ± 1.6 13.4 ± 1.0

StarchPaperG-AgNPs10% 300.2 ± 1.1 15.4 ± 0.7
StarchPaperG-AgNPs30% 296.14 ± 1.0 18.0 ± 1.0

The melting temperature of the starch paper nanocomposites was determined from
the DSC heating thermograms, which are shown in Figure 8 and Table 5. The results of DSC
thermograms did not indicate the glass transition temperature (Tg) for the bionanocompos-
ite films.
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Table 5. DSC thermal properties.

Sample Melting Temperature (◦C)

PaperControl 103.4 ± 2.8

StarchPaperG-AgNPs10% 89 ± 1.3

The melting temperatures of nanocomposites are reported in Table 5, and as can be
seen, the melting point of the films was affected by the presence of silver nanoparticles.
The values decreased when the film was developed in the higher concentration of silver
nanoparticles. This behavior might be related to the high thermal conductivity of silver
nanoparticles that leads to enhancement of the thermal conductivity of the films and
reduces the melting temperature. Similar results were reported by Kumar [52].

2.2.7. G-AgNP Migration

Migration tests are used to check the inertia of packaging suitable as food contact
material by analysing the possible leaching of components from the packaging material to
food. These migration tests are carried out using acetic acid as food simulants. Migration
testing quantifies the transfer of molecules from food contact materials into food. Quantify-
ing this parameter is mandatory for regulatory approval of active packaging [44,53]. The
European Food Safety Authority (EFSA) has defined a maximum limit of Ag+ migration
from active packaging permissible in food to be 0.05 mg/kg in food and 0.05 mg/L in
water [11]. The migration of Ag+ ions of the sample with the highest silver concentration
was assessed. The ICP-MS analysis of the G-AgNP migration from StarchPaperG-AgNPs30%
paper-based packaging showed that the tested leachates had almost undetectable levels of
Ag+ (<0.006 mg/kg). Overall, the results indicate that silver migration was well below the
maximum threshold set by the EFSA. Hence, the developed novel material meets the safety
migration levels set by EFSA for food packaging materials.

2.3. Paper-Based Packaging Antimicrobial Activities

The results of antimicrobial activity in terms of the zone of inhibition are reported in
Table 6. The presence of G-AgNPs increased the inhibition area, with the most pronounced
and statistically significant (p < 0.002) effect observed at a 30% concentration of G-AgNPs
(0.207 cm) after 48 h. Notably, the lowest G-AgNPs concentration (StarchPaperG-AgNPs5%)
exhibited antimicrobial activity after only 48 h.

Table 6. Results of inhibition zones of functionalised papers with different AgNPs concentration.

Sample Zone of Inhibition after 24 h (cm) Zone of Inhibition after 48 h (cm) Picture after 24 h

StarchPaper No inhibition No inhibition
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Table 6. Cont.

Sample Zone of Inhibition after 24 h (cm) Zone of Inhibition after 48 h (cm) Picture after 24 h

StarchPaperG-AgNPs20% 0.141 ± 0.018 0.152 ± 0.022
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The obtained results align with the existing literature, where the incorporation of
AgNPs in composite films in concentrations ranging from 5 to 50 ppm consistently demon-
strates an inhibition zone of approximately 0.15–0.2 cm against E. coli [54,55].

2.4. Bio-Disintegration of Starch Coated Papers

Bio-disintegration and degradation of the starch paper materials with different concen-
trations of AgNPs were studied in soil and simulated seawater over a period of 60 days us-
ing low density polyethylene (LDPE) films as nonbiodegradable and non-bio-disintegrable
reference materials.

2.4.1. Soil Bio-Disintegration

The results of soil bio-disintegration weight loss and pictures are reported in Table 7.
The results obtained of the starch paper materials weight losses during the degradation
period show that more than 15% of the paper was degraded after 7 days, regardless of
the G-AgNP concentrations. From the visual images of the papers, the degradation and
disintegration process of the papers started after 7 days, and after 30 days they lost their
initial visual integrity and were pulverized and impossible to weigh (Table 7). This result
confirmed that the presence of starch, as well as G-AgNPs even at highest concentrations,
did not affect the bio-disintegration process in soil of the coated materials.

