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Abstract: This study aims to enhance value addition to agricultural byproducts to produce composites
by the solution casting technique. It is well known that PLA is moisture-sensitive and deforms at high
temperatures, which limits its use in some applications. When blending with plant-based fibers, the
weak point is the poor filler–matrix interface. For this reason, surface modification was carried out on
hemp and flax fibers via acetylation and alkaline treatments. The fibers were milled to obtain two particle
sizes of <75 µm and 149–210 µm and were blended with poly (lactic) acid at different loadings (0, 2.5%,
5%, 10%, 20%, and 30%) to form a composite film The films were characterized for their spectroscopy,
physical, and mechanical properties. All the film specimens showed C–O/O–H groups and the π–π
interaction in untreated flax fillers showed lignin phenolic rings in the films. It was noticed that the
maximum degradation temperature occurred at 362.5 ◦C. The highest WVPs for untreated, alkali-treated,
and acetylation-treated composites were 20 × 10−7 g·m/m2 Pa·s (PLA/hemp30), 7.0 × 10−7 g·m/m2 Pa·s
(PLA/hemp30), and 22 × 10−7 g·m/m2 Pa·s (PLA/hemp30), respectively. Increasing the filler content
caused an increase in the color difference of the composite film compared with that of the neat PLA.
Alkali-treated PLA/flax composites showed significant improvement in their tensile strength, elongation
at break, and Young’s modulus at a 2.5 or 5% filler loading. An increase in the filler loadings caused a
significant increase in the moisture absorbed, whereas the water contact angle decreased with an increasing
filler concentration. Flax- and hemp-induced PLA-based composite films with 5 wt.% loadings showed
a more stable compromise in all the examined properties and are expected to provide unique industrial
applications with satisfactory performance.

Keywords: acetylation; composite; flax fiber; hemp fiber; poly (lactic) acid

1. Introduction

In the category of complex materials, bioplastics represent diverse biomaterials, with
the bulk of their components developed from repeating monomer units of biomass such
as cellulose, starch, vegetable oils, and vegetable fats. Currently, polycaprolactone (PCL),
polybutylene succinate (PBS), polyhydroxyalkanoates (PHA), polylactic acid (PLA), and
polyhydroxy butyrate (PHB) are commonly reported biodegradable bioplastics whose
popularity has drawn significant attention in recent years [1]. According to Asim et al. [2],
the characteristics of bioplastics, such as degradability, are a function of the degree of
crystallinity, environmental factors, production process, and filler properties in blends
and composites. This imparts unique features and peculiar advantages to each bioplas-
tic and its applicability. As precursors for bioplastics, starch and cellulose are widely
used, benefiting from their affordability and biodegradability [3,4]. Notwithstanding, their
poor mechanical properties in their natural state have been reported as major drawbacks.
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Another source, namely poly (lactic) acid, has promising properties and stands out as a
versatile and multipurpose choice for packaging applications due to its biodegradabil-
ity, renewability, non-toxicity, excellent insulating properties, and wider applicability [5].
Despite the remarkable advantages of PLA, utilizing it as a bioplastic is highly induced
with numerous drawbacks. For instance, PLA is moisture-sensitive and deforms at high
temperatures, which restricts its applicability to specific processes. To sidestep its limi-
tations, plant-based fibers (e.g., sisal, flax, hemp, coir, jute, etc.) are incorporated with
PLA and tailored towards the development of bioplastics [6]. However, the application of
natural fibers to biodegradable plastics requires a significant understanding of the inherent
characteristics (e.g., fiber length, fiber orientation, type of treatment, etc.) of the fibers.
Typically, fiber orientation is assigned the isotropic and mechanical properties of fibers,
whereas fiber treatments (e.g., ultrasonic, chemical) can increase fiber–matrix adhesion and
reduce moisture absorption.

Hemp (Cannabis sativa subspecies L.) has been produced for millennia and used in
several food and non-food applications [7]. Essential oils and other vital biproducts could
be recovered from hemp plants according to the literature [8,9]. Unfortunately, hemp stalks
and roots are created as waste and typically end up in landfills. Thankfully, researchers
have taken a keen interest in initiating ways of converting these green wastes into value-
added products [10–12]. Available reports revealed that the tensile strength (sometimes
>1000 MPa), high aspect ratio (549), low density, and stiffness of extracted hemp fibers
could position them as a promising reinforcing material for biocomposites. Nevertheless,
hemp fibers have non-uniform and non-smooth surfaces, a restricted processing temper-
ature (<230 ◦C), and low resistance to water absorption [13]. Some authors have studied
PLA/hemp composites or hemp with other bioplastics [14], but insight from these studies
still demands intensive research to investigate how developed biocomposites are affected
by factors such as the source of the fiber, extraction procedure, type of treatment, and type
of technology for efficient processing.

