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Abstract: The sphere-shaped fullerene has attracted considerable interest not least due to 

the peculiar electronic properties of this carbon allotrope and the fascinating materials 

emanating from fullerene-derived structures. The rapid development and tremendous 

advances in organic chemistry allow nowadays the modification of C60 to a great extent by 

pure chemical means. It is therefore not surprising that the fullerene moiety has also been 

part of dendrimers. At the initial stage, fullerenes have been examined at the center of the 

dendritic structure mainly aimed at possible shielding effects as exerted by the dendritic 

environment and light-harvesting effects due to multiple chromophores located at the 

periphery of the dendrimer. In recent years, also many research efforts have been devoted 

towards fullerene-rich nanohybrids containing multiple C60 units in the branches and/or as 

surface functional groups. In this review, synthetic efforts towards the construction of 

dendritic fullerene-rich nanostructures have been compiled and will be summarized herein. 

Keywords: dendrimers; fullerene; nanotechnology; fullerodendrimers; self-assembly; 

supramolecular chemistry 
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1. Introduction 

The conceptual design of dendrimers has been inspired by nature. The typical features of such 

macromolecules with multiply branched structures can be encountered for instance in the branching of 

trees and roots, but also blood vessels, nerve cells, corals, or snowflakes display archetypal fractal 

patterns. Though dendrimers have been described for the first time in the late 1970s [1], these highly 

symmetric and often spherical structures have only attracted increased attention throughout the last two 

decades. Whereas at the infancy of investigation on dendrimers fundamental research has been the 

driving force, the interest in recent years is nowadays more directed towards applications and core 

areas such as biology or medicine are clearly perceptible. The huge interest in dendrimers is strongly 

related to the capability of dendritic architectures to generate specific properties and functions, 

resulting from their unique molecular structures [2–4]. Another appealing characteristic of dendritic 

structures is the multiplication of functional groups at the periphery of a dendritic structure rendering 

possible the precise tuning of the materials properties. 

Almost at the same time as dendrimer chemistry started to develop rapidly, Fréchet et al. presented 

the first dendritic specimens containing C60 as functional moiety [5]. Since then, the field of 

fullerodendrimers has generated significant research activities with new materials that exhibited 

intriguing properties [6–12]. Particularly, the peculiar physical properties of fullerene derivatives make 

fullerodendrimers attractive candidates for a variety of interesting features in supramolecular chemistry 

and materials science [9]. Emanating from the ball-shaped structure of C60 and the possibility of 

multiple functionalization, this versatile carbon allotrope has demonstrated its potential not only as a 

moiety at the center of the dendrimer structure, but also as functional unit at the surface of such 

branched structures. In this review, synthetic strategies and efforts for the preparation of fullerene-rich 

dendrimers have been compiled and will be summarized. The materials, properties and experiments 

conducted with the respective dendrimers will be briefly described but not discussed in depth. 

2. Divergent Synthesis 

The general principle of a dendrimer synthesis according to the divergent method proceeds stepwise 

from a multi-functionalized core building block, to whose reactive coupling sites are attached new 

branching units in the form of dendritic branches via a reactive terminal functionality [2–4]. Activation 

through for instance deprotection regenerates new reactive coupling sites for further branching units 

under creation of a new dendrimer generation with each branching unit. The iterative synthetic 

sequence progressively yields higher generations and permits the dendrimer to grow from the inside 

outwards. The divergent method makes attainable high-molecular nano-architectures, while at the 

same time, the exponential growth of the corresponding dendrimer structure may lead to structural 

defects since complete functionalization cannot always be ensured. Likewise, purification of structurally 

perfect from defective dendrimers often becomes tedious or almost impossible resulting from their 

very similar properties. 