Table 7. Pictures of the functionalised papers at different time points of soil bio-disintegration.

Sample 7 Days 30 Days 60 Days
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2.4.2. Simulated Seawater Bio-Disintegration

Paper materials, besides their inherent biodegradability and safety, can persist in water
for long periods [18,19]. Contrary to soil degradation, in seawater, paper coated materials
demonstrated slower degradation compared to the pristine paper without starch; however,
no differences were observed in the presence or absence of G-AgNPs (Figure 9). After
60 days, the uncoated paper showed a reduction of the starting weight of 30%, while for
starch coated papers (in presence and/or absence of G-AgNPs), a statistical reduction
(p < 0.05) of 15% circa was observed. This behavior could be the result of the higher
hydrophobicity showed by starch-coated materials demonstrated in the present study,
making the paper cellulose less accessible to seawater microorganisms.
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2.5. Food Trials

Among the obtained samples, StarchPaperG-AgNPs10% was selected for further char-
acterisation. This selection was made based on its robust antimicrobial activity and the
concurrent enhancement of barrier properties achieved with a low concentration of silver.
While higher concentrations exhibited slightly greater antimicrobial activity, the marginal
increase was not deemed sufficient to justify their use, especially considering the doubled
or tripled amounts of silver involved, which would cause an increase in cost. This choice
positioned it as a promising candidate for food trial experiments. Three different foods,
namely, cherry tomatoes, green grapes, and mushrooms, were used as a case study to assess
the reduction of weight loss and food discoloration by means of a hue test.
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2.5.1. Weight Loss

Weight loss is a parameter used for measuring the rate of food spoilage [56]. In an
open system, the degradation of food is influenced not only by internal chemical processes,
but also by interactions with the external environment. Barrier permeability of food
packaging materials plays a crucial role in regulating the exchange of gases, particularly
oxygen and water vapour, between the food product and the surrounding atmosphere [57].
When packaging materials exhibit higher permeability to water vapour, moisture from
the food can readily escape into the environment. Likewise, if the packaging allows
oxygen to penetrate, oxidative reactions can occur within the food matrix, leading to the
breakdown of complex molecules [56]. Both of these processes contribute to the release
of smaller molecules, such as amino acids, glucose, and fatty acids, into the surrounding
environment, resulting in the observed weight loss of the food product. The weight loss data
allow for effective safety and quality assessments of food shelf-life for a variety of storage
conditions and packaging materials [52]. The results presented in Figure 10 of the most
promising sample (StarchPaperG-AgNPs10%) highlight the efficacy of the developed paper-
based packaging in reducing the rate of weight loss for cherry tomatoes and green grapes,
commencing from day 1. A statistically significant reduction in weight was observed,
amounting to 8.59% (p < 0.05) for cherry tomatoes and 6.77% (p < 0.05) for green grapes
at day 6, compared to the control. Conversely, no improvement of mushroom weight loss
was observed after 6 days.
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2.5.2. Hue Test

The hue test, as a colour attribute, provides valuable information about the perceptual
quality and freshness of food items. It is a measure of the dominant wavelength in the
colour spectrum and is closely associated with the overall colour appearance. Therefore,
changes in hue can be indicative of alterations in the visual appeal and freshness of the food.

StarchPaperG-AgNPs10%-coated cherry tomatoes and green grapes demonstrated sta-
tistically (p < 0.05) higher hue values compared to the control, suggesting a potential better
preservation of colour intensity throughout the storage period (Figure 11). The results of
colour analysis have been reported as hue angle, and can be observed in Figure 12. The
results revealed that all samples displayed a progression towards browning from day 0 to
day 6, resulting in a decrease of hue value due to the colour variation. This phenomenon
can be used in open packaging; it is plausible that no significant differences were recorded
or attributed to the enzymatic action of polyphenol oxidase (PPO), which reacts with
oxygen to produce melanins, leading to brown discoloration in fruits and vegetables [45].
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3. Discussion

