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Abstract: Nafion, a versatile polymer used in electrochemistry and membrane technologies, exhibits
complex behaviors in saline environments. This study explores Nafion membrane’s IR spectra during
soaking and subsequent drying processes in salt solutions at various concentrations. Utilizing the
principles of Fick’s second law, diffusion coefficients for these processes are derived via exponential
approximation. By harnessing machine learning (ML) techniques, including the optimization of
neural network hyperparameters via a genetic algorithm (GA) and leveraging various regressors,
we effectively pinpointed the optimal model for predicting diffusion coefficients. Notably, for the
prediction of soaking coefficients, our model is composed of layers with 64, 64, 32, and 16 neurons,
employing ReLU, ELU, sigmoid, and ELU activation functions, respectively. Conversely, for drying
coefficients, our model features two hidden layers with 16 and 12 neurons, utilizing sigmoid and
ELU activation functions, respectively.

Keywords: Nafion; IR spectroscopy; machine learning; diffusion; neural networks; fine-tuning
optimization; genetic algorithm

1. Introduction

Nafion [1], a widely used polymer in various applications such as electrochemistry [2],
fuel cells [3], and membrane technologies [4], exhibits complex behaviors in saline environ-
ments, particularly regarding swelling and drying processes. Gaining insights into these
phenomena holds paramount importance for optimizing the performance of Nafion across
diverse implementations.

1.1. Nafion in Salt Solutions

The investigation of Nafion in salt solutions is extensively covered in many literary
sources over the last six decades, encapsulating key insights highlighted in the diagram
depicted in Figure 1. One of the first [5] articles in the realm of this field of science
investigates the sorption behavior of water and aqueous salt solutions of Nafion and reveals
temperature and concentration dependencies of sorption, apparent activation energies for
water diffusion in different membrane forms, and a maximum in sorption curves during
neutralization, attributed to differences in diffusion coefficients. Additionally, diffusion
coefficients of various cations were determined, showing a linear relationship with the
charge-to-separation ratio, and water sorption was found to be strongly dependent on both
the degree of neutralization and salt type, with a linear correlation between the number of
water molecules absorbed and the degree of neutralization for all salts studied.

Polymers 2024, 16, 1204. https://doi.org/10.3390/polym16091204 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym16091204
https://doi.org/10.3390/polym16091204
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0009-0008-8986-402X
https://orcid.org/0000-0003-1944-1546
https://orcid.org/0000-0002-3959-2969
https://orcid.org/0000-0003-4263-2367
https://orcid.org/0000-0002-9648-2395
https://doi.org/10.3390/polym16091204
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym16091204?type=check_update&version=1


Polymers 2024, 16, 1204 2 of 18

Studying Nafion’s sorption behavior, the 
influence of temperature and concentration 
on sorption, determining water and various 
cation diffusion coefficients, and correlating 
water sorption with degree of neutralization 

and salt type.

1970s
Analyzed Nafion membranes' structure with SANS 
and SAXS, identifying peaks for crystalline and ion 

regions.

Investigated superselectivity in NaCl solutions, 
noting the impact of swelling on electrolyte 

sorption.

Developed molecular models to predict membrane 
salt solubility and anion transport.

1980s

Created a model for ion uptake, accurately 
predicting salt mixtures' behavior.

Used conductivity measurements and 
electrophoresis to assess ion mobilities and 

transport numbers.

Developed a kinetic model revealing 
correlations between diffusion coefficients and 
polymer-phase volume fraction in ion-exchange 

membranes.

1990s

Investigated stress-strain behavior of Nafion, 
considering water content, solvents, temperature, 

and cation replacement.

Explored Nafion's properties in methanol/water 
mixtures, identifying aggregation processes and 

critical concentrations.

Studied Nafion membrane transport in non-aqueous 
electrolytes, revealing insights into sorption and 

permeation behaviors.

Examined Nafion swelling in methanol-water-salt 
solutions, noting effects of salt addition and 

variations based on cation ionic radius

2000s

Used FTIR-ATR spectroscopy to study water 
dynamics in Nafion at different humidities.

Explored water behavior in various Nafion 
membranes, revealing insights for PEMFC water 

management.

Investigated Nafion dispersion in alcohol-water 
solutions to enhance PEMFC catalyst layer 

performance.

Developed a model to simulate methanol uptake 
and swelling in hydrated Nafion, uncovering 

connections in membrane permeation 
processes.

2010s

MD simulations showed Nafion forming 
cylindrical aggregates influenced by 

concentration.

NMR analysis of Nafion hydration revealed 
varied numbers for different cations.

Study found air cavity formation in Nafion 
membranes due to water expulsion, with 

dynamics differing in water and salt 
solutions.

2020s

Figure 1. Retrospective overview of Nafion research in salt solutions: highlights of key topics from
top scientific articles from each decade.

Measurements of densities and expansion coefficients of various Nafions in both
acid and salt forms were provided in [6], investigating the effects of equivalent weights,
moisture contents, and uniaxial orientations. Densities appeared to be independent of the
equivalent weight but highly dependent on moisture content, with thin films showing
strong uniaxial orientation. Reproducible expansion coefficients were observed after an-
nealing, with distinct breaks in the linear expansion curve correlating with the material’s
glass transition and mechanical dispersion. The experimental scatter in densities suggests
possible microphase separation or partial crystallization of the polymer.

The physical structure of Nafion membranes in [7] was probed using small-angle
neutron scattering (SANS) and small-angle X-ray scattering (SAXS). While acid-form sam-
ples exhibit two scattering peaks corresponding to crystalline and ion-containing regions,
amorphous salt-form samples lack the first peak, allowing for a detailed investigation of
the second peak, indicative of water-swollen regions.

Experimental measurements, including zero-current membrane potential, electrolyte
sorption, self-diffusion fluxes of co-ions and counter-ions, co-ion fluxes under constant cur-
rent, and membrane electrical conductance, were conducted in [8] to investigate the factors
contributing to the superselectivity of Nafion membranes in NaCl solutions. Swelling was
found to influence these factors, with expanded membranes exhibiting higher electrolyte
sorption. However, the molarity of the sorbed electrolyte remained unchanged as swelling
increased. The loss of superselectivity was attributed to a decrease in the mobility ratio of
counter ions to co-ions.

The “cluster network” structure of Nafion membranes was utilized in [9] to de-
velop models for membrane salt solubility and anion transport. Salt uptake was influ-
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enced by the size and charge of membrane clusters, while anion transport parameters
depended on the membrane tortuosity and electrostatic forces in the interconnected pores.
The models accurately predicted cation concentrations and the concentration dependence
of anion–membrane interaction parameters.