One of the key compounds in the preparation of fullerene-rich dendrimers has been Cs-symmetrical 

fullerene bis-adduct 1 (Scheme I). This functionalized fullerene derivative was obtained in ten steps 

according to a previously reported procedure [13]. Briefly described, it involved the synthesis of an 
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A2B building block with two benzylic alcohol functions and a t-butyl-protected carboxylic acid 

function starting from dimethyl 5-hydroxyisophthalate. In contrast, 5-(hydroxymethyl)benzene-1,3-

diol was reacted with long alkyl chains followed by the reaction of the residual alcohol moiety with 

Meldrums’ acid. Fusion of the two precursors gave a bismalonate which was reacted under classical 

Bingel conditions with C60, I2 and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) to afford  

carboxylic acid 1 after treatment with TFA. Importantly, the well-established strategy via  

1,3-phenylenebis(methylene)-tethered bis-malonates produced regioselectively the cis-2 addition 

pattern at C60 [14]. Acid 1 has then been engaged in the preparation of well-defined fullerene-rich 

nanostructures as obtained by the divergent approach. 

Scheme I. Synthesis of activated ester 1 and grafting to polypropylene imine (PPI) 

dendrimers 4-6 under the use of the divergent synthetic protocol. 

 

 

There are dendrimers available on the market like, e.g., polypropylene imine (POPAM or PPI) or 

polyamidoamine (PAMAM) dendrimers. In this first example of divergent preparation of 

fullerodendrimers, three generations with either 4, 8, or 16 surface amine groups have been used for 

decoration with a previously activated fullerene precursor (Scheme I) [15]. The choice of activation via 

pentafluorothiophenol ester 3 proved to be crucial for the functionalization. Owing to the nature of 

fullerene building block 1, reaction conditions for the activation may not be strongly acidic or basic to 

preserve the ester functions. In addition, the ultimate step to graft the modified precursor to the 

multiple peripheral amines requires extremely efficient and high-yielding reactions to ensure complete 

functionalization without forming defected dendrimer structures. The corresponding pentafluorothiophenol 

ester 3 met these criteria as has been illustrated at various examples in the literature [16–18]. 

Accordingly, activated acid 3 was obtained in nearly quantitative yield upon reaction of carboxylic 
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acid 1 with pentathiofluorothiophenol 2 in the presence of dicyclohexylcarbodiimide (DCC) and a 

catalytic amount of 4-dimethylaminopyridine (DMAP). Subsequent reaction of the resulting activated 

ester with PPI dendrimers 4-6 of first to third generation using triethylamine as base provided the 

corresponding dendritic derivatives 7-9 in good yields (Figure 1). 

Figure 1. Structures of fullerene-rich PPI-derived dendrimers 7-9. 

 

The fullerene-rich dendrimers are well soluble in a wide range of common organic solvents 

including CH2Cl2, CHCl3, THF or toluene, due to the four pendant alkyl chains per C60 unit and 

spectroscopic characterization was easily achieved with the 1H-NMR spectra of 7-9 to show the typical 

patterns of fullerene cis-2 bis-adducts and the expected additional signals arising from the PPI 

centrepart. Also MALDI-TOF mass spectrometry gave clear indication for the desired structures by 

depicting the expected molecular ion peaks. It is noteworthy that no peaks corresponding to defected 

dendrimers were observed in the mass spectra of 7-8, thus providing clear evidence for their 

monodispersity. On the contrary, the spectrum for 9 showing a high level of fragmentation prevented 

the observation of the expected molecular ion peak and its monodispersity could not be unambiguously 

demonstrated. 

Very recently, Wudl et al. presented a divergently grown dendronized norbornene derivative 

carrying four peripheral C60 moieties [19]. The synthetic protocol proceeded from a norbornene 

precursor bearing two terminal alcohol functions to which was reacted the anhydride of 

isopropylidene-2,2-bis(oxymethyl)propionic acid. After deprotection the four terminal hydroxyl 
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groups of 10 became accessible for attachment of 4-(2-ethylhexyloxy)-[6,6]-phenyl C61-butyric acid. 