Flax (Linum usitatissimum L.) has piqued the interest of users owing to the possibilities
of creating highly valued products from it. Flax fiber has been deployed for composite
development as a result of its mechanical strength, which is hugely ascribed to the signifi-
cant presence of cellulose (64.1–75%), hemi-cellulose (11–20.6%), and lignin (2–30%) [15,16].
Although studies have reported on flax-based biocomposites, scanty reports are available
on flax and poly (lactic) acid as a sustainable route to non-biodegradable plastics. Dog-bone-
shaped PLA/flax was developed using compression molding [17]. The authors observed
decreased mechanical properties as a result of the environmental conditioning (75% and
95% RH) of the PLA/flax composite samples. Slicing parameters such as the layer height, in-
terfilament distance, number of layers, microstructure, and tensile properties of 3D-printed
PLA/flax have also been investigated [18]. By application, Kandola et al. [19] deduced the
importance of PLA/flax as an excellent material as a flame retardant. Generally, improved
mechanical properties have been reported in PLA/flax composites [20]. In a very similar
study, Laziz et al. [21] investigated the surface treatment of PLA/flax fiber. The authors
reported better flexural strength, higher energy, and good surface properties. Generally,
the poor matrix of fibers (e.g., hemp and flax) is a major concern, suggesting the need for
surface modification or treatment that mitigates against poor mechanical strength and other
barriers such as hydrophilicity. A plethora of physical treatment methods, such as auto-
clave treatment [22], corona treatment [23], and plasma treatment [24] have been widely
explored. Also, acid treatment, acetylation, dewaxing, grafting, and co-polymerization
have been utilized as means of chemical treatment to improve the surface properties of
natural fibers [25]. Despite this, alkali treatment has gained traction compared to other
fiber treatment methods even though acetylation also offers promising features in the
compatibility of natural fillers within a polymer matrix [5]. To date, this has attracted few
studies, especially in PLA-based hemp and flax biomass. Additionally, the mechanical
characteristics of bioplastics are reported to be influenced by several parameters, which are
not limited to the type, weight, and size of the fillers used for their fabrication. Practical
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experiments are, however, scanty and those available either utilize other sources of natural
fillers or biodegradable plastics different from PLA. To the best of our knowledge, this is
the first study in which the treatment of the natural fillers (hemp and flax) and the effects
of their weight (concentration) and sizes as processing conditions are investigated in the
development of PLA-based films. We anticipate that this study should contribute to unrav-
eling the mechanical characteristics of the films, thereby contributing to their usefulness in
many applications.

The aim of this study is to develop PLA/alkali-treated/acetylation-treated hemp and
flax composites and characterize them for their mechanical, thermal, color, and moisture
properties. The findings from this work will further promote the importance of hemp
and flax as a biomass for composite materials especially given the limited characterization
studies on PLA/alkali-treated hemp and flax composites.

2. Materials and Methods
2.1. Materials

Poly (lactic) acid (PLA 3D850®) filament was purchased from Natureworks, Plymouth,
MN, USA. Flax and hemp fiber (Katani cultivar) were locally sourced from farmers in
Saskatoon, SK, Canada, and KF hemp, respectively, as seen in Figure 1. Sodium hydroxide
(NaOH), acetic anhydride, sulfuric acid, and chloroform were purchased from Sigma
Aldrich® Oakville, ON, Canada, and were used without any modification.
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Figure 1. (a) Flax and (b) hemp (adapted from [5]). Scalebar: 1 cm.

2.2. Method
2.2.1. Alkali and Acetylation Treatment

For the alkali treatment, ~100 g pre-dried biomass was submerged in a 5% solution of
sodium hydroxide at room temperature for 3 h. Thereafter, the biomass was thoroughly
washed with distilled water until a pH of 7 was attained, thereby eliminating any residual
alkali from its surface. The treated biomass was later dried at 105 ◦C in a thermogravimetric
moisture test oven (Blue M®, Blue Island, IL, USA). For acetylation, ~100 g flax biomass was
immersed in a glass beaker containing enough acetic anhydride to submerge it completely.
To facilitate the reaction, about 5 mL sulfuric acid was added. After 15 min, the biomass
was transferred to a reagent bottle and subjected to autoclaving at 121 ◦C to promote
esterification. Finally, the treated biomass was thoroughly washed to eliminate residual
chemicals until the pH reached 7, and then it was oven-dried at 105 ◦C.
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2.2.2. Milling Process

The pretreated biomass was milled using a knife mill (Retsch GmbH, SM1, Haan,
Germany) automated with speed-controlling device. Thereafter, the resulting biomass
particles were sieved using the Canadian Standard Sieve Series to obtain two different
particle sizes: <75 µm and 149–210 µm. The procedure was such that the biomass was
fed into the sieve with higher mesh opening and shaken to allow smaller particles to pass
through the openings while the larger particles were retained on the sieve. This process
was repeated until the desired particle sizes (<75 µm and 149–210 µm) were obtained.

2.2.3. Preparation of PLA/Filler Films

The films were prepared using the solvent casting method. First, a liquor solution
was prepared by dissolving PLA in chloroform at a 1:12 ratio using a laboratory magnetic
stirrer. Then, biomass was added at varying concentrations (2.5%, 5%, 10%, 20%, and 30%
weight based on PLA) to the liquor solution. The resulting mixture was thoroughly mixed
for 48 h using a magnetic stirrer. The film-forming solution was then poured onto a glass
plate (150 mm × 25 mm) and allowed to dry at room temperature. For comparison, neat
PLA films without any fillers were also cast in a similar manner. The films were designated
as “PLA/Filler nameLoading”.

2.3. Characterization of the Film
2.3.1. Fourier Transform Infrared Spectroscopy

The attenuated total reflectance-FTIR spectrophotometer (Spectrum 3 Tri-Range MIR/
NIR/FIR Spectrometer, PerkinElmer, Shelton, CT, USA) was utilized to examine the FTIR
spectra of the film samples. The analysis was carried out within the wavenumber ranges of
4000–650 cm−1, with a resolution of 4 cm−1.