A molecular-level equilibrium partition coefficient model has been developed in [10]
to describe the uptake of single and multicomponent ions by a Nafion 117 cation exchange
membrane. The model assumes a cylindrical pore structure and considers changes in ion
solvation free energy during partitioning, as well as the orientation of solvent dipoles within
the membrane pores due to the strong electric field from fixed charge groups. Membrane
structure parameters, derived from experimental data on membrane porosity and X-ray
diffraction, are used to predict equilibrium cation concentrations within a 6% accuracy for
various aqueous salt mixtures. Analysis of computed electrostatic and hydration forces
suggests that ions with a higher surface charge density are excluded from the pore wall
region, similar to co-ions.

The overall transport characteristics of various cationic species in Nafion® 117 mem-
branes, including equilibrium salt and solvent uptake to determine membrane chloride
concentration, porosity, and water content, were presented in [11]. Conductivity measure-
ments via impedance spectroscopy were conducted for sodium and proton cationic forms,
while the electrical mobilities of sodium, nickel, and silver ions were determined using
electrophoresis. Additionally, combining these results allowed for the determination of the
sodium transport number in the Nafion® 117 membrane equilibrated with NaCl solution.

A sophisticated kinetic model is developed in [12] to study the coupled diffusion of
two counterions in an ion-exchange membrane, considering the impact of varying the
ionic composition on the membrane water content. Through numerical simulations, diffu-
sion coefficients of alkali metal cations in different Nafion forms are evaluated, revealing
a correlation between the membrane-to-aqueous ion diffusion coefficient ratio and the
polymer-phase volume fraction. This study suggests that while the polymer phase mainly
exhibits a steric effect, differences in the behavior between Nafion forms may be attributed
to distinct morphologies.

Analysis of Nafion membranes through a dynamic mechanical analysis and tension
film measurements was described in [13], observing a decrease in the initial slope of
stress–strain curves with an increasing water content and the addition of certain solvents,
and a decrease with increasing temperature. Additionally, the initial slope was found to
increase with the replacement of cations, following the order Li+, Na+, K+, Cs+, and Rb+.
Nafion in salt form typically exhibits an initial slope increase up to around 90 °C, followed
by a decrease with rising temperatures.

The dilute solution properties of Nafion in methanol/water mixtures was studied
in [14], revealing two aggregation processes: primary aggregation forming smaller, rod-like
particles (<103 nm) due to hydrophobic interactions, and secondary aggregation forming
larger particles (104 nm) attributed to ionic interactions. Critical concentrations of Cp
(1.0 mg/mL) and Cpp (5.0 mg/mL) mark transitions in Nafion aggregation conformations,
representing the formation of secondary ionic aggregations and the onset of self-assembly
of disordered segments, respectively.

Paper [15] highlighted that the study of transport phenomena across ion-exchange
membranes in non-aqueous electrolyte solutions remains limited, despite extensive re-
search in aqueous systems that significantly increased the understanding of transport in
aqueous–organic electrolyte solutions, particularly for applications like direct methanol
fuel cells. Investigating Nafion membrane behavior in methanol–water electrolytes aims to
shed light on its sorption and permeation properties, especially in the context of different
electrolyte compositions.

Using the optical method, paper [16] examined how Nafion 112 foil swells anisotropi-
cally in methanol–water–inorganic salt solutions. Their findings indicate that even small
amounts of inorganic salt in a methanol–water mixture affect both the rate and extent of
swelling. We studied the effects of various inorganic salts, including LiCl, NaCl, KCl, CsCl,
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CaCl2, CdCl2, K2CO3, KNO3, NH4Cl, and AgNO3. The swelling kinetics of Nafion in
ternary mixtures containing salt exhibited a maximum, suggesting that initially, methanol
diffusion is faster than ion transport. This experimental data suggest that the swelling of
Nafion decreases with an increase in the ionic radius of the cation.

Employing time-resolved Fourier transform infrared–attenuated total reflectance
(FTIR-ATR) spectroscopy to investigate water dynamics in Nafion at low and high hu-
midities was evaluated in [17]. At low humidities, non-Fickian behavior is observed due
to a reaction between water and sulfonic acid, while at high humidities, water-induced
relaxation in the polymer backbone leads to non-Fickian behavior. A diffusion–reaction
model and a diffusion–relaxation model were developed, providing valuable insights into
water transport mechanisms and relaxation phenomena in solid-state polymer electrolytes
like Nafion.

Water absorption, swelling, and self-diffusivity in 1100 equivalent weight Nafion were
analyzed across different temperatures and water activities in [18]. The study revealed a
decrease in free volume per water molecule and a transition in the diffusivity rate at a water
activity of four. Changes in hydrophilic domain connectivity were observed, informing the
determination of interfacial mass transport coefficients and the development of a diffusion
model for resolving water activity profiles.

An investigation of the swelling and diffusion behavior of a Nafion® 117 ion-exchange
membrane in mixed water–methanol solutions was presented in [19], analyzing the mem-
brane porosity and water/methanol uptake using Raman spectrometry. Permeation experi-
ments, considering adjacent diffusion boundary layers (DBLs) and the methanol diffusion
coefficient’s dependency on concentration, were conducted under various conditions.
Numerical fitting of experimental data determined the DBL thickness and methanol perme-
ability, revealing the significant impact of DBL diffusion resistance on overall permeability,
even at high rotation speeds. This study derived an equation relating the apparent non-
electrolyte permeability to the true membrane permeability and diffusion layer thickness,
following Helfferich’s approach.

The optimization of water management in proton exchange membrane fuel cells is
crucial for advancing this technology. One study [20] utilized SANS to investigate water
sorption processes, revealing flat water concentration profiles across the membrane under
different equilibration conditions. The rapid swelling kinetics of a Nafion membrane
immersed in liquid water, completing in less than a minute, is also reported for the first
time, offering valuable insights into membrane behavior.

Exploration of water uptake and salt transport across different Nafion membranes
in various aqueous salt solutions was investigated in [21], showing that water uptake
increases with membrane thickness and decreases with cation size. The results also reveal a
decrease in the integral permeability coefficient with membrane thickness, while the effect
of electrolyte type on this coefficient is minimal for thicker membranes.

The impact of water/alcohol composition on the dispersion of H-Nafion® in water/1-
propanol and water/ethanol solutions was described in [22], which is crucial for catalyst
layer performance in proton exchange membrane fuel cells (PEMFCs). Utilizing dynamic
light scattering (DLS), small-angle X-ray scattering (SAXS), and nuclear magnetic resonance
(NMR) spectroscopy, this paper reveals that 1-propanol induces notable changes in rod-like
particle characteristics, suggesting implications for enhancing PEMFC performance.