Initial attempts to couple both building blocks via DMAP-catalyzed [4-(dimethylamino)-pyridinium  

p-toluenesulfonate (DPTS)] esterification were not successful presumably due to steric hindrance 

between the acid functionality on the bulky fullerene cage and the peripheral alcohol groups in the 

dendron. On the contrary, conversion of the acid function into its acyl chloride 11 upon treatment with 

oxalyl chloride led to the target fullerodendron 12 (Scheme II). Polymerization of the exo-norbornene 

monomer was then carried out using the fast initiating third generation Grubbs’ catalyst and the 

developed fullerene-rich linear polymer was claimed for possible applications in the field of  

polymer solar cells. Likewise, dendronized diblock copolymers have been reported [20]. However, 

incorporation of C60 units was attempted as the last step of the synthesis and did not lead to complete 

addition rather than a moderate coverage of approx. 50% of the peripheral long alkyl chains. 

Scheme II. Synthesis of fullerene-rich norbornene-centred compound 12. 

 

The group of Tomalia reported the preparation of a material containing a PAMAM dendrimer core 

coated with a shell of C60 molecules based on the known reaction of amines with the electron-deficient 

fullerene moiety in the presence of a base [21]. For this purpose, a large excess of fullerene has been 

dissolved in pyridine and it was slowly added a finely dispersed solution of G4 PAMAM dendrimer in 

pyridine. After stirring for one day and several purification steps, final material 13 was isolated in a 

89% yield. As stated before, the reaction conditions as well as steric effects prevented complete 

derivatization hence obtaining a final product with a certain dispersity and a number of addends 

inferior to the total number of available primary amine groups, i.e., 64. In addition, each fullerene 

could in principle react with more than one amine group as there were six independent pyracylene 

units per C60 molecule. Indeed, the authors studied the number of bonded C60 to the dendrimer surface 

in 13 by MALDI-TOF mass spectrometry and thermogravimetric analyses and it turned out that the 

results correspond to a C60/dendrimer molar ratio of approximately 30:1. According to the authors, this 

number of almost exactly two terminal amine groups per fullerene suggests the bonding of two amine 

groups to most of the fullerenes (Figure 2). This material was used to catalyse photooxidation of 

thioanisole by generation of singlet oxygen. The oxidation reactions was found to occur in both 
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organic and aqueous solvents, with enhanced reactivity in aqueous solution, possibly due to a 

nanoreactor effect resulting from diffusion of hydrophobic reactant molecules into dendrimer cavities. 

Similarly, Godínez et al. deposited multilayer films of PAMAM generation 0.0 dendrimers and C60 on 

nanocrystalline TiO2 electrodes to fabricate nanoassembled photoactive surfaces that absorbed in the 

visible region and offered a high molar extinction coefficient [22]. 

Figure 2. Proposed structure of 13 with covalently linked C60 at the surface of a 

polyamidoamine (PAMAM) G4-dendrimer. 

 

3. Convergent Synthesis 

The convergent synthesis strategy proceeds in opposite direction, i.e., from the periphery to the 

core. The main principle of this approach is the preparation of dendrons that are then grafted in the last 

step to a multifunctional core [1–3]. Repetition of the synthetic sequence again leads to the formation 

of different generations of fractal wedges that then ultimately furnish the dendrimer upon linking the 

dendrons covalently to the oligofunctional core moiety. Apart of the ease of purification due to very 

different weights that are often found for starting material and products, the most important feature of 

this approach is probably that structural monodispersity can be achieved. However, steric hindrance for 

the final coupling reaction might have a significant impact on the yield of the final dendrimer. 

3.1. Dendrons 

The first examples of dendritic branches containing several fullerene subunits have been reported 

by Nierengarten et al. starting from 1 as key building block [23] The iterative reaction sequence used 

for the preparation of the subsequent dendrimer generations was based on successive cleavage of a  

t-butyl ester moiety under acidic conditions followed by DCC-mediated esterification reactions with 