2.3.2. X-ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy (XPS) measurements were conducted utilizing a
Kratos AXIS Supra system located at the Saskatchewan Structural Sciences Centre (SSSC).
This system, produced by Kratos in Manchester, the UK, is equipped with a 500 mm
Rowland circle monochromated Al K-α (1486.6 eV) X-ray source and features a combined
hemispherical and spherical mirror analyzer (HSA/SMA). Analysis involved employing
a hybrid slot with a 300–700-µ spot size. During the survey scan, binding energies were
gathered within the range of 0 to 1200 eV in 1 eV increments, with a pass energy of 160 eV.
High-resolution scans were carried out at intervals of 0.1 eV. The acquired data underwent
analysis using CASA XPS software version 2.3.26 [26,27].

2.3.3. Thermal Analysis

To evaluate the thermal stability of the film specimens, thermogravimetric analy-
sis (TGA) was conducted using a thermogravimetric analyzer (Perkin-Elmer TGA 8000,
Llantrisant, UK). Approximately 6 mg of the film sample underwent heating in the range
of 50 to 900 ◦C at a heating rate of 20 ◦C/min, with a constant flow of nitrogen gas at
30 cm3/min. The differential thermogravimetric analysis (DTG) was derived by calculating
the derivatives of the TGA data, facilitating the identification of the maximum temperature
of disintegration at each phase of thermal degradation.

2.3.4. Color

The color of the samples was measured with a portable colorimeter (WR10QC-8), which
used the CIE standard illuminant D65 and a pointer from the CIE chromaticity diagram.
Additionally, digital photographs were taken of the samples. The device then recorded the
tristimulus color values of L (lightness), a (redness/greenness), and b (yellowness/blueness)
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at five random points on each film sample. The total color difference (∆E), whiteness index
(WI), and yellowness index (YI) were calculated using Equations (1)–(3), respectively.

∆E =
{
(∆L)2 + (∆a)2 + (∆b)2

} 0.5
(1)

WI = 100 −
{
(100 − L)2 + (a)2 + (b)2

} 0.5
(2)

YI =
(142.86 × b)

L
(3)

2.3.5. Water Contact Angle

A sessile droplet method was used to determine the water contact angle of the films
using a procedure described in [28]. Briefly, a tiny 5 µL droplet of distilled water was made
on the surface of the film. Thereafter, a drop shape analyzer (AM2111, Dino-Light, Hsinchu
City, Taiwan) was employed to capture the picture of the droplet. The contact angle, which
is the angle formed between the baseline of the droplet and the tangent line at the point
where it touches the surface, was then determined.

2.3.6. Moisture Absorption

The moisture absorption was ascertained by comparing the weight of the specimens
before and after conditioning at a humidity level between 50 and 55%. The test specimens
(∅ 20 mm × 20 mm) were dried in a thermogravimetric moisture test oven (Blue M®,
Blue Island, IL, USA) at 105 ± 1 ◦C until a constant weight was achieved. The specimens
were carefully placed in a desiccator containing a saturated magnesium nitrate solution
conditioned to ensure a humidity level of 53–55% at room temperature. Their weight was
recorded at specific intervals until the specimen reached equilibrium. All the measurements
were carried out in triplicates. The moisture absorption was evaluated using Equation (4):

Moisture absorption =
M2 − M1

M1
× 100% (4)

where M1 and M2 are the initial and final mass (g) of the specimens, respectively.

2.3.7. Water Vapor Permeability

To determine the water vapor permeability (WVP) of film specimens, the ASTM E96
standard [29] was used. The film specimens were conditioned for 48 h in a desiccator at
20 ◦C and 53–55% relative humidity. The film samples were affixed to the tops of glass vials
containing dehydrated calcium chloride and the vials were tightly sealed with a screw cap
that had a hole in the center. As a form of control experiment, three vials with an attached
film specimen but without desiccant were used. The vials were kept in a desiccator with a
more humid environment (75% RH). The weight of each vial and affixed film specimen
was measured and recorded with an accuracy of 0.0001 g for 24 h. The weight of each vial
and attached film specimen was recorded with precision, and the weight versus time plot
was analyzed to calculate the WVP. The slope (S), which was estimated from the plot and
the effective film area (A), was used to estimate the water vapor transmission rate (WVTR)
and the water vapor permeability using Equations (5) and (6), respectively.

WVTR =
S
A

(5)

WVP =
WVTR × X

∆P
(6)

where X and ∆P are the film thickness (m) and water vapor partial pressure (Pa), respectively.
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2.3.8. Mechanical Properties

The tensile strength (TS), elongation at break (EB), and Young’s modulus (YM) of the
films were determined using an Instron Universal Testing Machine according to the ASTM
D 882-88 standard [29]. A series of rectangular film strips (100 mm by 10 mm) were neatly
cut. The machine was set in motion with an initial grip separation of 50 mm, moving with
a steady crosshead speed of 75 mm/min utilizing a 1 kN load cell. The Young’s modulus
(YM) was obtained from the slope of the initial portion of the stress–strain curve that was
generated during the tensile test. To ensure accuracy, five replicates were performed for each
film specimen, and TS and EB were calculated using Equations (7), (8), and (9), respectively.

TS =
Fmax

Amin
(7)

EB =
LMax

L0
(8)

YM =
Stress
Strain

(9)

where Fmax represents the maximum force, Amin denotes the minimum cross-sectional
area, Lmax indicates the maximum elongation of the films after the load is applied to the
samples, right up to the breaking point, and L0 is the initial length of the films before the
load application. Stress is defined as the force applied per unit area of a material. Strain is
defined as the change in length (deformation) of a material relative to its original length.

