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Abstract: The problem of tumour therapy has attracted the attention of many researchers for many
decades. One of the promising strategies for the development of new dosage forms to improve
oncology treatment efficacy and minimise side effects is the development of nanoparticle-based
targeted transport systems for anticancer drugs. Among inorganic nanoparticles, mesoporous silica
deserves special attention due to its outstanding surface properties and drug-loading capability.
This review analyses the various factors affecting the cytotoxicity, cellular uptake, and biocompati-
bility of mesoporous silica nanoparticles (MSNs), constituting a key aspect in the development of
safe and effective drug delivery systems. Special attention is paid to technological approaches to
chemically modifying MSNs to alter their surface properties. The stimuli that regulate drug release
from nanoparticles are also discussed, contributing to the effective control of the delivery process in
the body. The findings emphasise the importance of modifying MSNs with different surface func-
tional groups, bio-recognisable molecules, and polymers for their potential use in anticancer drug
delivery systems.

Keywords: mesoporous silica; inorganic nanoparticles; drug delivery; anticancer drugs; surface
modification; polymers

1. Introduction

There is a steady increase in the incidence of cancer worldwide. Despite signifi-
cant progress in the fight against oncology, malignant neoplasms occupy the leading
place among the causes of mortality. According to the World Health Organisation, about
10 million people worldwide died of cancer in 2020 [1]. Therefore, the development of
more effective dosage forms remains an urgent task in the treatment of cancerous tumours.

The history of cancer treatment represents a long and evolving process in the develop-
ment of medicine and science. In ancient times, cancer was often regarded as an incurable
disease, and treatment was limited to symptomatic support and pain relief using herbs
and plants. In the Middle Ages, with the development of surgery, surgical intervention
began to be used to remove cancerous tumours, giving patients a chance of recovery. Later,
the discovery of X-rays and the development of biopsies enabled more accurate cancer
diagnosis and staging. In the mid-20th century, chemotherapy and radiation therapy were
developed. These treatments became the standard in the fight against cancer, giving more
patients a chance of recovery. But when targeting tumours, classical chemotherapy drugs
also damage healthy cells, which causes undesirable side effects [2,3] and is one of the main
causes of high mortality among cancer patients [4,5]. Radiotherapy, in turn, affects not
only the tumour but also the surrounding healthy tissues, resulting in a variety of side
effects [6,7]. In recent decades, research has led to the development of new treatments such
as immunotherapy and molecularly targeted therapies. These methods make it possible to
attack cancer cells more precisely and minimise side effects.
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To date, a variety of methods for treating oncological diseases have been developed,
and they are selected depending on the stage of the cancer process (Figure 1 and Table 1).

Polymers 2024, 16, x FOR PEER REVIEW 2 of 27 
 

 

treatments such as immunotherapy and molecularly targeted therapies. These methods 
make it possible to attack cancer cells more precisely and minimise side effects. 

To date, a variety of methods for treating oncological diseases have been developed, 
and they are selected depending on the stage of the cancer process (Figure 1 and Table 1). 

 
Figure 1. Stages of malignant tumour development. The positions Tis, T1, T2, T3, T4 shown in the 
figure correspond to the stages of tumor development stage 0, stage I, stage II, stage III, stage IV, 
respectively, which is also reflected in Table 1. (Reprinted with permission from the reference with 
changes [8]. Copyright © 1987, International Union Against Cancer Geneva.) 

Table 1. Classification by stage of tumour development. 

Stage of Development Stage 0 (Тis) Stage I (Т1) Stage II (Т2) Stage III (Т3) Stage IV (Т4) 

Localisation 

Cancer is in place (in 
situ), does not manifest 
itself in any way, does 
not form vessels for its 

supply 

Tumour measures 
up to 2 cm, localised, 

not extending out-
side the wall 

2 to 5 cm tumour, 
extends beyond 
the wall, lym-

phatic involve-
ment 

Tumour measures 
more than 5 cm, is 
growing into sur-
rounding tissues, 
multiple lymph 

node involvement 

Tumour of any size, 
locally spreading, 
sprouting into sur-

rounding tissues and 
organs 

Surgical option not recommended operable operable mission-capable inoperable 
Metastasis none none none none present 
Forecast favourable favourable treatable treatable incurable 

In the early stages, radical surgery is the mainstay of treatment [9,10]. Radiation 
[11,12] and chemotherapy [13,14] are used at different stages of cancer and can be com-
bined with surgery. Immunotherapy is used in advanced stages of cancer [15,16]. Hor-
mone therapy is used for hormone-sensitive cancers such as breast [17] or prostate cancer 
[18]. Targeted therapies, which act locally on specific molecules that are involved in the 
growth and development of cancer cells, have been approved for the treatment of many 
cancers [19]. For example, the drug ibrutinib was approved by the FDA (Food and Drug 
Administration) in 2013 for the treatment of mantle cell lymphoma (MCL) and chronic 
lymphocytic leukaemia (CLL) [20,21]. Ibrutinib targets the inhibition of Bruton’s tyrosine 
kinase, which is necessary for the normal functioning of B-lymphocytes. Thus, reducing 
the activity of this kinase with ibrutinib prevents the development of malignant B-cells 
such as MCL and CLL. This drug also disrupts the interaction of malignant cells with the 
surrounding microenvironment that ensures their viability. The choice of treatment 
method also depends on the type of cancer and the patient’s overall condition. Rarely, 
only one method is used; more often, complex therapy is performed. 

Figure 1. Stages of malignant tumour development. The positions Tis, T1, T2, T3, T4 shown in the
figure correspond to the stages of tumor development stage 0, stage I, stage II, stage III, stage IV,
respectively, which is also reflected in Table 1. (Reprinted with permission from the reference with
changes [8]. Copyright © 1987, International Union Against Cancer Geneva.)

Table 1. Classification by stage of tumour development.