A2B building block 14 possessing two benzylic alcohol functions and a protected carboxylic acid 

group in the presence of catalytic amounts of DMAP and hydroxybenzotriazole (HOBt). Subsequent 

cleavage of the t-butyl ester group of 15 was accomplished upon treatment with an excess of 

trifluoroacetic acid (TFA) in CH2Cl2 afforded G2 acid 16. Repetitive esterification coupling with x and 

treatment with TFA gave 17 and 18, respectively (Scheme III). Similar to the virtually quantitative 

yields for deprotection, the esterification steps under formation of generation two and three dendritic 

branches could also be obtained in excellent yields of 90 and 95%, respectively. The whole series of 

compounds can be easily obtained on a multi-gram scale and show good solubility in common organic 

solvents owing to the presence of the four long alkyl chains per fullerene moiety. As part of the 

research on functionalized dendrons, the coupling of the three generations of fractal structures 1, 16, 
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and 18 to a tris-isocyanante core has been described. Deposition onto gold electrodes revealed electron 

transfer from the electrode to the C60 subunits through space at a short distance from the electrode [24].  

Scheme III. Preparation of fullerodendrons 16 and 18 of second and third generation. 

 

In continuation of their research on fullerene-containing dendritic branches and as a modification of 

the before used bis-addition pattern on the C60 sphere, the same group reported on methanofullerene 

derivatives that have been used as building blocks for the construction of dendrons [25]. Consequently, 

a simple malonate has been synthesized containing again at one end a carboxylic acid masked as  

t-butyl ester. At the other end, the malonate has been functionalized by two long alkyl chains that 

confer solubility to the system. Upon reaction with pristine fullerene under formation of a 

methanofullerene using Bingel reaction conditions, the ester is cleaved under the use of TFA to 

provide 19 with the targeted acid function. 

As key building block for dendritic growth, a branching unit 20 has been designed bearing at each 

end of the alkyl chains p-methoxybenzyl (PMB)-protected hydroxy functions [25]. The choice of 

appropriate protecting groups for the two alcohol groups in 20 proved crucial as deprotection 

conditions must not be acidic to preserve the t-butyl ester moiety and may not be basic to preserve the 

other ester functions. Furthermore, decomposition of C60 derivatives under reaction conditions using 

fluoride prevented the use of silyl protecting groups. The PMB protecting groups in 20 could be 

removed with 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) in CH2Cl2 containing a small amount of 

water at room temperature. Under these neutral conditions, all the ester functions remained unchanged 

and compound 21 was thus obtained in a good yield of 84%. Reaction of acid 1 with diol 21 under 

classical Steglich esterification conditions allowed us to obtain t-butyl-protected second generation 

dendron 22 in 70% yield (Scheme IV). Subsequent quantitative cleavage of the t-butyl ester group with 
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TFA afforded acid 23. Repetitive esterification/hydrolysis step thereby relying on the conditions as 

encountered for the lower generation dendrons, readily gave the respective third generation precursors 

24 and 25. All spectroscopic data were consistent with the proposed molecular structures. This 

molecule also served as scaffold to improve the reliability and the potential of the MALDI mass 

technique in the analysis of synthetic polymers and giant organic compounds [26]. 

Scheme IV. Preparation of fullerodendrons 23 and 25. 

 

In a variation, also bis-Bingel adduct 26 has been equipped with four terminal hydroxyl functions 

using PMB as protecting group. To this end, carboxylic acid 1 was grafted under conventional 

esterification conditions to give pentad 27 whose t-butyl ester was hydrolyzed using TFA to give 28 

(Scheme V). 
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Scheme V. Preparation of pentad 28. 

 

Amphiphilic fullerodendrons 1, 16, 18 and 28 have been demonstrated to display good quality 

Langmuir films at the air-water interface that can withstand pressures of up to 30 mN m−1 and cover 

extrapolated molecular areas at zero pressure up to 560  30 Å2 [27]. The authors also succeeded in 

forming Langmuir-Blodgett (LB) films by transferring monolayers of the whole series of four 

compounds onto solid substrates. However, the strong difference in size between hydrophobic and 

hydrophilic groups especially for the largest dendrons produces Langmuir films that are not 

sufficiently stable to stand the pressure over long period of time. This ultimately hampered the 

preparation of multilayered films. 