2.4. Statistical Analysis

After performing each test using an independently prepared film as the experimental
unit, the results were then expressed as mean ± standard deviation (SD). To determine
the significance of each mean value, a statistical analysis system was employed to perform
one-way analysis of variance (ANOVA). Duncan’s multiple range test was then used to
ascertain the statistical significance of each mean value, with a significance level of p < 0.05.
Furthermore, to understand the effect of particle size, treatment, and loading of fillers and
their interaction with the properties of the film, a three-way ANOVA was carried out.

3. Results and Discussion
3.1. FTIR

FTIR analysis was used to evaluate changes in the chemical composition of flax and
hemp filler resulting from alkali and acetylation treatment [5]. As shown in Figure 2a–d,
the peak at 1740 cm−1 in both the alkali- and acetylated-treated and untreated fillers is
attributed to the C=O stretching of the acetyl or carboxylic acid groups of hemicellulose.
However, the absence of this stretching after treatment is ascribed to the removal of
hemicellulose. Nevertheless, the presence of the peak at approximately 1740 cm−1 in
treated fillers indicates the potential formation of ester bonds between the acetyl groups
and hydroxyl groups on the fillers. Additionally, the confirmation of ester bond formation is
evident through the appearance of a novel peak at approximately 1229 cm−1, attributed to
the C–O stretching of the ester carboxyl group. The broad peaks between 3320 cm−1 in the
spectra are caused by the O–H groups of the fillers. The peak at 1232 cm−1, corresponding to
the C–O stretching vibration in lignin, flattened after the treatment. These findings suggest
that alkali treatment reduced the lignin content of hemp filler. A similar trend was observed
in alkali-treated hemp fiber/natural rubber [23] and alkali-treated hemp fiber induced
with polypropylene [30,31]. As observed by Fracz and colleagues, in most scenarios,
lignin fuses the polysaccharide fibers together by filling the gaps between them [32].
Moreover, various absorption bands were identified in the pure PLA in Figure 2e–j. These
included peaks at 3659 cm−1, indicative of the terminal O–H group, and at 2994 and
2946 cm−1, corresponding to the asymmetric and symmetric stretching vibrations of the
CH3 groups in the side chains, respectively. The band at 1454 cm−1 was attributed to the
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bending vibration of C–H, while the pronounced absorption band at 1743 cm−1 denoted
the stretching vibration of the carbonyl (–C=O) groups in the repeated ester units. Another
intense absorption band at 1182 cm−1 was associated with the stretching vibration of
C–O in CH–O within the polymer chains. Triplet peaks at 1130, 1082, and 1038 cm−1

represented C–O stretching vibrations in the C–O groups. Furthermore, absorption bands
at 956 and 870 cm−1 were allocated to the C–C stretching of the single bond, and the robust
absorption band at 749 cm−1 was ascribed to the deformation vibration of the CH3 groups.
Generally, the PLA/fillers spectra were found to be like the PLA spectrum for all untreated,
alkali-treated, and acetylation-treated samples, indicating that physical interactions were
predominantly present without the formation of new functional groups. Similar FTIR
results were reported in addition to fillers for PLA films in the literature [33,34].
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3.2. X-ray Photoelectron Spectroscopy

Untreated and treated flax and hemp fillers were investigated through X-ray photo-
electron spectroscopy (XPS) to ascertain their elemental composition, atomic concentrations,



Polymers 2024, 16, 996 8 of 22

and mass concentrations as seen in Figure 3a–f. C1 and C2 components were the primary
constituents of the C1s spectrum for in the untreated, alkali-treated, and acetylated samples.
The C1 peak of untreated flax and hemp had binding energies ranging between 284 eV and
282 eV. This confirms the presence of lignin and extracts (C–C/C–H). The C–O intensity of
untreated hemp was significantly higher than that of flax. The π–π interaction in untreated
flax fillers showed that lignin phenolic rings were present. Generally, C2, C3, and C4 were
predominantly derived from cellulose [3,35,36] and hemicellulose. The decrease in the
C1 intensity of alkali-treated flax indicated the effective removal of lignin in the flax by
sodium hydroxide, whereas C2 showed a significant increase in their peaks owing to the
emergence of hydroxyl groups on the surfaces (Figure 3c). It is worth mentioning that
the treatments (alkali and acetylation) eliminated the π–π interaction in the flax samples
(Figure 3c,e). Higher O/C ratios indicated a significant carbohydrate content, while lower
ratios suggested the presence of more lignin and extracts on the flax and hemp surfaces [37].
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3.3. Thermogravimetric Analysis

Thermogravimetric analysis was used to test the thermal stability of the neat PLA
film and the PLA/filler composite film. The TGA and DTG thermograms showed that
all the films displayed a two-step thermal degradation pattern, with the initial weight
loss occurring near 100 ◦C (Figure 4). This is ascribed to solvent evaporation [5]. A
drastic weight loss was observed in the second stage as the temperature increased from
270–410 ◦C. This is due to the rapid depolymerization of the polymers [38]. The thermal
degradation of hemp and fiber-based composites has been previously reported and agreed



Polymers 2024, 16, 996 9 of 22

with the degradation temperature reported in the present study [39,40]. Nonetheless, the
maximum degradation temperature of the composite film’s occurred at 360 ◦C. Generally,
both the neat PLA film and the PLA/filler composite film had the same maximum thermal
decomposition temperature of 362.5 ◦C. This shows that incorporating the films with fillers
did not significantly influence the overall thermal stability of the composite film in the
present study. Several studies, as reported by some scholars, have also observed this trend
in composite films [41–43]. These results suggest that PLA-based composites with fillers
may be a practical option for various applications that necessitate both strength and thermal
resistance, as the fillers do not seem to negatively impact thermal stability. A similar trend
of thermal stability was observed in the PLA/curcumin film [33].
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3.4. Color