The incorporation of G-AgNPs led to improvements in all paper characteristics that
could not be achieved through the use of starch alone. Additionally, the AFM analysis
demonstrated that the inclusion of G-AgNPs did not impact the roughness of starch-
coated materials; the average roughness values were 80.2 ± 12.2 nm for StarchPaperG-
AgNPs10% and 77.9 ± 8.6 nm for the control with starch. The mechanical properties
of the materials showed improvement, with up to a ×1.65 increase in EaB% observed
with higher AgNP concentration. This trend was also evident in the water contact angle
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(WCA) and water vapour permeability (WVP) analyses, where the increase in AgNP
concentration led to a higher hydrophobic behaviour of the materials. While the starch
coating displayed a modest yet noteworthy decrease in WVP, indicating a promising
approach to enhance the paper’s moisture resistance, the presence of G-AgNPs on WVP
resulted in a significant increase of WVP and WVTR values to 117.9 (g/m2/24 h) and
2.03 × 10−6 (g/s·m·Pa), respectively, for the sample with highest concentration of G-AgNPs.
This can be the result of AgNP interactions with the starch polymeric matrix and with
paper cellulose. Indeed, AgNPs present a high affinity with macromolecules such as
polysaccharides due to the large number of charged chemical groups within polymer
repeating units; these interactions, such as hydrogen bonds and charges, can strongly
affect the AgNP interactions with water molecules [36]. Moreover, the highest WCA value
(110.0◦ ± 3.5◦) was obtained using 30% AgNPs, which is comparable to highly hydrophobic
systems such as polydimethylsiloxane (PDMS) and polyethylene, which commonly exhibit
WCAs above 110◦. The observed increase in WVP and WCA, indicating heightened
surface hydrophobicity, can be primarily ascribed to the inherently hydrophilic nature
of the nanoparticles. Additionally, this phenomenon can be attributed to the formation
of intermolecular hydrogen bonds between the active surface functional groups of the
nanoparticles and the polymer matrices, contributing to a reduction in hydrophilic groups
on the film surface [50].

The migration test conducted on the sample with the highest AgNP concentration
demonstrated the safety applications of the developed formulations, with migration levels
below 0.0006 mg/kg of food. This is 1.67-times lower than the 50 µg/kg level prescribed
by EU and UK regulations. Silver, albeit in trace amounts, is naturally present in everyday
foods, with adults consuming an estimated 20–80 µg per day. Concern arises over the po-
tential migration of silver from packaging into food, which could elevate dietary exposure.
Accurate quantification of silver migration becomes imperative in this context. To address
this, regulatory bodies such as the European Food Safety Authority (EFSA) and the United
States Food and Drug Administration (USFDA) have established guidelines governing the
use of silver nanoparticles (AgNPs) in active packaging materials. The EFSA stipulates that
AgNPs should not surpass 0.05 mg/L in water and 0.05 mg/kg in food [12]. Analysing
the migration profile of silver is crucial for ensuring the maintenance of its antibacterial
efficacy while adhering to prevailing regulations.

Notwithstanding the low migration, G-AgNP starch-coated papers exhibited strong an-
timicrobial properties compared to using only starch, indicating a concentration-dependent
activity of G-AgNPs. The mechanism of action of AgNPs against pathogenic bacteria
has not yet been well elucidated, since it is a process which occurs by means of several
complex pathways.

Bio-disintegration studies confirmed that the presence of G-AgNPs did not affect
the degradation profile in both simulated environments, demonstrating identical bio-
disintegration of starch paper materials. In simulated seawater, starch-coated materials
demonstrated a slower bio-disintegration compared to pristine paper. This behaviour could
be the result of higher hydrophobicity showed by starch-coated materials demonstrated in
the present study, making the paper cellulose less accessible to seawater microorganisms.