The synthesis of high generation dendritic branches from building blocks 18 and 28 was found to be 

difficult mainly due to steric congestion. This prompted Nierengarten et al. to further explore the 

development of new fullerodendrons starting from a less hindered fullerene derivative (Scheme VI and 

VII) [28,29]. The iterative reaction sequence used for the synthesis of the dendritic branches up to fifth 

generation resembled the conventional protocol for repetitive esterification deprotection steps.  
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Scheme VI. Preparation of fullerodendrons 29-34 (Z = C8H17). Reagents and conditions: 

(i) TFA, CH2Cl2; (ii) DCC, DMAP, HOBt, CH2Cl2. 

 

Correspondingly, reaction of acid 19 with diol 14 under esterification conditions (DCC, DMAP, 

HOBt) gave the protected dendron of second generation 30 in 90% yield. Hydrolysis of the t-butyl 

ester moiety under acidic conditions then afforded the corresponding carboxylic acid 31 in a 

quantitative yield. Esterification of 31 with diol 14 (DCC, HOBt, DMAP) gave 32 in 87% yield. 

Subsequent treatment with TFA afforded acid 33 in 99% yield. Reaction of 33 with diol 14 in the 

presence of DCC, HOBt and DMAP yielded fullerodendron 34 (95%), which after treatment with TFA 

gave 35 (97%). By repeating the same reaction sequence from 35, the fifth generation derivatives 36 

and 37 were also prepared (Scheme VII). The time needed to consume all the reactants during the 

esterification step was increased as the generation number grew. However, N-acyldicyclohexylurea  

by-products resulting from the rearrangement of the activated acid intermediates were quite limited 

even for the highest generation compound, thus allowing the preparation of the fifth generation 

protected dendron 34 under DCC-mediated esterification conditions in a good yield (76%). This 

synthetic methodology successfully mirrored the high efficiency for the preparation of fullerene-rich 
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derivatives 30-37. These efforts thereby did not suffer from the reduced accessibility of the reactive 

group located at the focal point of the dendritic structure as observed for the first series of dendrimers 

synthesized under similar esterification conditions as described above. Structural elucidation by the 

NMR technique was easily achieved as all signals of the parts of the dendrons appear in different 

regions thus allowing the facile assignment of signals. 

Scheme VII. Preparation of fullerodendrons 21-22 (R = C8H17). Reagents and conditions: 

(i) DCC, DMAP, HOBt, CH2Cl2; (ii) TFA, CH2Cl2. 

 

The whole series of t-butyl-protected dendrons have been subject of photoelectrochemical 

measurements. Preliminary experiments by injection of toluene solutions containing the appropriate 

dendron into acetonitrile resulted in the formation of large clusters in the solvent mixture [30]. The 

order of the mean diameters was not consistent with that of their molecular sizes ranging from 790 nm 

for (29)m to 90 nm for (36)m. This phenomenon was explained by intermolecular interactions among 

branches that were prevalent thus leading to poorly packed dendrimer clusters with a large size, 

whereas for the larger dendron structures intramolecular interactions were dominating. Electrophoretical 

cluster deposition onto ITO/SnO2 electrodes allowed the authors to obtain films that were composed of 

closely packed clusters with sizes in the range of 900 nm for 29 to 100 nm for 34 and 36. 

Photoelectrochemical measurements gave photocurrent responses being prompt, steady, and 
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reproducible during repeated on/off cycles of visible light illumination. Incident photon-to-

photocurrent efficiencies (IPCE) have also been studied reaching values of 1.7 % for ITO/SnO2/(29)m 

and 6.0% for ITO/SnO2/(36)m devices. The IPCE values turned out to be generation-dependent as 

displayed by increasing IPCE values along the series of dendritic clusters. Structural investigation on 

the fullerodendrimers revealed that the higher dendrimer generation were more densely packed clusters 

with a smaller, compact size (vide supra). The authors claimed that such fullerodendritic nanoclusters 

on ITO/SnO2 in the higher generations would make possible to accelerate the electron injection 

process from the reduced C60 to the conduction band of SnO2 via the more efficient electron hopping 

through the C60 moieties where the average distance between the C60 moieties is smaller. 

3.2. Dendrimers 

In connection with the before described fullerene dendrons that have been employed in Langmuir or 

LB films, the same group designed a more sophisticated system of amphiphilic character [31]. 