By evaluating the color of the films, researchers can gain valuable insights into the
effects of different treatments and fillers on the final product’s appearance. The results of
the color test, as shown in Supplementary Tables S1–S4, show that the addition of both flax
and hemp filler had a significant effect on the total color difference (∆E), yellowness index
(YI), and whiteness index (WI) values of the PLA film. The visual representations of the
color changes observed in the PLA film with varying filler content are shown in Figure 5.
Increasing the filler content caused an increase in the ∆E, resulting in a clear contrast from
the original color of the PLA film. As the YI value increases, the yellowness of the film also
increases. The observed results are in good agreement with previously reported results in
PLA-based films using natural fillers [44–46]. The natural color of flax and hemp fillers
could give a yellowish color to the final product. In contrast, the WI value decreases with
the addition of flax and hemp filler, possibly due to the brown color of the fillers, which
could darken the PLA film and reduce its overall whiteness. These findings suggest that
the addition of fillers may not be desirable if the goal is to maintain the original color and
whiteness of the PLA film. However, there may be certain applications where the use of
flax filler could be beneficial, such as in packaging materials or in products where a natural,
earthy look is desired.



Polymers 2024, 16, 996 10 of 22

Polymers 2024, 16, x FOR PEER REVIEW 10 of 22 
 

 

results in PLA-based films using natural fillers [44–46]. The natural color of flax and hemp 
fillers could give a yellowish color to the final product. In contrast, the WI value decreases 
with the addition of flax and hemp filler, possibly due to the brown color of the fillers, 
which could darken the PLA film and reduce its overall whiteness. These findings suggest 
that the addition of fillers may not be desirable if the goal is to maintain the original color 
and whiteness of the PLA film. However, there may be certain applications where the use 
of flax filler could be beneficial, such as in packaging materials or in products where a 
natural, earthy look is desired. 

 
Figure 5. Color of PLA/flax and PLA/hemp films. Red dashed line was the neat PLA as the control 
sample. 

3.5. Water Contact Angle 
Fillers have an effect on the water contact angle (WCA) of PLA/flax- and PLA/hemp-

based films. Generally, increasing the filler particle size caused no significant change in 
the WCA of the films regardless of their loadings and surface treatments. Compared with 
neat PLA with a WCA of 85°, blending PLA with a filler (hemp or flax) reduces the WCA. 
Figure 6 shows that the WCA of untreated, alkali-treated, and acetylation-treated 
PLA/flax varied between 79° and 58°, 82° and 61°, and 80° and 62°, respectively, as the 
filler content increases from 2.5 wt.% to 30 wt.%. Similarly, the WCA of untreated, alkali-
treated, and acetylation-treated PLA/hemp varied between 78° and 61°, 81° and 64°, and 
81° and 65°, respectively, as the filler content increased from 2.5 to 30 wt.%. In other words, 
the WCA decreases with increasing filler loadings. This suggests that increasing the filler 
particles tends to provide more sites for water molecules to interact with the polymer ma-
trix, thereby reducing the contact angle. Additionally, the surface of the films became 
rougher in composites prepared with larger filler particles (149–210 µm) regardless of 
their treatments (Supplementary Materials, Tables S5 and S6). 
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control sample.

3.5. Water Contact Angle

Fillers have an effect on the water contact angle (WCA) of PLA/flax- and PLA/hemp-
based films. Generally, increasing the filler particle size caused no significant change in
the WCA of the films regardless of their loadings and surface treatments. Compared with
neat PLA with a WCA of 85◦, blending PLA with a filler (hemp or flax) reduces the WCA.
Figure 6 shows that the WCA of untreated, alkali-treated, and acetylation-treated PLA/flax
varied between 79◦ and 58◦, 82◦ and 61◦, and 80◦ and 62◦, respectively, as the filler content
increases from 2.5 wt.% to 30 wt.%. Similarly, the WCA of untreated, alkali-treated, and
acetylation-treated PLA/hemp varied between 78◦ and 61◦, 81◦ and 64◦, and 81◦ and
65◦, respectively, as the filler content increased from 2.5 to 30 wt.%. In other words, the
WCA decreases with increasing filler loadings. This suggests that increasing the filler
particles tends to provide more sites for water molecules to interact with the polymer
matrix, thereby reducing the contact angle. Additionally, the surface of the films became
rougher in composites prepared with larger filler particles (149–210 µm) regardless of their
treatments (Supplementary Materials, Tables S5 and S6).
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3.6. Moisture Absorption