Stage of
Development Stage 0 (Tis) Stage I (T1) Stage II (T2) Stage III (T3) Stage IV (T4)

Localisation

Cancer is in place (in
situ), does not

manifest itself in any
way, does not form

vessels for
its supply

Tumour measures up
to 2 cm, localised, not
extending outside the

wall

2 to 5 cm tumour,
extends beyond the

wall, lymphatic
involvement

Tumour measures
more than 5 cm, is

growing into
surrounding tissues,
multiple lymph node

involvement

Tumour of any size,
locally spreading,

sprouting into
surrounding tissues

and organs

Surgical option not recommended operable operable mission-capable inoperable

Metastasis none none none none present

Forecast favourable favourable treatable treatable incurable

In the early stages, radical surgery is the mainstay of treatment [9,10]. Radiation [11,12]
and chemotherapy [13,14] are used at different stages of cancer and can be combined with
surgery. Immunotherapy is used in advanced stages of cancer [15,16]. Hormone therapy
is used for hormone-sensitive cancers such as breast [17] or prostate cancer [18]. Targeted
therapies, which act locally on specific molecules that are involved in the growth and de-
velopment of cancer cells, have been approved for the treatment of many cancers [19]. For
example, the drug ibrutinib was approved by the FDA (Food and Drug Administration) in
2013 for the treatment of mantle cell lymphoma (MCL) and chronic lymphocytic leukaemia
(CLL) [20,21]. Ibrutinib targets the inhibition of Bruton’s tyrosine kinase, which is necessary
for the normal functioning of B-lymphocytes. Thus, reducing the activity of this kinase with
ibrutinib prevents the development of malignant B-cells such as MCL and CLL. This drug
also disrupts the interaction of malignant cells with the surrounding microenvironment that
ensures their viability. The choice of treatment method also depends on the type of cancer and
the patient’s overall condition. Rarely, only one method is used; more often, complex therapy
is performed.

Research for the fight against cancer is constantly ongoing. The development of directed
transport systems for antitumour drugs is one of the most promising ways of creating new
dosage forms, which can significantly improve drugs’ effectiveness and reduce their negative
impact on the body. This approach is based on the fundamental differences between normal
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and cancer cells. Its aim is to improve the effectiveness of cancer treatment while reducing
the occurrence of adverse reactions and side effects in patients. One key concept in the
development of such systems is the delivery of drugs directly to the tumour, bypassing normal
tissues. This approach increases the concentration of the drug in the tumour, contributing to
the more effective destruction of cancer cells.

There are review articles on the potential of using mesoporous silica nanoparticles
as delivery systems for various drugs [22–24]. Our review covers the analysis of studies
conducted over the last 15 years and focuses on the surface modification of MSNs with
polymers to improve their biocompatibility and cellular uptake, increase circulation time
in the body, and prevent premature release, facilitating their application in the delivery of
anticancer drugs directly to a tumour.

2. Application of Micro- and Nanoparticles in Drug Delivery Systems

Most of the research on the effectiveness of the targeted delivery of anticancer drugs
focuses on the use of micro- and nanoparticles [25–29]. Nanoparticles have several unique
features. Firstly, they have a developed specific surface area, which enables the high sorption
capacity of nanoparticles. Secondly, they have physicochemical properties that allow them to
penetrate cell membranes and cross the blood–brain barrier, constituting a difficult task for
drug molecules [30].

The use of micro- and nanoparticles for the creation of new dosage forms allows
solving such problems as those given below:

- Ensuring an optimal pharmacological effect [31,32];
- Allowing targeted transport and controlled release of the drug substance [32,33];
- Provoking minimal side effects [31,34];
- Ensuring convenience of administration [35].

In recent years, significant technological advances have been made in the field of cancer
nanomedicine. Many developments are in the active stage of clinical trials, and some of them
have already been applied in therapeutic practice [36,37]. Despite the potential efficacy of
nanoscale drug carriers for use in cancer treatment, which has been demonstrated in studies
at both preclinical and clinical stages, there are still a number of limitations that need to
be addressed.

Targeted delivery involves the following mechanism: the carrier containing the drug
enters the bloodstream, circulates through the body, and accumulates exclusively in the area
of the lesion (Figure 2).

Polymers 2024, 16, x FOR PEER REVIEW 4 of 27 
 

 

 
Figure 2. Schematic representation of drug applications for cancer treatment: conventional chemo-
therapy and nanomaterial-based targeting therapy. (Reprinted with permission from reference [38]. 
Copyright © 2015 Licensee MDPI, Basel, Switzerland.) 

The “enhanced permeability and retention” (EPR) effect, first described by I. Matsu-
mura and H. Maeda over thirty-five years ago [39], can enhance drug accumulation at the 
tumour site (passive targeting). Their research demonstrated that the EPR effect is a result 
of excessive vascular overgrowth caused by a tumour’s need for oxygen and nutrition, 
leading to defects ranging up to 200 nm in diameter in the vessel walls. Nanoparticles can 
penetrate the tumour through these defects. Tumour growth causes compression of lym-
phatic vessels, preventing normal lymphatic outflow and promoting nanoparticle reten-
tion (Figure 3). Therefore, EPR-based drug delivery does not affect healthy tissues. How-
ever, the EPR effect is not specific to all cancers. 

 
Figure 3. Enhanced permeability and retention (EPR) effect and passive targeting. (Reprinted with 
permission from reference [40] Copyright © 2014 Jhaveri and Torchilin). 

Figure 2. Schematic representation of drug applications for cancer treatment: conventional chemother-
apy and nanomaterial-based targeting therapy. (Reprinted with permission from reference [38].
Copyright © 2015 Licensee MDPI, Basel, Switzerland.)



Polymers 2024, 16, 1105 4 of 26

The “enhanced permeability and retention” (EPR) effect, first described by I. Mat-
sumura and H. Maeda over thirty-five years ago [39], can enhance drug accumulation at the
tumour site (passive targeting). Their research demonstrated that the EPR effect is a result
of excessive vascular overgrowth caused by a tumour’s need for oxygen and nutrition,
leading to defects ranging up to 200 nm in diameter in the vessel walls. Nanoparticles
can penetrate the tumour through these defects. Tumour growth causes compression
of lymphatic vessels, preventing normal lymphatic outflow and promoting nanoparticle
retention (Figure 3). Therefore, EPR-based drug delivery does not affect healthy tissues.
However, the EPR effect is not specific to all cancers.
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Targeting a specific cell type is achievable via “molecular targeting” toward the surface
(active targeting). For example, receptors for folic acid (FA) and transferrin (Tf) are present
in significantly higher numbers on the surfaces of tumour cells compared to those on
healthy cells. This fact allows the use of folic acid [41–43] or transferrin [44,45] as navigator
molecules for the precise targeting of cancer cells (Figure 4).
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In addition to the ability to penetrate, specifically recognise, and bind to cancer cells,
a drug nanocarrier needs to meet a number of requirements, including biocompatibility,
a lack of toxicity, sufficient capacity and ease of drug loading, the ability to provide
protection from the reticuloendothelial system (RES), and robustness of drug retention
during delivery [46]. In micro- and nanoparticle-based delivery systems, drugs can be
chemically bound to the transporter, dispersed as an emulsion in the transporter material,
or encapsulated within it. Drug-released containers should not accumulate in the body. The
route of entry into cancer cells is primarily determined by the material of the nanoparticle.
Currently, the following nanoforms are used as nanoscale carriers for drugs (Figure 5):

- Biological and biogenic nanoparticles (enzymes, proteins, ribosomes, and
viruses) [47–49];

- Polymer nanoparticles and nanostructures (polymer nanoparticles, polymer nanocap-
sules, polymer micelles, and dendrimers [50–52];

- Liposomes [53];
- Perfluorocarbon nanoparticles [54,55];
- Carbon nanoparticles (nanotubes, fullerenes, graphene, and nanodiamonds) [56–58];
- Inorganic nanoparticles (metals such as gold, silver, platinum, titanium, zinc, and iron;

metal and nonmetal oxides; and magnetic nanoparticles) [59–63];
- Quantum dots and semiconductor nanocrystals [64,65].