Diffusion within polymer electrolyte membranes is often concurrent with time-dependent
processes like swelling and polymer relaxation, limiting their ability to prevent molecular
crossover during operation. To explore the coupling of such changes with the permeation
process, a stochastic multiscale reaction–diffusion model was developed in [23], simulating
methanol uptake and the swelling of hydrated Nafion. Comparison with experimental data
suggests that a reaction-limited local response to an increasing methanol concentration best
matches the observed behavior, indicating that interactions between methanol and Nafion
lead to increased permeation across the membrane.
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Coarse-grained molecular dynamics simulations elucidated the self-assembly behavior of
Nafion ionomers in 1-propanol (NPA)/water solutions, revealing the formation of cylindrical
aggregates with diameters of 2–3 nm [24]. The size and morphology of these aggregates
were observed to vary nonlinearly with the ionomer concentration and NPA/water fraction,
influenced by electrostatic repulsion among sulfonate groups and modified significantly upon
salt addition, forming larger disk-shaped and secondary aggregates.

The hydration behavior of Nafion 117 membranes in alkaline ion forms was exam-
ined using high-resolution 1H NMR [25], revealing different hydration numbers for Li+,
Na+, and Cs+ cations [26]. Cation self-diffusion coefficients, measured for the first time
using pulsed-field gradient NMR, displayed a trend of Li+ ≤ Na+ > Cs+, with distinct
activation energies indicating differences in diffusion behavior. Ionic conductivities calcu-
lated from these coefficients closely matched experimental values obtained via impedance
spectroscopy, but with slightly higher estimations.

The study in [27] examines the behavior of Nafion membranes when swelling is lim-
ited to spaces smaller than 300 µm, leading to the formation of air cavities due to the
expulsion of water from swollen polymer fibers. Investigating the collapse dynamics of
these cavities in deionized water [28] and aqueous salt solutions reveals differing charac-
teristic times, suggesting potential implications for pharmaceutical preparation processes
requiring standardized dilution protocols.

1.2. Nafion and ML

ML presents a promising approach to optimize PEMFC performance, addressing
challenges in cost and efficiency. By extracting patterns from experimental or simulation
data, ML can predict outputs and reduce both experimental and computational costs. ML
has demonstrated success in tasks such as predicting active electrocatalysts; optimizing
membrane electrode assembly (MEA) [29], especially for predicting catalyst utilization [30],
activation overpotential [31], maximum power densities, and I-V curves [32]; as an oxygen
reduction reaction (ORR) electrocatalyst [33], especially regarding OH adsorption ener-
gies [34,35], concentration of surface microstructures and surface facets and clustering for
identifying archetypes of Pt NPs [33]; and designing efficient flow channels [36], revolu-
tionizing research in this field. Paper [37] reviews ML applications in optimizing PEMFC
performance, offering insights for newcomers and outlining future directions for devel-
opment. Figure 2 showcases the applications of ML methods in PEMFCs for enhancing
performance and efficiency.

Study [38] utilized ML to analyze a database comprising 789 data points from 30 recent
publications on polymer electrolyte membrane (PEM) electrolysis. Box whisker plots
identified factors such as pure Pt at the cathode surface, Ti at the anode support, and specific
compositions at the anode surface that led to higher performance. Principal component
analysis (PCA) [39] highlighted risk factors for a low performance, including certain
compositions at the cathode and anode surfaces. Classification trees identified the cathode-
surface Ni mole fraction and the anode-surface Co mole fraction as crucial variables for
electrolyzer performance, while regression trees successfully modeled the polarization
behavior with an RMSE value of 0.18.

ML models, including polynomial and logistic regression, were proposed in [40] to
predict the optimal design of PEM electrolyzer cells. Trained on 148 samples and validated
on 16, the models accurately predicted eleven parameters based on inputs such as the
hydrogen production rate and cell design. Hydrogen production rates measured using a
custom-made PEM electrolyzer cell closely matched the simulation results, indicating the
effectiveness of the models. This approach offers a cost-effective and time-saving solution
for developing water electrolyzer cells for future hydrogen production.

Modern industries are increasingly adopting hydrogen as an energy carrier to decar-
bonize the electricity grid. However, the advancement of PEMFCs, which use hydrogen
to produce electricity, is hindered by unpredictable performances and failure events like
flooding and dehydration. To address this, paper [41] proposes a machine learning model
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to predict these failure modes by analyzing cell voltage and current density data. Utilizing
advanced regression techniques like support vector machine, Decision Tree Regression,
Random Forest Regression, and artificial neural networks, this model accurately forecasts
flooding- and dehydration-induced failure events based on features derived from cell
polarization data. Validation with real-time test data confirms the model’s reliability.

Supervised
 learning: 

classification 

Supervised
 learning:

 regression 

ML Application for PMEFC

ORR
electrocatalyst 

MEA 

Flow field 

Single cell 

Stack 

Clustering for identifying
 archetypes of Pt NPs 

Concentration of surface 
microstructures and 

surface facets

Activation 
overpotential 

Maximum power 
density and I-V curves 

Current density 

Output 
voltage 

Pressure 

Cell potential 

Stack voltage 

Voltage 
consistency 

OH adsorption 
energies 

Catalyst 
utilization 

Figure 2. ML methods in PEMFCs.

1.3. Aim of this Study

A significant body of research has been dedicated to investigating Nafion in salt solu-
tions, spanning over several decades and encompassing various aspects such as sorption
behavior, structural characterization, and ion transport properties. Despite the extensive
use of machine learning (ML) in various aspects of Nafion-based PEMFCs, its application
to predict diffusion coefficients for Nafion membranes based on infrared spectroscopy (IR)
data remains unexplored. This presents a significant gap in our understanding, as accurate
prediction of diffusion behavior is crucial for optimizing the performance and durability
of PEMFCs. Therefore, the objective of this research is to fill this gap by leveraging the
IR spectra of Nafion membranes to develop ML models capable of predicting diffusion
coefficients accurately. By harnessing the information contained within IR spectra, we aim
to advance our understanding of Nafion membrane ion-exchange behavior.

2. Materials and Methods

In our study, we employed Nation N117 cast films (Sigma Aldrich, St. Louis, MI, USA)
with a thickness of 175 µm and an area of 1 × 1 cm2. The experimental setup utilized an
analytical Fourier spectrometer FSM 2201 (LLC Infraspec, St. Petersburg, Russia), which
is also fully described in works [27,42]. This spectrometer featured a total spectral range
spanning from 370 to 7800 cm−1 (equivalent to 1.3–27 µm), with a spectral resolution of
1.0 cm−1 and an absolute error of ±0.05 cm−1.