Carboxylic acid 28 containing five fullerene moieties was thus coupled to a polyethylene glycol 

terminated Fréchet-type dendron of third generation to give amphiphilic fullerene-rich dendrimer 38 

(Figure 3). 

Figure 3. Structure of amphiphilic fullerodendrimer 38. 

 

The diblock structure of dendrimer 38 exhibited a perfect balance between hydrophobic chains on 

one hemisphere and hydrophilic groups on the other to allow fabrication of stable Langmuir films that 
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were found to be reversible for successive compression/decompression cycles. In addition, transfer 

experiments of the Langmuir films onto solid substrates and the preparation of LB films were 

conducted for 38 leading to well-ordered structures on quartz slides or silicon wafers and multilayered 

LB films. The average layer thickness of approx. 36 Å indicated no or little interpenetration of 

successive layers.  

The same dendritic precursors containing up to four Cs symmetrical fullerene bis-adducts in the 

outer sphere were then also used for grafting onto an oligophenylenevinylene (OPV) moiety previously 

modified by tetraethylene glycol chains [32]. DCC-mediated esterification at the two terminal 

hydroxylgroups with DMAP and HOBt as catalysts proved successful to readily provide OPV-centered 

dendrimers 39-41 (Figure 4). Systematic investigations of the photophysical properties of the whole 

series of dendrimers in different solvents evidenced singular polarity effects emanating from the 

dendritic structure. More specifically, the photoinduced electron transfer process from the fullerene 

singlet excited state has been found dramatically solvent dependent. In other terms, the energy of the 

charge separated state could be finely tuned around the energy value exhibited by the fullerene singlet 

excited state (~1.7 eV). In contrast, for the highest generation dendrimer, the strong solvent effects on 

the OPV–C60 charge separation processes were severely limited. By increasing the dendrimer size, 

electron transfer was progressively more difficult due to isolation of the central OPV core by the 

dendritic branches, which prevented solvent induced stabilization of charge-separated couples. 

Regardless of the solvent polarity, photophysical studies revealed ultrafast OPVC60 singlet energy 

transfer taking place upon photoexcitation of the OPV core for the whole series of dendrimers. On the 

contrary, despite identical electroactive units as monitored by the quenching of the fullerene 

fluorescence, electron transfer occurred differently along the series. By increasing the dendrimer size, 

electron transfer became progressively more difficult and virtually no electron transfer from the 

fullerene singlet could be observed for 41 in CH2Cl2, whereas some transfer process could still be 

detected in the more polar PhCN. These trends exhibiting a dendritic effect were rationalized by 

considering increasingly compact dendrimer structures in more polar solvents [11]. This implied that 

the actual polarity experienced by the involved electron transfer partners, in particular the central OPV, 

was no longer that of the bulk solvent. This strongly affected electron transfer thermodynamics which 

became less exergonic and thus slower and less competitive towards intrinsic deactivation of the 

fullerene singlet state. 

Dendritic precursors 1, 16 and 18 also served as starting point for the fabrication of cyclotrimers 

consisting of a hexaphenylbenzene centre and up to 24 terminal fullerene units [33]. Pursuing the 

convergent route, (ethyne-1,2-diylbis(4,1-phenylene))dimethanol 42 has been prepared. The two 

alcohol functions were then used as anchoring point for first to third generation fullerene-containing 

dendrons 1, 16 and 18 using classical esterification coupling chemistry (DCC/DMAP/HOBt) to yield 

the linear dumble-shaped derivatives 43-45 (Scheme VIII). The cyclotrimerization of the resulting 

dendronized bis-arylalkynes was then a perfect tool for the synthesis of even larger fullerene-rich 

dendritic architectures 46-48 [28]. 
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Figure 4. Structures of oligophenylenevinylene (OPV)-centred fullerodendrimers 39-41. 

 

Scheme VIII. Schematic synthesis of fullerene-rich cyclotrimers 46-48. 