Inorganic nanoparticles are some of the most widespread nanomaterials. Their
amenability to use as drug carriers is due to their low toxicity, their ability to be excreted
from the body, the fact that they do not accumulate in the liver, kidneys, spleen, and other
organs. An analysis of the dynamics of publications, conducted on the search platform Web
of Science from 2013 to 2022 using the combination of the keywords “inorganic nanopar-
ticles” and “drug delivery”, showed an annual increase in the number of articles in this
area (Figure 6). Scientists’ interest in using such nanostructures for targeted drug transport
continues to grow as these structures offer unique opportunities for the more effective and
safer treatment of many diseases. Among inorganic nanoparticles used for targeted drug
delivery, magnetic nanoparticles, gold nanoparticles, silicon dioxide, calcium carbonate
and phosphate, and titanium dioxide are the most in demand today.
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3. Mesoporous Silicon Dioxide Is a Promising Nanocarrier for Drugs

Mesoporous silica nanoparticles are promising nanoscale carriers due to the ease
with which they can be synthesized and their homogeneous structure, tuneable size
(50–200 nm) [67], and large pore volume (0.6–1.4 cm3/g) [68,69]. With a high specific
surface area (700–1000 m2/g) [70,71], MSNs have high drug loading capacity. Nanostruc-
tured silica nanoparticles are non-toxic and biocompatible, capable of biodegradation in
environments containing living organisms [72,73] (Figure 7).
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Recently, great progress has been made in the synthesis and application of ordered
MSNs with different structures. Most studies on the application of mesoporous silica
nanoparticles for drug delivery mention MCM-41 (Mobil Composition of Matter, with
a hexagonal two-dimensional p6mm-type pore structure with diameters ranging from
2 nm to 6.5 nm) [74,75], MCM-48 (possessing a three-dimensional cubic pore structure
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with la3d symmetry and an average diameter of about 2.7 nm) [71], SBA-15 (Santa Barbara
Amorphous, with a hexagonally ordered array of cylindrical pores with an average diameter
of 6 to 11 nm) [76,77], and SBA-16 (whose pore structure is a three-dimensional Im3m cubic
cell with a diameter of 3 to 5 nm) [78,79] (Figure 8).
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Journal of Pharmaceutical Investigation.)

Mesoporous silica has been tested in many in vitro and in vivo studies and is consid-
ered safe by the FDA (Food and Drug Administration) [81]. However, several sources have
reported that unmodified silica nanoparticles are toxic at high doses due to the interaction
of surface silanols with cell membranes [82,83]. Additionally, unmodified MSNs exhibit
poor ability for controlled drug release in response to internal or external stimuli such as
pH, temperature, redox potential, a magnetic field, light, etc. Therefore, it is necessary to
develop methods with which to modify the materials of MSNs to improve drug delivery to
a specific pathological site, without drug leakage along the route, and allow rapid drug
release at the site of action [84–86].

One of the most common methods of loading anticancer drugs into MSNs is the
adsorption of the drug by mixing its solution with silica nanoparticles. The surfaces of
unmodified MSNs are usually negatively charged due to the presence of a large number
of hydroxyl groups and readily adsorb positively charged drugs. Functionalisation of the
surface of MSNs can enhance electrostatic adsorption of drugs [87–89].

Currently, there are effective technological approaches to chemically modifying meso-
porous silica nanoparticles to modify their surface properties [90–92]. MSNs can be mod-
ified with different surface functional groups [93–95] or coated with bio-recognisable
molecules [96,97] and polymers [98,99] to further enhance biocompatibility and improve
pharmacokinetics, biodistribution, and delivery of anticancer drugs to the tumour site.

4. Factors Affecting Cytotoxicity, Cellular Uptake, and Biocompatibility
of Nanoparticles

Determining the factors influencing the cytotoxicity, cellular uptake, and biocompati-
bility of nanoparticles is an urgent problem in the field of drug delivery. It is known that
cytotoxicity and cellular uptake depend on the size of nanoparticles and the characteristics
and functional properties of their surfaces. The surface properties and degree of aggrega-
tion of nanoparticles also determine their biocompatibility. Indeed, it has been reported
that smaller particles induce significantly higher toxicity than larger ones in endothelial
cells [100–102]. It has been shown in several studies that maximum cellular uptake is
observed for 50 nm diameter particles [103–105] (Figure 9). The results obtained in [106]
are consistent with the effective cellular uptake of 60 nm silica nanoparticles.



Polymers 2024, 16, 1105 8 of 26

Polymers 2024, 16, x FOR PEER REVIEW 8 of 27 
 

 

unmodified MSNs are usually negatively charged due to the presence of a large number 
of hydroxyl groups and readily adsorb positively charged drugs. Functionalisation of the 
surface of MSNs can enhance electrostatic adsorption of drugs [87–89]. 

Currently, there are effective technological approaches to chemically modifying mes-
oporous silica nanoparticles to modify their surface properties [90–92]. MSNs can be mod-
ified with different surface functional groups [93–95] or coated with bio-recognisable mol-
ecules [96,97] and polymers [98,99] to further enhance biocompatibility and improve phar-
macokinetics, biodistribution, and delivery of anticancer drugs to the tumour site. 

4. Factors Affecting Cytotoxicity, Cellular Uptake, and Biocompatibility  
of Nanoparticles 

Determining the factors influencing the cytotoxicity, cellular uptake, and biocompat-
ibility of nanoparticles is an urgent problem in the field of drug delivery. It is known that 
cytotoxicity and cellular uptake depend on the size of nanoparticles and the characteristics 
and functional properties of their surfaces. The surface properties and degree of aggrega-
tion of nanoparticles also determine their biocompatibility. Indeed, it has been reported 
that smaller particles induce significantly higher toxicity than larger ones in endothelial 
cells [100–102]. It has been shown in several studies that maximum cellular uptake is ob-
served for 50 nm diameter particles [103–105] (Figure 9). The results obtained in [106] are 
consistent with the effective cellular uptake of 60 nm silica nanoparticles. 