This investigation was conducted by measuring the infrared (IR) spectra of Nafion
membranes in various salt solutions, such as LiCl, KCl, and NaCl, at different concen-
trations (0.1 M, 0.01 M, 0.001 M). All water-based solutions were made using deionized
water with a resistivity of 18 MΩ·cm, obtained from a four-cartridge Nanopure Infinity
System (Barnstead, Dubuque, IA, USA). Special attention was paid to the dynamics of the
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extremum in the range of valence vibrations around 5200 ± 500 cm−1 during the soaking
and subsequent drying of the Nafion membrane at various time intervals. A time interval
of 3–10 min separated each set of measurements. All measurements were conducted at
room temperature (23 °C).

Preprocessing of the IR spectra involved baseline correction by identifying local min-
ima within the specified spectral range, which were presumed to represent the underlying
baseline. Furthermore, aligning these spectral minima facilitated correction for shifts
induced by factors like instrument drift or fluctuations in sample preparation.

Subsequently, the obtained minimum values at different time points were plotted in
graphs (Figures 3 and 4) and then fitted with an exponential function; for swelling, this
was a decreasing exponential, and for drying, this was a saturation curve. Fitting was
conducted using a custom Python 3.10 code, specifically utilizing the module Model from
the lmfit library [43]. This module allowed for the implementation of mathematical models
to fit the obtained minimum values at different time points. The lmfit library provided
robust tools for parameter estimation and curve fitting, enabling precise characterization of
the time-dependent behavior observed in the experimental data.
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Figure 3. Nafion soaking kinetics for salt solutions of LiCl (a–c), KCl (d–f), NaCl (g–i) at salt
concentrations of 0.1 M, 0.01 M, and 0.001 M, respectively.
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Figure 4. Nafion drying kinetics with saturation approximations for salt solutions of LiCl (a–c), KCl
(d–f) at salt concentrations of 0.1 M, 0.01 M, and 0.001 M, respectively.

Then, ML models were applied to the gathered data. Specifically, the concentration
information and salt solution compositions were utilized as input features, while the
coefficients of the fitted exponential functions, representing self-diffusion coefficients,
served as output (predictive) features.

In modern science, there is a constant need to optimize experimental processes for
more efficient data acquisition. It was necessary to conduct numerous measurements to
obtain diffusion coefficients (A, B for soaking and C, D, E for drying) at various concen-
trations of salts and salt solutions. Each measurement required significant time—up to
several days—to yield reliable results. The figures presented in our paper (Figures 3 and 4)
illustrate only fragments of data collected during the first 6 h of the experiment.

In light of this, we propose an approach based on machine learning [44,45], specifically
neural networks (NNs) [46,47], to predict diffusion coefficients based on existing data. This
approach could offer an estimate of the diffusion coefficients under various experimental
conditions, helping researchers determine the necessity of conducting specific measurements.

The advantages of using NNs in this context include a high flexibility and the ability
to adapt to complex nonlinear relationships between input and output data [48]. NNs can
extract hidden patterns from data and make accurate predictions even in the presence of
noise and incomplete data. The use of NNs in optimizing experimental processes [49] can
significantly reduce the time and resources required to obtain valuable data, contributing
to faster progress in scientific research.

3. Results
3.1. IR Spectra and Fitting

The obtained results of IR spectra during the swelling and drying processes of Nafion
membranes at various time intervals are presented in Figures 5 and 6. Each graph corre-
sponds to Nafion’s IR spectra at a specific concentration of a single soaking or drying salt.
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Figure 5. IR spectra of Nafion membranes during soaking in salt solutions of LiCl (a–c), KCl (d–f),
and NaCl (g–i) at salt concentrations of 0.1 M, 0.01 M, and 0.001 M, respectively.

The highlighted blue bands in these figures indicate the specific range of interest, within
which the identified minima were subsequently fitted over time using exponential functions.
The results of these fittings can be observed in Figure 3 for soaking, with approximation function:

A · e−B·x + C (1)

and for drying, with approximation function:

Ã · e−B̃·x

C̃ + e−D̃·(x−Ẽ)
(2)

in Figure 4. These functions exhibit the most robust behavior suitable for an automated
approximation process.
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The fitting was performed with a 95% confidence interval [50] which indicates that the
range of values obtained from the exponential fitting has a 95% probability of containing
the true population parameter.
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Figure 6. IR spectra of Nafion membranes during drying in salt solutions of LiCl (a–c) and KCl
(d–f) at salt concentrations of 0.1, 0.01, 0.001, respectively.

The coefficients obtained from the fitting graphs are essential for determining the
self-diffusion coefficients of ions diffusing into or out of a membrane sample in contact
with an equilibrating solution. This approach relies on several assumptions [51]: firstly, the
membrane governs the diffusion process; secondly, the self-diffusion coefficient within the
membrane remains constant; and thirdly, the diffusion process is one-dimensional.

The validity of the first assumption hinges on ensuring that the concentrations of
ions [52] at both boundaries of the membrane match those in the bulk solution, achieved
through vigorous stirring of the membrane sample in the equilibrating solution [53].
The concentration profile of radiotracer ions diffusing into or out of the membrane is
a function of both time and space, following Fick’s second law [54]:

∂c
∂t

= D
∂2c
∂x2

Here, c represents the concentration of ions within the membrane, D denotes the
self-diffusion coefficient of the ion within the membrane, and x is the spatial coordinate.

Analytical solution of Fick’s second law is given by the expression [55,56]:

n(tk) = n∗
[

1 −
(

8
π2

){
e−Dm

H2Oπ2tk/L2
+

1
9

e−9Dm
H2Oπ2tk/L2

+ ...
}]

where n(tk) and n∗ represent the quantities of ions in the equilibrating solution at fixed
times tk and t∞, respectively. Dm

H2O denotes the self-diffusion coefficient of water within
the membrane, and L represents the thickness of the membrane.

All obtained results of approximations were compiled into Tables 1 and 2 for clarity.
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Table 1. Obtained coefficients A, B and C (see Equation (1)) at various concentrations of salts in
different solutions from Figure 3.