Moisture absorption (MA) plays a crucial role in determining the performance and
durability of bioplastics over an extended period. In the present study, the moisture
absorption properties of PLA bioplastics with flax and hemp fillers were investigated
for two filler particle sizes: <75 µm and 149–210 µm. For the PLA/flax composites, MA
with filler content in untreated, acetylation-treated, and alkali-treated bioplastics increased
significantly more than that of the neat PLA regardless of the particle sizes. Generally, the
increase was more accentuated in the untreated bioplastics in most scenarios (Figure 7a,b).
However, based on treatments, the moisture absorbed by the acetylation-treated PLA/flax
composites were lower than that by the alkali-treated composites, except for PLA/flax5 at
<75 µm and PLA/flax2.5 at 149–210 µm. As reported in past studies, alkali-treated fibers
are generally low due to the removal of hemicellulose and lignin [47,48]. However, as a
result of porosity, microcracks, and the complete relaxation of composites’ structures, the
moisture absorption stages could be short and quick, slow and stable, and very quick [49].
By comparison, composites prepared with a 149–210 µm particle size tend to absorb more
moisture than those prepared with a <75 µm particle size. It could be said that increasing
the filler loadings resulted in an increase in the moisture absorbed by the composites
due to the formation of hydrogen bonds within the fiber cell wall. Findings from [50,51]
also validate this observation. Conversely, a higher filler particle size makes the material
more porous and easier for moisture to penetrate the composites’ matrix [52–54]. Based
on our investigation, we opined that the interplay between moisture absorption, loading
percentage, and filler particles could be crucial in the development of PLA/flax composites.
In the PLA/hemp composite prepared with a <75 µm filler particle size, the moisture
absorbed in the untreated and alkali-treated composite showed a sharp reduction at 2.5%
filler loadings, but at higher filler loadings, there was significant increase in the moisture
absorbed (0.6–2.6%) (Figure 7c). Furthermore, at higher filler loadings (5–30%), there
was a significant increase in the moisture absorbed. Using the 149–210 µm particle size,
there was an initial decrease in the moisture absorbed by acetylated composites at 2.5%,
5%, and 10% filler loadings. This, however, was followed by a marked increase at 20%
and 30% filler loads (Figure 7d). As reported in Asim et al. [2], fiber treatment enhances
interfacial bonding and reduces moisture absorption. Notwithstanding, the influence of
fiber concentration contributes to the moisture absorption in composites. At 40% fiber
content, HDPE induced with 30% kenaf and 70% pineapple showed decreased overall
water uptake [55]. The three-way ANOVA results indicate a statistically significant effect of
particle size, treatment, and loading on the MA of both flax and hemp bioplastics. In the
case of the flax bioplastic, the interaction between the particle size and loading was found
to be significant for untreated filler, while it was insignificant for treated ones. For hemp
bioplastic, the interaction between particle size and loading significantly affected the MA in
untreated films, while this interaction was not significant in films with alkali-treated fillers.
The results suggest that the method of treatment used on the fillers can have an influence
on how the particle size and loading interact with each other, which ultimately affects the
MA of the resulting films. These findings highlight the importance of considering multiple
factors, such as particle size, treatment, and loading, when predicting the MA of polymer
composites. The results of this statistical analysis can be used to develop effective strategies
for mitigating moisture-induced degradation in bioplastics by optimizing the particle size,
treatment, and loading of fillers.
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represents the difference between untreated, alkali-treated, and acetylation-treated fibers loaded into
the PLA films.

3.7. Water Vapor Permeability

Water vapor permeability (WVP) is an important property to consider when designing bio-
plastics for packaging applications. The effects of filler loading, treatments, and particle size on the
WVP of flax and hemp bioplastics were studied. For PLA/flax samples at a <75 µm particle size,
the WVP of untreated and alkali-treated fillers increases with increasing filler loadings. Untreated
PLA/flax30 and acetylation-treated PLA/flax10 had the highest (24 × 10−7 g·m/m2 Pa·s) and
lowest (0.20 × 10−7 g·m/m2 Pa·s) WVP, respectively (Figure 8a). This observation, however, is
in contrast with acetylation-treated composites at a filler loading of 2.5–10%, as the WVP of the
samples reduced significantly. Buzarovska et al. [56] studied the WVP of neat PLA and PLA/talc
composite films. The researchers found out that all PLA-based composite films had higher barrier
properties (from 4.63 × 10−12 mol m/m2 sPa to 2.96 × 10−12 mol m/m2 sPa) than those of the
neat PLA film (6.71 × 10−12 mol m/m2 sPa) and asserted that the crystallinity of PLA and the
water vapor diffusion path could result in a decreased WVP. In the present study, higher filler
loadings (20% and 30%) showed a marked increase in the WVP of acetylation-treated samples,
with PLA/flax30 having the highest (9.5 × 10−7 g·m/m2 Pa·s) WVP. At a higher particle size
(149–210 µm), the WVP of PLA/flax increases as the filler concentration increases (Figure 8b).
Furthermore, higher filler loadings (20–30%) increase the WVP regardless of their treatments. Gen-
erally, a higher filler particle size (149–210 µm) at 2.5–10% filler loadings in an untreated composite
resulted in lower WVP whereas higher WVP values were observed under these conditions in
<75 µm particle size samples. In PLA/hemp composites, there was a reduction in the WVP of
acetylated samples prepared with a <75 µm particle size at 2.5–5% filler loadings followed by a
sudden increase at 10, 20, and 30% filler loadings (Figure 8c). As observed, the WVP of the compos-
ite is generally low (<5 × 10−7 g·m/m2 Pa·s) at 2.5–5% filler loadings regardless of the treatment.
The reduction in WVP could be due to improved adhesion between the filler and matrix resulting
from the treatments, reducing the number of voids between the filler and the matrix. Several other
authors have reported improved barrier properties on PLA-based nanocomposites compared to
those of neat PLA using a wide range of different treatments [57,58]. It was further confirmed
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in this study that at higher filler loadings (30%), the WVP of the composites increases in the
order of acetylation-treated >> untreated > alkali-treated composites. The observed trend in WVP
values for different particle sizes and filler loadings suggests that the clustering of filler particles is
occurring at higher loadings, which can create voids or channels in the composite material that
allow water vapor to pass through more easily. As shown in Figure 8d, the WVP of composites
prepared with higher filler particle sizes (149–210 µm) was higher and increases at higher filler
loadings regardless of the treatment. In most specimens, the WVP of the untreated composites
was higher than that of its counterparts except in PLA/hemp30. The highest WVPs for untreated,
alkali-treated, and acetylation-treated composites were 20 × 10−7 g· m/m2 Pa·s (PLA/hemp30),
7.0 × 10−7 g· m/m2 Pa·s (PLA/hemp30), and 22 × 10−7 g· m/m2 Pa·s (PLA/hemp30), respec-
tively. The results of the statistical analysis showed that each factor, as well as the interaction
between treatment and loading, had a significant effect on the WVP of the flax bioplastic films.
This indicates that these factors individually or in combination affect the WVP values of the films.
Additionally, the significant interaction between loading and treatment implies that the effect of
loading on WVP is dependent on the treatment applied to the filler. The interaction between
particle size and treatment and particle size and loading were not significant, indicating that the
impact of particle size on WVP is independent of treatment or loading and vice versa. Similarly,
the results of the analysis of the hemp bioplastic films indicated that each factor had a significant
impact on the WVP of the films, and the interaction between these factors was also found to be
significant. This suggests that the combined effect of particle size, loading, and treatment was
greater than the effect of each factor individually.
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3.8. Tensile Strength (TS), Elongation at Break (EB), and Young’s Modulus (YM)