 
Figure 9. The effect of particle size on the percentage of nanoparticles penetrating the mucous mem-
brane. * and ** mean that a value is significantly different at p < 0.05 and p < 0.01, respectively, com-
pared to other sizes. (Reprinted with permission from reference [105].) 

Size regulation can be useful for increasing the passive targeting of nanoparticles to-
ward tumours, but their surface charges must also be taken into account [107]. Nanopar-
ticles that have strong positive or negative charges are seen as an ‘alarm signal’ and are 
rapidly removed by the reticuloendothelial system, whereas particles with charges close 
to neutral have the ability to circulate and accumulate in a tumour for long periods of 
time. A proper polymer coating is required to ensure that there is a neutral charge on the 
surfaces of nanoparticles to increase their biocompatibility and circulation time in the 
body [81]. These affordances also solve problems such as preventing particle aggregation 
[108,109]. A commonly used strategy is the modification of the nanoparticle surface with 
polyethylene glycol (PEG) fragments (Figure 10). This process can be accomplished using 
two different techniques: covalent grafting or physical adsorption. PEG is a biocompatible 
polymer with very low immunogenicity and antigenicity and no toxicity. Polyethylene 
glycol forms a hydrophilic layer around particles with increased dispersibility, signifi-
cantly increases the half-life of elimination from the bloodstream by delaying 

Figure 9. The effect of particle size on the percentage of nanoparticles penetrating the mucous
membrane. * and ** mean that a value is significantly different at p < 0.05 and p < 0.01, respectively,
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Size regulation can be useful for increasing the passive targeting of nanoparticles
toward tumours, but their surface charges must also be taken into account [107]. Nanopar-
ticles that have strong positive or negative charges are seen as an ‘alarm signal’ and are
rapidly removed by the reticuloendothelial system, whereas particles with charges close to
neutral have the ability to circulate and accumulate in a tumour for long periods of time. A
proper polymer coating is required to ensure that there is a neutral charge on the surfaces
of nanoparticles to increase their biocompatibility and circulation time in the body [81].
These affordances also solve problems such as preventing particle aggregation [108,109]. A
commonly used strategy is the modification of the nanoparticle surface with polyethylene
glycol (PEG) fragments (Figure 10). This process can be accomplished using two different
techniques: covalent grafting or physical adsorption. PEG is a biocompatible polymer with
very low immunogenicity and antigenicity and no toxicity. Polyethylene glycol forms a
hydrophilic layer around particles with increased dispersibility, significantly increases the
half-life of elimination from the bloodstream by delaying opsonisation, and improves the
EPR effect [110,111]. By adding PEG of different molecular weights and concentrations,
the thickness of the mesoporous shell can be adjusted [112]. However, pegylation has
negative aspects, as it strongly inhibits cellular uptake and endosomal release, resulting in
a significant loss of activity for the delivery system. Due to its high molecular weight at
high doses, its accumulation in the liver is possible [113,114].
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Despite significant advances in research, maintaining optimal therapeutic efficacy, i.e.,
preventing premature drug release into the bloodstream during rapid delivery to tumour
tissue, remains a significant challenge for the development of targeted delivery systems. In
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the works of many authors, nanocontainers based on mesoporous silica with a “double
coating” have been developed [43,116–118].

Meng H. et al. demonstrated that mesoporous silica nanoparticles loaded with doxoru-
bicin (DOX), measuring 50 nm in size and coated with a copolymer of polyethyleneimine
(PEI) and polyethylene glycol, can achieve a superior EPR effect compared to larger un-
coated particles or 50 nm particles functionalized only with PEG [119]. Drug delivery
efficiency was evaluated in vivo using a human xenograft tumour in nude mice after intra-
venous administration. Along with improved drug delivery, a significant reduction in side
effects such as animal weight loss and decreased liver and kidney damage was observed.
Hanafi-Bojd, M. et al. [120] and Pada, A.-K. et al. [109], in their studies, also showed that
coating with PEG-PEI copolymer helps to prevent the aggregation of drug-loaded MSNs,
reduce cytotoxicity, and enhance cellular uptake.

A covalently cross-linked double-coated polymer shell was synthesised via the radi-
cal polymerisation of N-isopropylacrylamide (NIPAm) or polyethylene glycol diacrylate
(PEGDA) monomers [116] (Figure 11). In the first step, the bifunctional molecule N-(3-
aminopropyl) methacrylamide hydrochloride (APMA) was used to coat the anionic surface
of MSNs. The amino group was electrostatically bound to the nanoparticle surface, while
the acrylamide group was available for the radical polymerisation of monomers. Covalent
crosslinking provides additional stability to the polymer shell. This coating deters the ag-
glomeration of nanoparticles into larger aggregates (micrometre size) and provides longer
circulation time and a high loading capacity of MSNs, the latter of which is an additional
advantage of the proposed method.
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Chemical Society).

A nanocarrier for gemcitabine delivery based on MCM-41, with a shell possessing
a bilayer structure, was developed by Iranian scientists from the Sharif University of
Technology [121]. The authors used a coating of a pH-sensitive polyacrylic acid-co-itaconic
acid copolymer on the inside and human serum albumin (HSA) on the outside. Albumin
was applied to the polymer layer through electrostatic interaction between the ammonium
groups of the protein and the carboxylate ions of the copolymer shell. Albumin enhanced
the biocompatibility and cellular uptake of the resulting carrier. A cytotoxicity assay of
the drug-free nanocarrier using L929 mouse fibroblasts in vitro showed a level of cell
viability >95%.

The right choice of functional groups and their concentrations can significantly influ-
ence the behaviour of nanoparticles in biological systems, determining their cytotoxicity
and biocompatibility. The modification of MSNs with organic functional groups was
demonstrated in a study by Chinese scientists [122] (Figure 12). Aminopropyl and carboxyl
groups were grafted onto the surfaces of MSNs. The resulting MS@NH2@COOH materials
exhibited minimal cytotoxicity toward A549 lung carcinoma cells. In contrast, the DOX-
loaded nanomaterials (MS@NH2@COOH@DOX) exhibited a good killing effect against
cancer cells, with a drug loading of 31.7%.
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The cytotoxicity of cisplatin-loaded mesoporous silica nanoparticles functionalised
with platinum (Pt) and carboxyl groups was investigated [123]. The nanocarriers were
tested in vitro for the viability of three different cancer cell lines (A549, A2780, and MCF).
The synthesised Pt/COOH-MSNs nanoparticles showed excellent antitumour efficacy,
facilitating the cell death of 96.4% for A549, 84.2% for A2780, and 87.2% for MCF-7.