The preliminary food trials on packaged mushrooms, cherry tomatoes, and green
grapes confirmed improvements in reduced weight loss, appearance, and retention. The
presence of G-AgNPs resulted in a statistically significant decrease in food weight loss
after 6 days, with reductions of 8.59% for cherry tomatoes and 6.77% for green grapes.
Conversely, no improvement of mushrooms weight loss was observed after 6 days. This
could be attributed to the fact that the mushrooms were halved before being packaged.
This could have impacted the respiration, breakdown, and oxidation rates of mushrooms
within the open packaging, potentially diverging from the observed behaviour in the other
fruits under examination [45,57,58]. Considering the above, further investigations are
warranted to elucidate the effects of the cutting process on the shelf-life of mushrooms.
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The improvement in food appearance was further confirmed by the hue test, with slower
colour variation to brown for both samples.

4. Materials and Methods
4.1. Materials

Corn starch was purchased from Sigma-Aldrich (Manchester, UK). The paper-based
packaging was obtained from APEX CE Specialists Ltd. (Manchester, UK). The G-AgNPs
(green synthetised AgNPs aqueous suspension) were produced in-house at Metalchemy’s
laboratory (London, UK). HPLC-grade water, tryptone, yeast extract, sodium chloride, and
agar were purchased from Sigma-Aldrich (UK). Soil was purchased from Westland, UK.

4.2. AgNPs Characterisation
4.2.1. AgNPs UV–Vis Analysis

To analyse the G-AgNP solution and measure the amount and dispersion of nanopar-
ticles, a Shimadzu UV-1900i spectrophotometer (Tokyo, Japan) was used to record UV–Vis
spectra, scanning the absorption spectra in the 300–700 nm wavelength range.

4.2.2. Scanning Electron Microscopy (SEM) with Energy Dispersive Spectrometry (EDS)

The AgNP morphology was assessed by means of an SEM instrument (Zeiss EVO HD
with eBruker EBSD, Jena, Germany) operated with an accelerating voltage of 10 kV and
working distance (WD) of 8.3 ± 1 mm. The 14 mm circular modified samples were fixed
on conductive carbon tapes and coated with 95% gold and 5% palladium using a Polaron
E5000 Sputter Coater (Quorum Technologies, Laughton, UK). Images of the samples at
magnifications of 100k, 30k, and 5k× were taken to visualise the samples. The AgNP
average size was calculated using ImageJ software (https://imagej.net/ij/download.html,
23 March 2024). At least 50 nanoparticles were selected from different acquired images.

4.2.3. Particles Size Distribution

The size of AgNPs and their polydispersity index (PDI) were determined using dy-
namic light scattering (DLS) with a Zetasizer Nano-ZS (Malvern Instruments, Manchester,
UK; model: ZEN3600, serial number: MAL1000973) and disposable cuvettes (Fisherbrand,
Loughborough, UK; FB55147). Prior to measurement, each sample was filtered by means of
a 0.22 µm PTFE filter. After filtration, these samples were measured without dilution and
with 10-fold dilution using ultrapure HPLC-grade water (Sigma Aldrich, Gillingham, UK;
CAS No: 7732-18-5; PCode: 102604938; Source: BCCK3219). Each sample was measured
three times at 25 ◦C, and the mean ± standard deviation values were calculated.

4.3. Preparation of Starch/Green Silver Nanoparticles (G-AgNPs) Paper-Based Packaging
4.3.1. Starch/G-AgNPs, Nanocomposite

To prepare the Starch/G-AgNPs composite coating, 8 g of starch was dissolved in
100 mL of deionized water at 90 ◦C while subject to vigorous mechanical stirring for 30 min.
To prepare starch-AgNPs nanocomposites, different concentrations of G-AgNPs were then
added to the starch solution, as detailed in Table 8.

Table 8. Starch G-AgNP solutions composition tested.