The effects of filler particle size, filler loadings, and surface treatment were studied
on the tensile strength (TS), young modulus (YM), and elongation at break (EB) of the
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flax-based and hemp-based bioplastics as shown in Figures 9a–f and 10a–f, respectively.
Generally, the particle size had no significant effect on the TS value (35 MPa) of the neat
PLA regardless of their particle sizes and treatments. In Figure 9a, incorporating flax2.5
and flax5 into PLA increased the TS of untreated and alkali-treated specimens. A further
increase in the particle loadings (10–30) resulted in a significant decrease in the TS value
of the samples. Acetylation-treated composites showed a decrease in the TS between
22–25 MPa. In most cases, alkali-treated composites, except PLA/flax10, had a higher
TS using the <75 µm particle filler. At a higher particle size (149–210 µm) (Figure 9b),
acetylation-treated composites had a higher TS compared with that of the alkali-treated and
untreated composites. Furthermore, an increase in the concentration of fillers resulted in a
decrease in the TS for all the treatments except for acetylated PLA/flax10 where a higher TS
value of 22 MPa was observed. Tested PLA-based composites stabilized with buckwheat
husk showed a steady decrease in the value of strength at a filler content of 1% [59]. At
more than 5wt.%, the TS of neat PLA and PLA/hemp reduced drastically due to the poor
dispersion of fillers [60]. In most natural-fiber-reinforced composites, the decrease in TS
and EB simultaneously corresponds to an increase in their modulus and a reduction in
their strength is inevitable even if some modification is performed on them [61,62].

Obviously, besides modifying the mechanical properties of composites with fillers,
other factors such as the concentration of fillers, dispersibility, production technique, and
surface treatments are still crucial to the application of a high-performance composite.
Figure 9c shows that acetylation-treated composites showed very low EBs (7–10%) com-
pared with alkali-treated and untreated composites with EBs between 12 and 40% and 10
and 22%, respectively. Notwithstanding, increasing the weight of the fillers decreases the
EBs regardless of the treatments. A decrease in elongation at break was also observed in
reinforced epoxy composites using natural filler (walnut particles) [63] and PLA/cotton
fabric biocomposites [64]. At a higher particle size of 149–210 µm, it could be said that
acetylation improved the EBs of the composites in most scenarios except that of PLA/flax
20, where untreated composites had a higher EB (15%). Generally, variations in the con-
centration of the fillers resulted in unsteady trend of the EB values (Figure 9d). Using
the <75 µm particle size, the results showed that the alkali-treated samples had a higher
YM (>100 MPa) at a lower filler loading (PLA/flax2.5). However, a further increase in the
filler loading drastically reduced the YM. The YM of untreated and acetylation-treated
PLA/flax2.5 had a similar range to that of YMs with neat PLA. Further changes in the
filler loadings, however, resulted in different YM values (Figure 9e). A more consistent
trend was observed in composites prepared with 149–210 µm where alkali-treated samples
outshined their counterparts in the YMs (Figure 9f). Other authors have demonstrated that
filler size and types had a significant influence on the Young’s modulus of PLA/flax-based
composites [65,66]. As observed by Batakliev et al. [67], the concentration of fillers had a
significant influence on the young modulus of PLA-based nanocomposites. Notwithstand-
ing, interfacial interactions through between the functional groups of fillers and composites
may affect the Young’s modulus [68].
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PLA/flax films.
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Figure 10. Mechanical characteristics of PLA/hemp films. Particle size < 75 µm: (a) tensile strength,
(c) elongation at break, (e) Young’s modulus. Particle size < 149–210 µm: (b) tensile strength,
(d) elongation at break, (f) Young’s modulus. Particle size < 75 µm: (g) stress–strain curves of
PLA/hemp films.