Active targeting significantly increases the efficiency of intracellular delivery, which
allows the maintenance of high cytotoxicity towards a tumour but reduces cytotoxicity
towards normal tissues. For example, a carrier made of mesoporous silica nanoparticles
functionalized with folic acid (FA) was designed for the precise delivery of cisplatin to
glioblastoma cancer cells [124]. Folic acid was used as a target molecule and was chemically
attached to the surfaces of MSNs via carbodiimide reaction. Such carriers were highly
biocompatible and enhanced the cytotoxic effect of the loaded cisplatin against LN 18 cells
(human glioblastoma cells). The cellular uptake efficiency of folic-acid-coated mesoporous
silica nanocomposites based on mesoporous silica for the targeted delivery of doxorubicin
to cancer cells was also confirmed in Kumar, H. et al.’s work [125].

5. Stimuli That Control Drug Release

Delivery systems must control the release of a drug. The stimuli that regulate drug
release can be diverse and include physical, chemical, biological, or combined factors. These
include temperature, light, magnetic fields, pH, enzymes, redox potential, ultrasound, etc.
(Figure 13).
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5.1. Temperature- and pH-Sensitive Nanocarriers Based on Mesoporous Silica

Typical internal stimuli used for the preferred release of drugs include pH and tem-
perature. For example, most cancerous tissues have lower pH values (extracellular tumour
pH ≈ 6.4–6.8, endosome pH ≈ 5.5, and lysosome pH ≈ 5.0) than healthy tissue and the
bloodstream (pH ≈ 7.4) [127]. Applying a biocompatible polymer to the MSN surface to
seal pores is a promising approach to creating desirable pH- and temperature-sensitive
drug delivery systems [128–132]. The use of thermosensitive polymers allows for controlled
drug release due to the fundamental differences in temperature between normal and can-
cerous tissue cells, allowing for tumour selectivity. Of particular interest are pH-sensitive
polymer coatings on the surfaces of MSNs, which can more precisely control the rate, site
of delivery, and release of active substances in target cells (Figure 14).
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Thus, the authors of [127] coated magnetic mesoporous silica nanoparticles with
PEGylated polyvinylpyridine (PEG-co-PVP). It was observed that the dissociation constant
for polyvinylpyridine (pKa = 5.62) is in the range of the endosomal pH for cancer cells.
Hence, this shell covers the surface of the nanoparticle and retains doxorubicin in the pores
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of mesoporous silica, but in an acidic medium at pH = 5.5, the electrostatic attraction is
broken, leading to the collapse of the shell and the release of DOX from the nanopores.

In the work by Peng, H. et al. [134], a pH-sensitive MSN-PAA nanocarrier with a core
of mesoporous silica nanoparticles and a shell of polyacrylic acid (PAA) was fabricated.
The deposition of a pH-sensitive PAA polymer on MSNs was carried out via inoculum
polymerisation. The drug salidroside was selected as a drug model. The in vitro results
showed that PAA layers on the surfaces of MSNs can reversibly open and close at different
pH values and thus regulate the uptake and release of salidroside from MSNs.

A number of studies have used a polymer shell that is sensitive to changes in the
temperature and pH of an environment and obtained via the precipitation copolymerisa-
tion of N-isopropylacrylamide and methacrylic acid [135–138]. Mesoporous silica-based
core–shell microspheres were designed to respond to a small temperature/pH difference
between tumour tissue and healthy tissue under simulated physiological conditions. The
elevated temperature and acidic pH, which are characteristic of the cancer cell microenviron-
ment, lead to the shrinkage of the p(NIPAM-co-MAA) copolymer, resulting in the opening
of pores, allowing controlled drug release. The results indicate that such DOX-loaded
systems are efficiently taken up by cells under in vitro conditions and fully release the drug
in an acidic intracellular environment. In an in vivo pharmacokinetics and biodistribution
study, in tumour-bearing mice, the system DOX/MSN@NIPAM-co-MAA circulated in
the bloodstream longer, with less accumulation in the heart and kidneys, compared to
conventional MSN-DOX and had greater antitumour activity [136].

MSNs coatings consisting of pH-sensitive proteins can serve as a barrier regulating
drug release from nanoparticles [139]. A drug delivery system based on sericin-coated
MSNs for doxorubicin delivery (DOX@SMSNs) was developed. The sericin shell serves
as a robust shield preventing the early release of encapsulated doxorubicin from MSN
nanoparticles into the extracellular environment. The release of encapsulated doxorubicin
is caused by the cleavage of sericin binding to the MSN surface in the acidic environment
of lysosomes and simultaneously by lysosomal proteases that degrade the sericin shell.

In several works [74,140–142], the antitumour drug doxorubicin was encapsulated
in the pores of mesoporous silica coated with gelatin (Gel) to investigate this drug’s
pH-dependent controlled release behaviour and cytotoxicity. The results showed that
this pH-sensitive MSN@Gel system was highly biocompatible and had remarkable drug
loading behaviour. The gelatin coatings blocked the pore outlets of MSNs and retained
encapsulated DOX under physiological conditions (pH 7.4). In contrast, under slightly
acidic conditions at pH = 5.0–6.0, the system had an increased drug release rate. In vivo
studies by Xu J.-H. et al. demonstrated that tumour growth in xenografted mice was
significantly delayed without a noticeable loss of body weight, indicating a lower systemic
toxicity of DOX/MSN@Gel compared to that of free DOX [74]. This suggests that MSN@Gel
systems may be effective carriers of antitumour drug delivery systems.

Another pH-sensitive system was prepared based on polydopamine (PDA)-coated
mesoporous silica nanoparticles via the oxidative self-polymerisation of dopamine in a
neutral medium [133,143]. The PDA coating blocked the pores and retained doxorubicin
inside the pores of MSNs under normal physiological conditions, which was useful for
preventing premature release during circulation. In an acidic environment, the PDA coating
was partially removed from the surfaces of MSNs, which was proved experimentally, so
the DOX drug molecules could not be retained inside the pores of MSNs and released,
which was useful for drug delivery in cancer treatment. These nanocarriers are charac-
terised by their simple construction and easy synthesis. The authors of [144] also studied
the in vitro behaviour of DOX@MSN-PDA and reported that DOX@MSN-PDA showed a
slower release rate compared to DOX@MSN, probably due to the interfacial impermeable
layer of PDA, which reduced the diffusion of DOX from MSN. In [145,146], polyethylene
glycol was additionally grafted onto the PDA surface to enhance stability and biocompati-
bility under physiological conditions. The in vitro release profile of DOX/MSN@PDA-PEG
demonstrated pH-dependent and gradual release of the drug. Studies of mesoporous silica
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nanoparticle systems with polydophamine-hyaluronic acid (PDA-HA) shells have been
published on pH-sensitive release in tumours [147]. Hou, J. and colleagues [148] and Cheng,
W. and co-authors [149] also evaluated the benefits of the MSN@PDA/DOX-PEG-FA system
that is activated by folic acid and releases the drug at different pH values.