Salt Concentration A B C

LiCl
0.1 M
0.01 M
0.001 M

0.37
0.18
0.41

−1.63
−1.51
−2.25

0.32
0.31
0.31

KCl
0.1 M
0.01 M
0.001 M

0.21
0.34
0.40

−1.76
−1.78
−2.31

0.53
0.38
0.32

NaCl
0.1 M
0.01 M
0.001 M

0.28
−7.31
0.39

0.3
−2.49
0.41

0.38
−1.89
0.33

Table 2. Obtained coefficients Ã, B̃, C̃, D̃, Ẽ (see Equation (2)) at various concentrations of salts in
different solutions from Figure 4.

Salt Concentration Ã B̃ C̃ D̃ Ẽ

LiCl
0.1 M
0.01 M
0.001 M

1.59
3.48
1.07

0.14
0
0

2.77
4.46
1.49

0.14
−0.11
−0.19

−5.54
−17.47
−5.03

KCl
0.1 M
0.01 M
0.001 M

0.75
0.7
1.14

0
0
−0.02

0.91
0.86
0.78

−0.16
−0.14
−0.13

−4.87
−0.44
−7.22

3.2. Neural Network (NN)-Based Model for Predicting Diffusion Coefficients

In this study, we utilized an NN to forecast diffusion coefficients using a dataset
encompassing salt concentration, time (during which the approximation was conducted),
initial intensity, and intensity measured in the subsequent measurements, which is also
referred to as coefficient C. This coefficient essentially represents the average value derived
from all measurements taken from the second one onwards.

We have gathered all the necessary experimental parameters, such as concentration
and salt type, by conducting measurements including initial measurements, measurements
of coefficient C (which represent the average between the second and third measurements),
and measurements using time as the interval between the first and third measurement.
Our goal is to predict, using a neural network, coefficients A and B of exponential decay.
These coefficients reflect the long-term process of intensity change in IR measurements
during the soaking of Nafion membranes in water over time. Before initiating model
training, we conducted several steps of data preprocessing. Initially, we employed One-
Hot encoding [57] on the ’Salt’ column to transform categorical data into binary flags,
categorizing salts such as LiCl, KCl, or NaCl accordingly. Then, we scaled numerical
features using standardization [58] to ensure similar value ranges.

We employed a genetic algorithm (GA) approach to optimize the parameters of the
NN model [59,60] of TensorFlow [61] for predictive analysis. The aim was to develop an
accurate model for forecasting the properties of interest based on the input features derived
from experimental data. The methodology consisted of several key steps as follows:

1. Definition of a multi-layer NN architecture using the TensorFlow framework. The archi-
tecture comprised multiple dense layers with varying numbers of neurons and activation
functions, which were treated as parameters to be optimized by the genetic algorithm.

2. GA implementation using the DEAP (Distributed Evolutionary Algorithms in Python)
library. We defined the individuals as a combination of integers representing the
number of neurons in each dense layer and a categorical variable representing the
activation function. The GA aimed to optimize these parameters to minimize the
mean squared error (MSE) loss function of the NN model.
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3. GA iteratively evolved a population of candidate solutions (NN architectures) over
multiple generations. Each candidate solution was evaluated by training the cor-
responding NN model on the training dataset and computing its MSE loss on the
validation dataset. The fitness of each solution was determined by its validation MSE.

4. After a predefined number of generations, the GA selected the best-performing indi-
vidual (NN architecture) based on its validation MSE. We split the data into training
and testing sets in an 80/20 ratio. This architecture was then used to train a final NN
model on the entire training dataset.

5. The performance of the final NN model was evaluated on an independent testing
dataset to assess its generalization ability and predictive accuracy. The MSE loss on
the test dataset was calculated as a measure of model performance.

The results of hyperparameter optimization for the neural network using a genetic
algorithm (GA) are depicted in Figure 7, showcasing the performance metrics, including
loss and validation loss, for the best-performing architecture obtained through optimization.
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Figure 7. Average loss across generations during genetic algorithm optimization for predicting
(a) A and B soaking coefficients, (c) Ã, B̃, C̃, D̃ and Ẽ drying coefficients. Training and validation
loss history for the best model for predicting (b) A and B soaking coefficients, (d) Ã, B̃, C̃, D̃ and Ẽ
drying coefficients.

In addition to predicting the coefficients A and B which characterize the soaking
process in our study, we extended our model to predict the coefficients Ã, B̃, C̃, D̃, and Ẽ
obtained from infrared (IR) spectroscopy measurements during the drying phase of Nafion
membranes after soaking. This expansion allowed us to capture the dynamic changes in
material properties during both the soaking and drying stages. Notably, we also employed
hyperparameter optimization techniques using the GA to fine-tune the performance of
our predictive model. By optimizing these parameters, we aimed to enhance the model’s
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accuracy and robustness, thereby improving its ability to generalize and provide reliable
predictions across diverse experimental conditions.

As a result, the best model for predicting soaking coefficients included four hidden
layers (64, 64, 32, 16 neurons with ReLU [62], ELU [63], sigmoid [64] and ELU activation
functions [65], respectively), as well as an output layer with two neurons for predicting
coefficients A and B.

The best model for predicting drying coefficients included two hidden layers (16 and
12 neurons with sigmoid and ELU activation functions, respectively), as well as an output
layer with five neurons for predicting coefficients Ã, B̃, C̃, D̃, and Ẽ.

The uilized architecture for both cases of NNs is shown on Figure 8. Here, the input
layer’s dimension of X signifies the number of entities in the training dataset. With our
dataset limited by experimental constraints, utilizing NNs for coefficient estimation be-
comes necessary. However, the model’s parameters relative to the dataset size raise con-
cerns about overfitting. Balancing complexity and the dataset size is crucial for reliable
predictions. Further investigation is warranted.

dense_input InputLayer

input: output:

[(None, X)] [(None, X)]

dense Dense

input: output:

(None, X) (None, 64)

dense_1 Dense

input: output:

(None, 64) (None, 64)

dense_2 Dense

input: output:

(None, 64) (None, 32)

dense_3 Dense

input: output:

(None, 32) (None, 16)

dense_4 Dense

input: output:

(None, 16) (None, 2)

(a)

dense_5_input InputLayer

input: output:

[(None, X)] [(None, X)]

dense_5 Dense

input: output:

(None, X) (None, 16)

dense_6 Dense

input: output:

(None, 16) (None, 12)

dense_7 Dense

input: output:

(None, 12) (None, 5)

(b)
Figure 8. Diagram depicting the architecture of the NN for predicting diffusion coefficients (a) for the
soaking process and (b) for the drying process.

After compiling the model with the Adam optimizer [66] and MSE loss function [67],
we trained the model on the training dataset for 100 epochs [68], using a validation set to
assess performance and prevent overfitting.

At the end of training, we evaluated the model’s performance on the testing dataset
and obtained the loss value. We also made predictions for values A and B based on the
testing dataset, obtaining a test loss [69] of 0.44. The result is shown in Table 3.