As seen in Figure 10a, alkali treatment improved the TS of PLA/hemp composites at
lower filler loadings from 2.5% to 5% at a <75 µm particle size. However, an increase in
filler particle sizes caused a significant reduction in the TS of all the composites regardless
of their treatment and filler concentration. At a higher filler particle size, acetylation-treated
composites had a higher TS than their counterparts at a filler concentration of 2.5–10 wt.%
(Figure 10b). Acetylation treatment can improve the tensile strength of some composite
materials [69,70]. Notwithstanding, excessive filler loading can lead to agglomeration,
resulting in decreased mechanical properties [71,72]. The surface chemistry of composites
influences their adhesion and interfacial bonding [73,74]. Similarly, past studies have also
reported the effect of the surface area of the filler particles and their attributive effects on
the strength of composites [75,76]. In the present study under consideration, the addition
of filler particles reduces the mobility of the polymer chains, making the material more
rigid and less able to stretch before failure, leading to a decrease in EBs at all filler loadings
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for a <75 µm particle size (Figure 10c). The natural fiber loading causes the PLA matrix’s
structural integrity to be compromised, which accelerates fractures compared to a pure
matrix and causes the composites’ decreased elongation at break [77,78]. Alkali treatment
improves interfacial adhesion and increases elongation at break up to 5wt.% and 10 wt.%,
but at higher loadings, agglomeration once again leads to defects and decreases the EBs as
seen in Figure 10d. Past studies have reported improvements in the elongation at break of
PLA/hemp because of alkaline treatment [78]. The YM of the composites increases with an
increasing filler loading for <75 µm particle sizes in most samples. At a low filler loading
of 2.5%, the acetylated-treated composite had a higher YM than that of the untreated and
alkali-treated composites, but a further increase in the filler loadings decreases the YM
(Figure 10e).

Furthermore, there is a significant increase in the YMs of untreated alkali at a filler loading
of 2.5–5%, but a higher filler loading significantly decreases the YMs. For a 149–210 µm particle
size, it could be inferred that treatment significantly affects the YM of the composite. At a lower
filler loading (2.5%), acetylation-treated composites markedly showed a higher YM (500 MPa)
with decreases with an increase in the filler loading from 5–20 wt.%. In contrast, while the
alkali-treated composite initially showed a higher YM at a low filler loading of 2.5 wt.%, the
YM reduces significantly between 5 and 10 wt.%. A further increase in the filler loading at
10 wt.% in the alkali-treated composite resulted in an increased YM, followed by a decrease at
20 wt.% (Figure 10f). Higher Young’s modulus values at low to moderate filler loadings are
due to improved adhesion between the filler particles and the polymer matrix, resulting in
better load transfer and reinforcement of the polymer. However, at higher filler loadings, the
agglomeration of excess filler particles leads to a decrease in the Young’s modulus [68,79]. The
three-way ANOVA results showed that all three factors, as well as their interactions, have a
statistically significant impact on the TS, EB, and YM of the films. For a PLA/flax composite,
the analysis revealed a statistically significant effect of particle size, treatment, and loading
on TS, with the interaction between treatment and loading being significant for the filler of a
particle size <75 µm. However, the impact of the interaction between treatment and loading
on TS was found to be insignificant for a particle size of 149–210 µm. For the EB and YM, a
significant effect of particle size, treatment, loading, and their interaction was found. The size
of the flax filler particles can have a significant impact on the YM of the composite material
when untreated. However, when the particles are acetylated, their size does not seem to have a
significant influence.

3.9. Material Chart

Experimental measurements are used to compare the YM and TS of various materials,
including flax- and hemp-based PLA composite films. This comparison is visualized
through “Ashby plots”, where each region corresponds to a specific material class such
as metals, ceramics, or wood [80]. As shown in Figure 11, properties of different material
systems based on empirical data could be categorized and analyzed. Using this plot in
the present study shows that PLA films incorporating 2.5% alkali-treated flax and hemp
outperformed other blends in terms of mechanical properties. Notably, these formulations
fall within the polymer region, highlighting their potential for developing composites with
a high YM and TS.
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4. Conclusions

Flax and hemp were modified and used as fillers for PLA-based composites at dif-
ferent filler loadings (0–30%) prepared by the solution casting technique. Spectroscopic
analysis confirms the presence of C–O/O–H groups. Also, the π–π interaction in untreated
flax fillers showed lignin phenolic rings in the polymeric behavior of the films. The in-
fluence of the fillers in the composites was not obvious during thermal decomposition
since both specimens (neat PLA and composites films) had a degradation temperature of
362.5 ◦C. Increasing the filler content caused an increase in the color difference resulting
in a clear contrast from the original color of the PLA film. Although the water contact
angle decreases significantly as the filler loading increases, an increase in the moisture
absorption and barrier properties against water uptake suggests good packaging potential
for the films. Alkali-treated PLA/flax composites showed significant improvement in their
tensile strength, elongation at break, and Young’s modulus at a 2.5 or 5% filler loading.
Blending PLA with natural fillers such as hemp and flax can improve numerous properties
of biocomposite film, but the interplay between several factors such as filler loadings
and surface medication and type contributes significantly to these properties. Alkali- or
acetylated-treated bioplastics employing natural fillers are environmentally viable alterna-
tives to traditional plastics. However, future studies are required to determine the optimal
processing conditions for their fabrication and to investigate their biodegradability and
potential environmental impact.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/polym16070996/s1, Table S1: Color analysis of PLA/flax films
(particle size < 75 µm); Table S2: Color analysis of PLA/flax films (particle size 149–210 µm), Table S3:
Color analysis of PLA/hemp films (particle size < 75 µm), Table S4: Color analysis of PLA/hemp films

https://www.mdpi.com/article/10.3390/polym16070996/s1
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(particle size 149–210 µm), Table S5: Water contact angle of PLA/flax films, Table S6: Water contact
angle of PLA/hemp films, Table S7: Biochemical composition analysis (wt.%). References [81–83] are
cited in the Supplementary Materials.
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