The technique often used by authors for applying polymer layers to the surface of a
nanocarrier is the layer-by-layer (LBL) method. Thus, a strategy for the synthesis of func-
tionalized nanocarriers based on MSNs with pH-dependent delivery characteristics and
improved biosafety features has been proposed [150]. A multilayer polyelectrolyte coating
of alginate and chitosan was prepared using the layer-by-layer (LBL) method. A study
using HeLa cells revealed that the obtained nanocarriers had excellent biocompatibility
and high cellular uptake efficiency and provided controlled drug release in acidic media.
Xu X. and colleagues proposed the use of the layer-by-layer assembly technique (LBL) to
close the pores of mesoporous silica with a biocompatible polyamidoamine dendrimer
(PAMAM) and chondroitin sulfate (CS) [151]. Studies confirmed that the mesopores are
effectively blocked at a neutral pH and open under acidic conditions. The coating gives the
nanocarriers good dispersibility and blood compatibility. The developed nanocarriers are
able to gradually release the active ingredient and thus reduce drug accumulation in major
organs, potentially maximising the therapeutic effect while exerting minimal toxicity to
healthy tissues.

5.2. Redox Drug Delivery

The shell of a nanosystem can break down or change its structure under the influence
of oxidative and/or reductive processes, resulting in the controlled release of the drug
substance at the right place and time. MSN-based systems capable of responding to
glutathione (GSH) are common [152–155]. Glutathione is a tripeptide composed of the
amino acids L-cysteine, L-glutamic acid, and glycine. It is ubiquitously present in the
body and involved in important biological functions therein. Elevated levels of GSH in
the tumour microenvironment cause it GSH repair any disulfide bond and convert to its
oxidised form (GSSG). This property of GSH is utilised for the design of redox-sensitive
drug carriers (Figure 15).
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For example, the authors of [157] reported a nanocontainer for doxorubicin delivery in
mesoporous MSNs, in which cytochrome (CytC) attached via a disulfide bond linker was
used to germinate the pores. After entering the tumour, the disulfide bonds between MSNs
and CytC are cleaved, thereby releasing the loaded drug. In a study by Yan, J. et al. [158],
the anticancer drug paclitaxel (PTX) bound to mesoporous silica via a redox-sensitive
disulfide bonding element that contributes to the loading efficiency, solubility, and stability
of PTX. Drug release is controlled by redox reactions.

Researchers at Shanxi University, Taiyuan [159], have developed a nanocontainer
for cancer spot chemotherapy based on mesoporous silica loaded with epirubicin and
sequentially functionalized with bovine serum albumin (BSA) and folic acid (FA). Here,
the BSA molecule serves as a redox-sensitive agent and prevents untimely drug leakage
until the coating layer undergoes biological degradation in response to GSH exposure
by breaking the disulfide bond in BSA. GSH-induced drug release can be controlled by
adjusting the thickness of the polymer coating [160].

6. Antitumour Drugs in Mesoporous-Silica-Based Delivery Systems

The properties of mesoporous silica nanoparticles allow them to be used for the
delivery of both water-soluble and -insoluble anticancer drugs.

A drug widely used in oncology for the treatment of various cancers is paclitaxel. The
poor water solubility of paclitaxel makes its use difficult. Active research is underway
regarding loading paclitaxel into the pores of MSNs, with the aim of optimising treatment,
reducing side effects, and expanding its range of applications [161–163].

The standard drug of choice for pancreatic cancer monotherapy is gemcitabine (Gem).
However, due to its poor pharmacokinetics, there is a need to develop new delivery
systems for gemcitabine. In order to protect Gem from rapid metabolism in plasma,
MSNs with grafted aminopropyl and carboxyethyl groups have been produced [164]. The
encapsulation of gemcitabine in nanoparticles protects the molecule from degradation
and premature elimination from the body. Saini, K., et al. [165] developed a carrier for
gemcitabine based on mesoporous silica nanoparticles with diameters ranging from 42 to
64 nm to exploit the EPR effect. The particles with a pore diameter of 5.2 nm showed the
best drug loading of 14.92% and the highest release of 58% at pH 5.5.

The most widely used drug for the treatment of a significant number of malignant
neoplasms is the cytotoxic anthracycline antibiotic doxorubicin. One of the possible ways
of reducing the toxicity of doxorubicin is the use of nanoscale transport systems for its
transfer. Doxorubicin has intrinsic fluorescence in the red region of the spectrum (λexc/λem
495/595 nm), so it is a convenient target for studying drug transport processes, including
their intracellular penetration and release [166]. DOX is actively used as a model drug for
evaluating drug loading and delivery using a variety of nanomaterials, including MSNs
(Table 2).

Table 2. Types of delivery systems for the anticancer drug doxorubicin based on mesoporous silica.

Surface Modification Method of Coat-
ing/Functionalisation Study Model/Release In Vitro/In Vivo Evaluation Ref.

Polyethyleneimine and
polyethylene glycol

copolymer
(co-PEI-PEG)

Graft copolymerisation

Human carcinoma
xenograft in nude mice

after intravenous
injection/-

-/Reduced particle opsonisation,
improved doxorubicin delivery to

tumour xenograft site, reduced side
effects

[119]

Poly-N-
isopropylacrylamide—

polyethylene glycol
diacrylate

(pNIPAm-co-PEGDA)

Surface radical
polymerisation

Mouse models of
subcutaneous human

sarcoma
xenograft/Release

triggered by endogenous
protease

-/Offers colloidal stability,
temperature sensitivity, prolonged

circulation in the blood, high loading
capacity, and customisable release

[116]
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Table 2. Cont.

Surface Modification Method of Coat-
ing/Functionalisation Study Model/Release In Vitro/In Vivo Evaluation Ref.