Sample G-AgNPs Added
Volume (mL)

G-AgNPs Solution
Concentration (ppm)

G-AgNPs/Starch
wt/wt (%)

StarchPaperControl 0 / /
StarchPaperG-AgNPs5% 2.5 2.12 0.005
StarchPaperG-AgNPs10% 5 4.25 0.011
StarchPaperG-AgNPs20% 10 8.5 0.021
StarchPaperG-AgNPs30% 15 12.75 0.032

https://imagej.net/ij/download.html
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4.3.2. Starch/G-AgNPs Deposition on Paper-Based Packaging

The Starch/G-AgNPs solution at 65 ± 3 ◦C was deposited on the paper-based packag-
ing using a syringe with a ratio of 1 mL: 76 cm2. The bar coating method was applied for
the coating, where a metal bar is used to spread the deposited bionanocomposite uniformly
over the packaging. The coated samples were left to air dry at room temperature (25 ◦C).

4.4. Paper-Based Packaging Characterisation
4.4.1. Morphological Characterisation—Atomic Force Microscopy

The surface topography of the StarchPaperG-AgNPs10% and Starch Paper Control
with only starch coating was evaluated using an atomic force microscope (NaioAFM
NanoSurf, UK). For each sample, the scans were carried out on an area of 48 × 48 µm at
128 (lines) × 128 (dots) resolution. The roughness parameter (Rq, root mean square) was
calculated with the data of the topographic micrographs, using the equipment’s software.
To obtain more accurate values to determine the presence of AgNPs within coated papers,
scans were carried out on an area of 1.5 × 1.5 µm at 256 (lines) × 256 (dots) resolution.
AgNP size was determined using the equipment’s software. At least 10 nanoparticles were
selected from different acquired images.

4.4.2. Mechanical Testing

A universal testing machine from AML Instruments (Lincolnshire, United Kingdom)
was used to determine both the ultimate tensile strength (UTS) (N/mm2) and elongation at
break (EaB) (%) of the paper-based packaging and Starch/G-AgNPs paper-based packaging
samples. The samples were cut into dog-bone shapes that were 5 mm wide and 38 mm
long with an American Society for Testing and Materials (ASTM) D412 knife mould rubber
knife [59]. Each test sample was placed into the grips of the testing apparatus, which
were set 30 mm apart, and tested to failure at a speed of 30 mm/min. Prior to testing,
the thickness of each sample was measured using a digital vernier calliper (±0.001 mm).
Stress/strain curves were generated for each material using the collected data. Results
were obtained with a minimum of 10 repetitions per sample. The stress (N/mm2) for each
material was calculated using the data from these curves, which was then exported into a
Microsoft Excel, Version 2109 (Build 14430.20270) spreadsheet.

The UTS was calculated using Equation (1):

UTS =
FMAX
A0

(1)

where UTS = ultimate tensile strength, FMAX = maximum force (N), and A0 = cross-section
area (mm2).

EaB was calculated using Equation (2):

EaB =
∆L
L

∗ 100 (2)

where EaB = elongation at break, L = initial length (mm), ∆L = change in final length and
initial length (mm).

4.4.3. Water Vapour Permeability (WVP)

In accordance with ASTM E96, a gravimetric modified cup method was used to assess
the water vapour permeability (WVP) [60]. Plastic test tubes (50 mL) were filled with
distilled water to a level 3⁄4 (35–40 mL) with a distance of circa 2 cm from the paper samples
that were applied to the vials by means of film layer. For each vial, the initial weight
was calculated using a weighing balance. The vials were then placed in the controlled
chamber, which also contained a beaker of water. Then, vials were weighed every day for
two weeks. A linear regression analysis of time vs. volume change (R2 > 0.99) was used
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to determine the slope of each line. Equations (3) and (4) were used to calculate the water
vapour transmission rate (WVTR) and WVP, respectively.

WVTR =
Slope

Asample
(3)

WVP =
G

t ∗ A
(4)

where G is the weight change in grams; t is the duration of the test in hours; A is the test
area in m2.

During all WVP measurements, air surrounding the membranes had a constant tem-
perature of 24 ◦C and relative humidity of 70%. Results were obtained with a minimum of
3 repetitions per sample.