Table 3. Real vs. predicted values for test dataset of diffusion coefficients for soaking Nafion.

Real A Real B Predicted A Predicted B

0.41 −2.25 0.36 −2.32
0.34 −1.78 0.35 −1.42

This approach demonstrates the effective use of NNs for predicting diffusion coeffi-
cients based on input parameters. The resulting model can be used to predict the values of
A and B with a high accuracy, which is an important step in diffusion research.

The performance of the optimized neural network model was compared against sev-
eral other regression algorithms, including Linear Regression, Ridge Regression, Lasso
Regression, Decision Tree Regressor, Random Forest Regressor, Gradient Boosting Regres-
sor, Support Vector Regressor (SVR), and Multi-layer Perceptron Regressor (MLPRegressor).
This comprehensive comparison enabled the assessment of the neural network’s predictive
capabilities relative to more traditional and state-of-the-art regression techniques, providing
valuable insights into its effectiveness across different modeling scenarios. The results are
shown in Tables 4 and 5.
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Table 4. Mean squared error (MSE) for different regressors for predicting A and B soaking coefficients.

Regressor A B

LinearRegression 0.825698 0.011197
Ridge 0.048564 0.127635
Lasso 0.265159 0.589168
DecisionTreeRegressor 0.012850 2.426850
RandomForestRegressor 0.138267 0.145108
GradientBoostingRegressor 0.002541 0.545394
SVR 0.012887 0.134859
MLPRegressor 0.056801 0.514195

Table 5. Mean squared error (MSE) for different regressors for predicting Ã, B̃, C̃, D̃, and Ẽ
drying coefficients.

Regressor Ã B̃ C̃ D̃ Ẽ

Linear Regression [70] 0.135808 0.000677 0.272925 0.016502 17.032002
Ridge [71] 0.146546 0.000236 0.445721 0.009340 17.608812
Lasso [72] 0.526937 0.002125 1.763845 0.003050 14.911644
Decision Tree Regressor [73] 0.070900 0.000200 0.009700 0.000650 12.932100
Random Forest Regressor [74] 0.103242 0.002025 0.992413 0.002571 15.126330
Gradient Boosting Regressor [75] 0.304507 0.000200 0.207288 0.001429 11.885889
SVR [76] 0.177954 0.006500 1.016009 0.005524 13.676221
MLPRegressor [77] 0.057762 0.055338 0.031318 0.067580 9.837034

4. Discussion

The derived diffusion coefficients reflect the rate at which different species, such as
protons or other ions, diffuse through the membrane [78,79]. Exponential coefficients play a
significant role in soaking and drying processes. In the case of soaking, particular attention
is given to the coefficient B, while in drying, coefficients B̃ and D̃ are considered.

In fuel cells, for instance, protons must efficiently transport across the membrane from
the anode to the cathode for electrochemical reactions to occur. The diffusion coefficients
help quantify how effectively this transport process happens. Higher diffusion coefficients
indicate faster movement of species through the membrane, which can lead to an improved
cell performance, a higher power output, and a better overall efficiency.

Moreover, these coefficients can provide insights into the membrane’s structural and
chemical properties. Changes in diffusion coefficients under different operating conditions
or with modifications to the membrane composition can reveal how alterations affect ion
transport and membrane performance. This understanding is crucial for designing Nafion
membranes tailored to specific applications, optimizing their performance and addressing
challenges such as durability, efficiency, and cost-effectiveness in fuel cells and other
electrochemical devices.

Here are some possible research directions in the application of neural networks for
predicting diffusion coefficients:

• Improving deep learning models: Research on developing more efficient and accurate
deep learning models for predicting diffusion coefficients. This may involve using
more complex network architectures and optimizing training parameters [80].

• Using recurrent neural networks (RNNs): Research on applying recurrent neural
networks to analyze time series data, such as changes in substance concentration over
time, to predict diffusion coefficients [81].

• Training on diverse datasets: Research aimed at training models on diverse and larger
datasets of diffusion data [82]. This can help improve the models’ generalization
ability and make them more applicable to various conditions and materials.
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• Investigating the influence of material structure: Research on analyzing the influence
of the material’s structure on its diffusion properties using neural networks [83]. This
may involve analyzing the microstructure of the material or its chemical composition.

• Integration of Physical Models: Research aimed at integrating physical diffusion
models with neural networks [84,85] to improve prediction accuracy. This can help
incorporate the physical laws underlying diffusion into model development.

• Application in multiscale modeling: Research on using neural networks in multiscale
diffusion modeling [86,87], allowing for the consideration of different temporal and
spatial scales of the process.

These research directions can help advance our understanding of diffusion processes
and develop more accurate and applicable models for their prediction.

It is imperative to acknowledge that further improvements in model accuracy necessi-
tate a continuous influx of data [88] by performing more experiments. A larger and more
diverse dataset would enable our models to capture a wider range of patterns [89] and
nuances inherent in the diffusion process, thereby refining their predictive capabilities
and bolstering their applicability across various experimental conditions. Also, it would
mitigate the risk of overfitting and enhance the generalizability of our models, ensuring
robust performance in real-world scenarios.

5. Conclusions

In conclusion, our study applied various machine learning approaches, including the
optimization of neural network hyperparameters using a genetic algorithm, as well as
employed different regressors to predict the coefficients governing the IR-based behavior of
ion diffusion in Nafion membranes immersed in salt solutions during soaking and drying
processes. These methodologies enabled us to enhance our understanding of the complex
diffusion processes occurring within Nafion membranes and provide valuable insights
into their behavior in different salt environments. Through the integration of advanced
analytical techniques with computational methodologies, our research contributes to the
ongoing efforts aimed at optimizing the performance of Nafion membranes in various
applications, such as fuel cells and electrochemical devices.