Poly-N-
isopropylacrylamide—

methacrylic acid
p(NIPAm-co-MAA)

Precipitation
copolymerisation method

Model buffer solutions;
mice carrying murine

sarcoma cell line
S-180/Sensitive to pH

change

Great antitumour activity. DOX
release at pH = 5.0 85.2% ± 4.8 for

48 h and 12.9% ± 2.2 at
pH = 7.4/Significantly increased the

duration of drug circulation and
decreased DOX accumulation in the

heart

[136]

Poly-N-
isopropylacrylamide—

methacrylic acid
p(NIPAm-co-MAA)

Precipitation
copolymerisation method

Phosphate buffer (PBS)
with different pH values
(7.4 and 5.0) and human
cells (HeLa)/Sensitive to

temperature and pH
changes

At pH 7.4, 9–12% of DOX was
released in 8 h at 37 ◦C or 50 ◦C. At
pH 5.0, the release was 19% at 37 ◦C
and 44% at 50 ◦C for 8 h. HeLa cells

exhibited low cytotoxicity and
efficient cellular uptake of

MMSN@P(NIPAM-co-MAA)
nanoparticles when incubated for 4 h

and 48 h/-

[137]

Sericin (Ser)
Covalent envelopment

(cross-linking with
glutaric aldehyde)

Phosphate buffer (PBS)
with different pH values,
human cells (HeLa (liver

cancer), HepG2
(hepatocytic carcinoma)

and MCF-7 (breast cancer),
female BALB/c mice

/Sensitive to pH change

The loading efficiency of DOX was
29.1%. DOX release rates: 16.4% and
24.1% at pH 7.4, and 6.5, respectively,
for 72 h. Under acidic conditions (pH

5.0), 53.9% was released within
72 h/No significant cardiac damage

or degeneration were observed in
mice treated with DOX@SMSNs

[139]

Gelatin (Gel)

Formation of the coating
layer through adsorption,
followed by crosslinking
with glutaric aldehyde

Hep-G2 cells, model buffer
solutions, xenografted
mice/Sensitive to pH

change

Good biocompatibility and efficient
intracellular drug release. Release

rates: approximately 18%, 44%, 54%
and 83% of the drug within 440 min

at pH 6.0, 5.0, 4.0 and 2.0
respectively/Tumour growth in mice
was significantly inhibited without
marked reduction in body weight

[74,140]

Polidophamine (PDA) Oxidative
self-polymerisation

Phosphate and acetate
buffer solutions for
simulating normal

physiological conditions
and

intracellular conditions of
cancer cells/Sensitive to

pH changes

Under normal physiological
conditions (pH 7.4), no detectable
release of DOX was observed. In

acidic solutions (pH 5.0, 4.0, 3.0), the
release rate increased as the acidity
increased. At pH 4.4, 60% of DOX

was released within 72 h/-

[133,167]

Pegelated polydophamine
modified with folic acid

Absorption,
self-polymerisation

PBS buffer, 4T1 cells
(breast cancer cells),

eight-week-old female
BALB/c mice/Sensitive to

pH change

DOX loading efficiency is up to
(35.43 ± 0.59%). DOX release: 80%
release at pH 5.0 vs. 20% release at
pH 7.4/Effectively accumulates in

4T1 tumour and demonstrates
superior tumour inhibition effect

[148,149]

Two bilayers
alginate/chitosan

Layer-by-layer assembly
method (LbL)

Model buffer solutions
(acetate, phosphate) and
HeLa cells/Sensitive to

pH change

Throughout the time period,
approximately 10.7%, 48.6%, and

60.1% of DOX was released at pH 6.8,
5.2, and 4.0,

respectively. The nanocarriers
exhibited sustained intracellular

DOX release and prolonged
retention of DOX in the nucleus/-

[150]

Polyamidoamine
(PAMAM) dendrimers

and chondroitin sulphate
(CS)

Layer-by-layer assembly
method (LbL)

Phosphate-buffered saline
(PBS)/Sensitive to pH

change

Slow and sustained release of DOX
and CUR at neutral pH, much faster
in an acidic environment (pH = 3),
35% DOX and 17% CUR released

within 28 h/-

[151]
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Table 2. Cont.

Surface Modification Method of Coat-
ing/Functionalisation Study Model/Release In Vitro/In Vivo Evaluation Ref.

Chitosan-polymethacrylic
acid (CS-PMAA) In situ polymerisation HeLa cells/Sensitive to

pH change

The release rate when the pH was
lowered to 5.5

reached 70 wt.% after 24 h, which is
almost four times higher than at

pH 7.4/-

[168,169]

Poly
N-vinylcaprolactam-

methacrylic acid
p(VCL- co -MAA)

Precipitation
copolymerisation method

Model buffer
solutions/Sensitive to
temperature and pH

changes

DOX release: 5.4% of drug in buffer
with pH 7.4 within 24 h, at pH 6.5

and pH 5.0, 34.1% and 64.2%,
respectively/-

[170]

Oligo ethylene glycol
acrylate—N,N′

-cystamine
bismethacrylamide

poly(OEGA-co-CBMA)

Grafting of crosslinked
copolymer

Phosphate buffered saline
PBS + dithiothreitol

DTT/By
reduction-oxidation

reactions

About 32% of the loaded DOX was
released in pure PBS after 25 h. In
PBS DTT solution (20 × 10−3 M),

85% of the drug was released after
10 h/-

[171]

Polyglycerol methacrylate
(PGOHMA) and
cucurbituryl (CB)

Self-assembly technology
layer—by —layer (LbL)

Model buffer solutions,
BALB/c nude mouse

models/Sensitive to pH
change

DOX molecules are tightly held
inside the nanopores at pH = 7.4.
When the pH is lowered to 5, the

interaction between CB and
PGOHMA layers weakens, and DOX
is released/Showed high inhibition
of tumour growth by 63% on day 28

[172]

Copolymer of
dimethylamino-ethyl

acrylate and polyethylene
glycol methacrylate
Poly(DMAEA-co-

PEGMA)

Use of a combined “RAFT”
polymerisation and “Graft

From” strategy

Hela cell xenografts in
nude mice, Model buffer

solutions/Sensitive to pH
change

Rapid drug release when soaked in
acidic solution (pH 5.5)

Soaking in acidic solution (pH
5.5)/Significantly increased EPR

effect and tumour growth inhibition
rate of 68.7%

[173]

Diblock copolymers of
polyethylene oxide and

L-lactide
(Poly(EO-co-LLA))

Block copolymer grafting

Model buffer
solutions/Sensitive to
temperature and pH

changes

Release at 45 ◦C is easier than at
25 ◦C. Reaching the maximum

release (92.7%) at pH 4 takes only
24 h. When the pH value is increased

to 7.4., the release decreases to
38.0%/-

[174]

Poly
N-succinimidylacrylate

(PSA)

Grafting with an acetal
linker

Model buffer solutions
(acetate, phosphate),

HepG2 cell line/Sensitive
to pH change

The cumulative amount of DOX
released is up to 37.9% at pH 6.5,

78.4% at pH 5.0, and 93.5% at pH 2.0.
Capable of targeting accumulation in

cancer cells and effectively
destroying cancer cells/-

[128]

Polyethylene glycol-co-
polyvinylpyridine

(PEG-co-PVP)

Through electrostatic
interaction with grafted

carboxylate groups

Model buffer solutions
(acetate,

phosphate)/Sensitive to
pH change

At neutral pH (pH = 7.4), about 34%
of DOX is released within 72 h. A

change in pH = 5.5 results in
increased release (about 75% within

72 h)/-

[175]

Boltorn H40 polyester,
amine-functionalised
polyethylene glycol

(PEG-H40)

Grafting of H40 and
modification with tertiary

amine and PEG via
chemical bond formation

Model buffer solutions,
MCF-7 cells, male Balb/c

mice
/Sensitive to pH change

Payload efficiency: 36.5%; capture
efficiency: 57.4%. DOX release at pH

7.4 and pH 6.8 was only 9.7% and
20%, respectively, after 48 h, and

increased to 49% at pH 5.5/Very low
cytotoxicity in mouse kidneys and
liver and excellent biocompatibility

with blood

[176]

Polyacrylamide (PAA) Graft polymerisation
method

Aqueous solution of
nanoparticles containing
doxorubicin/Sensitive to

temperature change

Released 11.5 ± 2.4% in aqueous
solution at 37 ◦C after 30 min and

67.6 ± 2.5% at 60 ◦C/-
[177]
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Table 2. Cont.