4.4.4. Antimicrobial Activity

The disk diffusion method (ISO 22196:2011 [61]) was used to determine the antimicro-
bial activity of starch paper nanocomposites against E. coli strain (ATCC 2592). A volume
of 0.4 mL of 108 cells/mL E. coli grown for 24 h in 20 mL of Luria broth (LB) (tryptone 10 g,
yeast extract 5 g, NaCl 10 g, 1 L deionised water) nutrient agar was dropped onto LB nutri-
ent agar media (tryptone 10 g, yeast extract 5 g, NaCl 10 g, 15 g agar, 1 L deionised water),
and then spread on the entire surface of the plate using a sterile spatula. Subsequently,
sterile squares were carefully applied onto the surface of the nutrient agar plate using
sterile swabs. Afterwards the plates were incubated in a Sciquip Incubator S-Series SQ-4615
at 37 ◦C. The inhibition zones around the discs where no growth occurred were measured
in millimetres, by recording the pictures after 24 and 48 h with a camera and conducting
data analysis with ImageJ software. Experiments were conducted in triplicate for each
sample. At regular intervals, pictures of each Petri dish were taken, and the inhibition zone
was tracked using ImageJ software.

4.4.5. Hydrophobicity

To compare the hydrophobicity of the G-AgNPs/Starch paper-based packaging sur-
faces, the water contact angle (WCA) of each sample was determined. A 10 µL drop of
DI water was added onto the sample surfaces. Images were recorded at a 90◦ perspective.
Contact angles were measured using ImageJ software and the results were presented as
an average of left and right contact angles. Results were obtained with a minimum of
10 repetitions per sample.

4.4.6. Migration of G-AgNPs

The G-AgNP migration from coated paper was assessed in accordance with the
requirements of Article 11 of Regulation (EC) No 882/2004. The sample coated with
the highest AgNPs concentration (StarchPaperG-AgNPs30% sample) was selected for the
analysis as a case study. Briefly, the StarchPaperG-AgNPs30% sample paper was submerged
in 3% acetic acid solution in a ratio of 0.02 dm2/mL. Analysis was performed in triplicates.
Samples were stored at 60 ◦C for 10 days. Inductively coupled plasma mass spectrometry
(ICP-MS) was used to analyse the concentration of migrated silver (µg/kg).

4.4.7. Thermal Analysis

Thermogravimetric analyses of starch paper nanocomposites were carried out with a
TGA 178 Q50 (TA Instrument, New Castle, DE, USA). Around 2 mg of each sample was
placed in an aluminium pan and heated from 20 ◦C up to 550 ◦C at a rate of 10 ◦C/min,
under nitrogen at 40 mL/min flow rate.

Differential scanning calorimetry (DSC) analyses were performed using a DSC Q2000
Differential Scanning Calorimeter (TA Instruments) in a nitrogen gas atmosphere. Samples
weighing approximately 4 mg were used for DSC measurements, and were placed in a
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standard aluminium pan and the maximum ramp temperature was set at 170 ◦C starting
from 10 ◦C, at a rate of 10 ◦C /min with isothermal for 5 min. After an isothermal phase,
the samples were cooled down to −10 ◦C at a rate of 10 ◦C/min. After that, a second
heating ramp up to 170 ◦C from 10 ◦C at a rate of 10 ◦C/min was recorded.

4.4.8. Fourier Transform Infrared Spectrometer (FTIR)

The infrared spectrum of all samples was determined using an attenuated total re-
flectance Fourier transform infrared spectrometer (ATR-FTIR) (Spectra Science Ltd., Che-
sham, Bucks, UK) equipped with a ZnSe attenuated total reflectance (ATR) crystal accessory
at room temperature. The spectra of the starch paper nanocomposites were acquired in the
range of 4000–650 cm−1 with a resolution of 4 cm−1 and 32 scans per sample.

4.5. Bio-Disintegration

Bio-disintegration of the developed materials in the soil was evaluated by bury-
ing the paper pieces (1 cm × 1 cm) under soil. The soil was poured into plastic trays
(5 cm × 5 cm × 5 cm) up to a height of circa 3 cm. The buried papers were kept at room
temperature (25 ◦C) for 60 days, and 1 mL of deionised water was sprayed on the top of
the soil every 7 days. From the beginning of the experiment, the weight of the papers was
recorded at different times (0, 7, 30, and 60 days). The percentage of paper bio-disintegration
was calculated as the percentage of paper weight loss compared to initial paper weight. The
experiment in simulated seawater was performed in a similar way, soaking paper pieces
(1 cm × 1 cm) in 40 mL of seawater in 50 mL plastic tubes. Before weight, samples were
washed by soaking the pieces in 100 mL of deionized water for 10 s to remove the salts.