Author Contributions: Conceptualization, I.M. and V.T.; Data curation, I.M., D.D. and A.G.; Formal
analysis, V.T., A.G., V.N. and A.B.; Funding acquisition, V.T., A.G., V.N. and A.B.; Investigation, A.B.;
Methodology, I.M.; Project administration, V.T., A.G., V.N. and A.B.; Resources, I.M.; Software, I.M.,
D.D. and V.N.; Supervision, V.T., V.N. and A.B.; Validation, I.M. and D.D.; Visualization, I.M. and
A.G.; Writing—original draft, I.M., D.D. and V.T.; Writing—review and editing, V.T., V.N. and A.B.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Mauritz, K.A.; Moore, R.B. State of understanding of Nafion. Chem. Rev. 2004, 104, 4535–4586. [CrossRef] [PubMed]
2. Gerhardt, G.A.; Oke, A.F.; Nagy, G.; Moghaddam, B.; Adams, R.N. Nafion-coated electrodes with high selectivity for CNS

electrochemistry. Brain Res. 1984, 290, 390–395. [CrossRef] [PubMed]
3. Karimi, M.B.; Mohammadi, F.; Hooshyari, K. Recent approaches to improve Nafion performance for fuel cell applications: A

review. Int. J. Hydrogen Energy 2019, 44, 28919–28938. [CrossRef]
4. Banerjee, S.; Curtin, D.E. Nafion® perfluorinated membranes in fuel cells. J. Fluor. Chem. 2004, 125, 1211–1216. [CrossRef]
5. Takamatsu, T.; Hashiyama, M.; Eisenberg, A. Sorption phenomena in Nafion membranes. J. Appl. Polym. Sci. 1979, 24, 2199–2220.

[CrossRef]

http://doi.org/10.1021/cr0207123
http://www.ncbi.nlm.nih.gov/pubmed/15669162
http://dx.doi.org/10.1016/0006-8993(84)90963-6
http://www.ncbi.nlm.nih.gov/pubmed/6692152
http://dx.doi.org/10.1016/j.ijhydene.2019.09.096
http://dx.doi.org/10.1016/j.jfluchem.2004.05.018
http://dx.doi.org/10.1002/app.1979.070241101


Polymers 2024, 16, 1204 16 of 18

6. Takamatsu, T.; Eisenberg, A. Densities and expansion coefficients of nafion polymers. J. Appl. Polym. Sci. 1979, 24, 2221–2235.
[CrossRef]

7. Roche, E.; Pineri, M.; Duplessix, R.; Levelut, A. Small-angle scattering studies of nafion membranes. J. Polym. Sci. Polym. Phys.
Ed. 1981, 19, 1–11. [CrossRef]

8. Lindheimer, A.; Molenat, J.; Gavach, C. A study of the superselectivity of Nafion perfluorosulfonic membranes. J. Electroanal.
Chem. Interfacial Electrochem. 1987, 216, 71–88. [CrossRef]

9. Capeci, S.W.; Pintauro, P.N.; Bennion, D.N. The Molecular-Level Interpretation of Salt Uptake and Anion Transport in Nafion
Membranes. J. Electrochem. Soc. 1989, 136, 2876. [CrossRef]

10. Bontha, J.; Pintauro, P.N. Water orientation and ion solvation effects during multicomponent salt partitioning in a Nafion cation
exchange membrane. Chem. Eng. Sci. 1994, 49, 3835–3851. [CrossRef]

11. Lehmani, A.; Turq, P.; Périé, M.; Périé, J.; Simonin, J.P. Ion transport in Nafion® 117 membrane. J. Electroanal. Chem. 1997, 428, 81–89.
[CrossRef]

12. Samec, Z.; Trojanek, A.; Langmaier, J.; Samcova, E. Diffusion Coefficients of Alkali Metal Cations in Nafion® from Ion-Exchange
Measurements: An Advanced Kinetic Model. J. Electrochem. Soc. 1997, 144, 4236. [CrossRef]

13. Kawano, Y.; Wang, Y.; Palmer, R.A.; Aubuchon, S.R. Stress-strain curves of Nafion membranes in acid and salt forms. Polímeros
2002, 12, 96–101. [CrossRef]

14. Lee, S.J.; Yu, T.L.; Lin, H.L.; Liu, W.H.; Lai, C.L. Solution properties of nafion in methanol/water mixture solvent. Polymer 2004,
45, 2853–2862. [CrossRef]

15. Villaluenga, J.; Barragan, V.; Seoane, B.; Ruiz-Bauza, C. Sorption and permeation of solutions of chloride salts, water and methanol
in a Nafion membrane. Electrochim. Acta 2006, 51, 6297–6303. [CrossRef]

16. Randová, A.; Hovorka, Š.; Izák, P.; Bartovská, L. Swelling of Nafion in methanol–water–inorganic salt ternary mixtures.
J. Electroanal. Chem. 2008, 616, 117–121. [CrossRef]

17. Hallinan, D.T., Jr.; De Angelis, M.G.; Giacinti Baschetti, M.; Sarti, G.C.; Elabd, Y.A. Non-fickian diffusion of water in nafion.
Macromolecules 2010, 43, 4667–4678. [CrossRef]

18. Zhao, Q.; Majsztrik, P.; Benziger, J. Diffusion and interfacial transport of water in Nafion. J. Phys. Chem. B 2011, 115, 2717–2727.
[CrossRef] [PubMed]

19. Chaabane, L.; Dammak, L.; Grande, D.; Larchet, C.; Huguet, P.; Nikonenko, S.; Nikonenko, V. Swelling and permeability
of Nafion® 117 in water–methanol solutions: An experimental and modelling investigation. J. Membr. Sci. 2011, 377, 54–64.
[CrossRef]

20. Gebel, G.; Lyonnard, S.; Mendil-Jakani, H.; Morin, A. The kinetics of water sorption in Nafion membranes: A small-angle neutron
scattering study. J. Phys. Condens. Matter 2011, 23, 234107. [CrossRef]

21. Izquierdo-Gil, M.A.; Barragán, V.; Villaluenga, J.; Godino, M. Water uptake and salt transport through Nafion cation-exchange
membranes with different thicknesses. Chem. Eng. Sci. 2012, 72, 1–9. [CrossRef]

22. Yamaguchi, M.; Matsunaga, T.; Amemiya, K.; Ohira, A.; Hasegawa, N.; Shinohara, K.; Ando, M.; Yoshida, T. Dispersion of
rod-like particles of nafion in salt-free water/1-propanol and water/ethanol solutions. J. Phys. Chem. B 2014, 118, 14922–14928.
[CrossRef] [PubMed]

23. Soniat, M.; Houle, F.A. Swelling and diffusion during methanol sorption into hydrated nafion. J. Phys. Chem. B 2018, 122, 8255–8268.
[CrossRef]

24. Mabuchi, T.; Huang, S.F.; Tokumasu, T. Dispersion of Nafion ionomer aggregates in 1-propanol/water solutions: Effects of
ionomer concentration, alcohol content, and salt addition. Macromolecules 2020, 53, 3273–3283. [CrossRef]

25. Wang, Z.F.; You, Y.L.; Li, F.F.; Kong, W.R.; Wang, S.Q. Research progress of NMR in natural product quantification. Molecules
2021, 26, 6308. [CrossRef]