Surface Modification Method of Coat-
ing/Functionalisation Study Model/Release In Vitro/In Vivo Evaluation Ref.

Poly (2-diethylamino-
ethyl methacrylate)

(PDEAEMA)

Surface-initiated radical
polymerisation with atom

transfer (ATRP)

Model buffer solutions
(phosphate, acetate), HeLa

cells/sensitive to pH
change, recovery, and light

At pH 7.4, less than 12% of DOX is
released

within 22 h, and at pH 5.0, about 64%
of DOX is released. After pH 5.0

treatment with dithiothreitol (DTT),
the most complete release of DOX

occurs, enhanced by UV
irradiation/-

[178]

Polyaspartic acid (PAsA)
Conjugation on the
surface of MSNs via

amide bonding

PBS with different
pH values, HepG2

cells/sensitive to pH
changes

DOX@P-MSNs were efficiently
internalised by HepG2 cells, with
73% inhibition of cell growth and

only 30% and 33% inhibition of cell
growth with free DOX and

DOX@MSNs. 10% of DOX was
released at pH 7.4 and almost 56% at

pH 4.5/-

[179]

Folic acid (FA)
Conjugation on the
surface of MSNs via

amide bonding

Model buffer solutions,
ZR-75-1 and T47-D cell
lines/sensitive to pH

change

The loading efficiency of DOX is
about 68%. At pH 7.4 < 20% and at

pH 5.5 about 45% of DOX is released
within 24 h. Empty MSN-FA shows

no cytotoxicity, DOX@MSN-FA is
significantly more effective in
inducing cell death than DOX

solution at different concentrations/-

[180]

The likelihood of killing cancer cells can be increased by using combination chemother-
apy [181]. In this case, the nanocarrier contains synergistic pairs of chemotherapeutic drugs,
allowing lower doses of each drug to be used, thereby reducing the toxicity and side effects
of the treatment [182]. By selecting the optimal drug loading ratio, the best synergistic
effect can be achieved. For example, in the aforementioned work [158], a group of scientists
developed a carrier based on MSNs for the combined delivery of DOX and PTX with high
selectivity between cancer cells and healthy breast cells. In this delivery system, PTX, using
a disulfide-linked linker, was covalently attached to the surface of MSNs loaded with DOX.
To control drug release under the acidic conditions of the tumour microenvironment, the
obtained particles were electrostatically coated with polystyrene sulphonate. Thus, a dual
pH- and redox-sensitive delivery system based on MSNs for the delivery of DOX and
PTX was obtained. Another carrier providing a synergistic combination of Gem and PTX,
based on lipid-coated mesoporous silica, was proposed by Meng, H. et al. [183]. Combined
delivery, using MSNs, showed significantly higher efficacy in suppressing pancreatic cancer
than drug mixtures or monotherapy.

There are studies on loading chemotherapeutic drugs such as cisplatin [184,185],
sorafenib [186,187], temozolomide [188,189], 5-fluorouracil [190–192], irinotecan [193,194],
and epirubicin [120,159]. This is just a small list of examples of anticancer drugs that can be
encapsulated in nanoparticle MSNs for cancer treatment. This approach continues to be
developed and investigated to improve the efficacy and safety of chemotherapy and other
cancer treatments.

7. Conclusions

Mesoporous silica nanostructures are promising drug carriers. They possess many
desirable properties, such as a large surface area, tuneable particle size and morphology,
and easy surface functionalisation. However, despite the significant potential of MSNs in
the treatment of tumours and other diseases, the understanding of their behaviour in the
human body remains limited. The lack of data on the long-term effects of MSNs on the
body is a significant barrier to moving this technology to a broader level of clinical applica-
tion. It is necessary to establish a better understanding of the mechanism of mesoporous
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silica degradation in vivo and investigate the consequences of long-term use of MSNs as
drug carriers.

Another important issue directly affecting MSNs’ efficacy and safety for patients is
the increased drug load in nanoparticles. The higher the drug content in the nanocarrier,
the lower the accumulation of silica in body tissues. There is a lack of information on
the physicochemical patterns of interaction of MSNs with drugs. A deeper study of their
interaction mechanism will make it possible to control the drug loading level and drug
release, which is very important for the development and optimisation of drug delivery
strategies based on MSNs.

Unlike other nanocarriers, the fabrication of MSNs is a simple and cost-effective
process. Importantly, the functionalisation of the nanoparticle surface is of key importance
in the context of developing effective delivery systems for anticancer agents. Various
surface modification options allow the design of MSNs with a controlled mechanism of
drug release under the influence of various stimuli such as changes in pH, temperature,
or the presence of certain molecules. By modifying the surfaces of mesoporous silica
nanoparticles, several important goals can be achieved:

- Improving biocompatibility;
- Increasing the ability of nanoparticles to retain drugs;
- Increasing the specificity of delivery;
- Allowing controlled drug release.

This research holds great potential for the development of intelligent drug delivery
systems that can respond to specific conditions in the body and provide optimal treatment
efficacy with minimal side effects.

In addition, various ligands can be attached to the surfaces of MSNs, allowing them
to be used for disease detection and diagnosis. This is particularly important for the early
detection of cancer. MSNs offer a wide range of promising affordances in the field of
theranostics, which involves the integration of diagnostic and therapeutic capabilities in a
single system. This facilitates a more effective and personalised approach to patient care.

Overall, understanding all the above aspects will help developers and researchers to
better utilise the potential of MSNs as drug carriers and overcome the current limitations
regarding their clinical use.

Undoubtedly, an ideal nanotransporter for the delivery of pharmacological drugs
should not only provide effective functional characteristics but also have high manufac-
turability in the production process. Only when these requirements are met will there be
real prospects for the successful commercialisation of this product and its introduction into
clinical practice.
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