4.6. Food Trials
4.6.1. Packaging Food Samples

Whole green grapes, cherry tomatoes, and halved mushrooms from a local market
in London, UK, were packaged in Starch/G-AgNP paper-based packaging and control
paper-based packaging for a total of 18 samples. The bags packaged one sample (green
grape/cherry tomato/half mushroom) individually and were created with three sides
sealed and one side open. The samples were stored at 25 ◦C and 66% humidity for a
duration of 6 days.

4.6.2. Weight Loss

The food sample’s weight was recorded each day of the trial’s duration, using a
microbalance (Kern ADB 200 1 ± 0.0001 g). Each sample was measured in triplicate, and
then mean values were calculated for analysis for a total of 18 samples.

4.6.3. Colour Measurement—Hue Test

The purity or intensity of the colour (Hue) per sample was recorded with a camera and
the picture analysed with MatLab software (https://uk.mathworks.com/support/dws.html,
14 March 24); the colour intensity was calculated using Equation (5).

Hue = (a2 + b2)0.5 (5)

4.7. Statistical Analysis

Statistical differences were analysed using a one-way analysis of variance (ANOVA),
and a Tukey test was used for post hoc analysis. A p-value < 0.005 was considered statisti-
cally significant.

5. Conclusions

In conclusion, the integration of G-AgNPs represents a novel and cost-effective strategy
for the development of advanced materials for food packaging, opening the door to the
green manufacturing of materials with unique properties, further optimised through the

https://uk.mathworks.com/support/dws.html
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use of novel nanomaterials. Specifically, the use of G-AgNPs synthesised through a green
and sustainable method has enabled the advancement of paper-based materials for food
packaging without the need for harsh methodologies, relying instead on environmentally
friendly processes. This integration has led to an enhancement of various paper features,
contributing antimicrobial activities that are not achievable through the use of only starch.
Future studies should focus on the investigation of various classes of foods nutritional
analysis, as well as assessing the environmental (LCA) and techno-economic impact of the
novel bionanocomposite packaging material compared to conventional food packaging,
such as polyethylene coated paper-based packaging. The aim of future studies will be
to evaluate the reduction of food waste and improvements in the shelf-life of different
food categories, including meat and fish, aligning future studies with UN sustainable
development goals. The results of this study suggest promising applications across a
wide range of paper-based materials commonly used in food packaging, particularly in
precooked foods, where cardboard-based packaging is prevalent. Moreover, we believe
that our research can contribute to achieving United Nations Sustainable Development
Goal (SDGs) 2 (end hunger, achieve food security and improved nutrition, and promote
sustainable agriculture). Indeed, reducing food waste is a fundamental concern, with
much of it attributed to food spoiling, which our technology aims to address. Many foods,
particularly fresh fruits and vegetables, require the use of preservatives, some of which can
be harmful to health. The antimicrobial activity of our packaging material could help limit
the need for such preservatives. Further research is needed to fully explore the potential of
starch coatings on various biodegradable materials commonly employed in food packaging,
thereby expanding the application possibilities of this innovation.
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Nomenclature

Abbreviation Full Description

G-AgNPs
Green Silver Nanoparticles obtained through Metalchemy’s green synthesis
(environmentally friendly and nontoxic manufacturing method)

AgNPs Silver Nanoparticles
SEM Scanning Electron Microscope
EDS Energy Dispersive Spectrometry
UTS Ultimate Tensile Strength
EaB Elongation at Break
WCA Water Contact Angle
ICP-MS Inductively Coupled Plasma Mass Spectrometry
SPR Surface Plasmon Resonance
EFSA European Food Safety Authority
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