26. Volkov, V.I.; Chernyak, A.V.; Gnezdilov, O.I.; Skirda, V.D. Hydration, self-diffusion and ionic conductivity of Li+, Na+ and Cs+
cations in Nafion membrane studied by NMR. Solid State Ion. 2021, 364, 115627. [CrossRef]

27. Ninham, B.W.; Bolotskova, P.N.; Gudkov, S.V.; Baranova, E.N.; Kozlov, V.A.; Shkirin, A.V.; Vu, M.T.; Bunkin, N.F. Nafion swelling
in salt solutions in a finite sized cell: Curious phenomena dependent on sample preparation protocol. Polymers 2022, 14, 1511.
[CrossRef] [PubMed]

28. Van Meeteren, U.; Van Gelder, H.; Van Ieperen, W. Reconsideration of the use of deionized water as vase water in postharvest
experiments on cut flowers. Postharvest Biol. Technol. 1999, 17, 175–187. [CrossRef]

29. Khajeh-Hosseini-Dalasm, N.; Ahadian, S.; Fushinobu, K.; Okazaki, K.; Kawazoe, Y. Prediction and analysis of the cathode catalyst
layer performance of proton exchange membrane fuel cells using artificial neural network and statistical methods. J. Power
Sources 2011, 196, 3750–3756. [CrossRef]

30. Pan, M.; Li, C.; Pan, C.; Lei, H.; Huang, H. A novel predicting method on degree of catalytic reaction in fuel cells. Int. J. Energy
Res. 2020, 44, 6860–6872. [CrossRef]

31. Khajeh-Hosseini-Dalasm, N.; Fesanghary, M.; Fushinobu, K.; Okazaki, K. A study of the agglomerate catalyst layer for the
cathode side of a proton exchange membrane fuel cell: Modeling and optimization. Electrochim. Acta 2012, 60, 55–65. [CrossRef]

32. Ding, R.; Ding, Y.; Zhang, H.; Wang, R.; Xu, Z.; Liu, Y.; Yin, W.; Wang, J.; Li, J.; Liu, J. Applying machine learning to boost the
development of high-performance membrane electrode assembly for proton exchange membrane fuel cells. J. Mater. Chem. A
2021, 9, 6841–6850. [CrossRef]

http://dx.doi.org/10.1002/app.1979.070241102
http://dx.doi.org/10.1002/pol.1981.180190101
http://dx.doi.org/10.1016/0022-0728(87)80198-5
http://dx.doi.org/10.1149/1.2096303
http://dx.doi.org/10.1016/0009-2509(94)00205-3
http://dx.doi.org/10.1016/S0022-0728(96)05060-7
http://dx.doi.org/10.1149/1.1838172
http://dx.doi.org/10.1590/S0104-14282002000200008
http://dx.doi.org/10.1016/j.polymer.2004.01.076
http://dx.doi.org/10.1016/j.electacta.2006.04.011
http://dx.doi.org/10.1016/j.jelechem.2007.12.018
http://dx.doi.org/10.1021/ma100047z
http://dx.doi.org/10.1021/jp1112125
http://www.ncbi.nlm.nih.gov/pubmed/21370837
http://dx.doi.org/10.1016/j.memsci.2011.03.037
http://dx.doi.org/10.1088/0953-8984/23/23/234107
http://dx.doi.org/10.1016/j.ces.2011.12.040
http://dx.doi.org/10.1021/jp506814m
http://www.ncbi.nlm.nih.gov/pubmed/25419983
http://dx.doi.org/10.1021/acs.jpcb.8b03169
http://dx.doi.org/10.1021/acs.macromol.9b02725
http://dx.doi.org/10.3390/molecules26206308
http://dx.doi.org/10.1016/j.ssi.2021.115627
http://dx.doi.org/10.3390/polym14081511
http://www.ncbi.nlm.nih.gov/pubmed/35458261
http://dx.doi.org/10.1016/S0925-5214(99)00050-2
http://dx.doi.org/10.1016/j.jpowsour.2010.12.061
http://dx.doi.org/10.1002/er.5433
http://dx.doi.org/10.1016/j.electacta.2011.10.099
http://dx.doi.org/10.1039/D0TA12571G


Polymers 2024, 16, 1204 17 of 18

33. Parker, A.J.; Opletal, G.; Barnard, A.S. Classification of platinum nanoparticle catalysts using machine learning. J. Appl. Phys.
2020, 128, 014301. [CrossRef]

34. Niu, H.; Wan, X.; Wang, X.; Shao, C.; Robertson, J.; Zhang, Z.; Guo, Y. Single-atom rhodium on defective g-C3N4: A promising
bifunctional oxygen electrocatalyst. ACS Sustain. Chem. Eng. 2021, 9, 3590–3599. [CrossRef]

35. Wang, N.; Bo, X.; Zhou, M. Single-step and room-temperature synthesis of laser-induced Pt/VC nanocomposites as effec-
tive bifunctional electrocatalysts for hydrogen evolution and oxygen evolution reactions. ACS Appl. Mater. Interfaces 2022,
14, 23332–23341. [CrossRef] [PubMed]

36. Seyhan, M.; Akansu, Y.E.; Murat, M.; Korkmaz, Y.; Akansu, S.O. Performance prediction of PEM fuel cell with wavy serpentine
flow channel by using artificial neural network. Int. J. Hydrogen Energy 2017, 42, 25619–25629. [CrossRef]

37. Ding, R.; Zhang, S.; Chen, Y.; Rui, Z.; Hua, K.; Wu, Y.; Li, X.; Duan, X.; Wang, X.; Li, J.; et al. Application of machine learning in
optimizing proton exchange membrane fuel cells: A review. Energy AI 2022, 9, 100170. [CrossRef]

38. Günay, M.E.; Tapan, N.A.; Akkoç, G. Analysis and modeling of high-performance polymer electrolyte membrane electrolyzers by
machine learning. Int. J. Hydrogen Energy 2022, 47, 2134–2151. [CrossRef]

39. Daffertshofer, A.; Lamoth, C.J.; Meijer, O.G.; Beek, P.J. PCA in studying coordination and variability: A tutorial. Clin. Biomech.
2004, 19, 415–428. [CrossRef]

40. Mohamed, A.; Ibrahem, H.; Yang, R.; Kim, K. Optimization of Proton Exchange Membrane Electrolyzer Cell Design Using
Machine Learning. Energies 2022, 15, 6657. [CrossRef]

41. Zaveri, J.C.; Dhanushkodi, S.R.; Kumar, C.R.; Taler, J.; Majdak, M.; Węglowski, B. Predicting the Performance of PEM Fuel Cells
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