 

The reaction conditions for the cyclotrimerization were first optimized for the lowest generation 

alkyne 43. The choice of Co2(CO)8 as catalyst was key to this synthesis. Indeed, it turned out that 

Co2(CO)8 efficiently catalyzed the cyclisation of three molecules of bisaryl alkynes under formation of 

a hexaphenylbenzene core. Under optimized conditions, treatment of 43 with a catalytic amount of 

Co2(CO)8 in dioxane at room temperature for 24 h afforded 46 in 93% yield. The same conditions were 

then used for the preparation of the higher generation compounds. The reaction of the second 

generation derivative 44 was finished after one day and compound 47 was isolated in 62% yield. In 

contrast, the reaction of the highest generation precursor 45 was very slow, most probably as a result of 
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steric effects. After 5 days, the starting material was not completely consumed but the reaction was 

stopped since notable degradation was evidenced. After purification by column chromatography on 

SiO2 followed by gel permeation chromatography, compound 48 (Figure 5) was isolated in 24% yield. 

Figure 5. Representative structure of the largest G3 fullerodendrimer 48 deriving from the 

cyclotrimerisation of dumbbell-shaped bisarylalkyne 45. 

 

Very recently, the same group reported on fullerodendrimers with a perylenediimide central unit by 

a similar method as has been described before [34]. In first instance, a perylenediimide building block 

has been prepared following a three step synthetic protocol as decribed by Fréchet et al. [35]. The 

terminal hydroxyl groups were then again well suited for linking fullerene-containing dendrons 1, 16 

and 18 under formation of the first to third generation species 49-51 with up to eight peripheral C60 

units (Figure 6). Electrochemistry clearly revealed that the oxidation of the dendrimers was centered 

on the perylenediimide core, while the first reduction always corresponded to a fullerene-centered 

process. Photophysical studies evidenced that there was generation-dependent behavior. However, 

though the lowest singlet levels of both photoactive components were virtually isoenergetic, a 

photosensitization process was observed for 49-51. The fullerene triplet state was thus able to sensitize 

the lower-lying perylenediimide-centred triplet at a timescale of 10 ns making this system one of the 
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relatively rare examples of photoinduced energy transfer leading to long-lived triplet states centered on 

a dendrimer core and capable of sensitizing singlet oxygen. 

Figure 6. Perylenediimide-centred first to third generation fullerodendrimers 49-51. 

 

Another example of fullerene-rich nanoclusters has been described by Ito et al. consisting of 

multiple bis-Bingel C60 adducts that were associated with silicon phthalocyanines [36]. The synthetic 

route started with the preparation of a bis-functionalized fullerene precursor. The required bismalonate 

precursor equipped with a phenolic OH group and two long alkyl chains was obtained after four steps 

from the commercially available 5-hydroxyisophthalic acid. The macrocyclic bis-adduct was thus 

produced in 34% yield using the highly regioselective reaction developed by Diederich [37]. Reaction 

of two equivalents of the first generation precursors bearing a phenol moiety with silicon(IV) 

phthalocyanine (SiPc) dichloride proceeded smoothly in the presence of K2CO3 to produce the first 

generation triad 52 in 27% yield under formation of silicon-oxygen bonds (Figure 7). The key 

molecule for the construction of the next higher generations was 5-hydroxyisophthalic acid with a 

silyl-protected phenol group. The carboxylic acid groups were then involved in the Steglich 

esterification with G1 dendron to furnish the second generation upon deprotection of the silyl group 
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under the use of HF. Repetitive coupling/deprotection steps readily gave the third generation. Both 

dendritic branches were then coupled to the axial positions of SiPc to give the target dendrimers 53 and 

54 in 62 and 25% yields as deep blue coloured solids (Figure 7). Studies by time-resolved fluorescence 

and transient absorption spectroscopy evidenced a generation-dependent charge-separation process 

from the SiPc to the C60 subunits with the lifetimes of the radical ion pairs to be prolonged upon going 

to the larger specimens. This was attributed to a possible electron migration among the C60 subunits.  

Figure 7. Structures of dendritic fullerene-rich assemblies with a SiPc central unit. 

 

A challenging structure consisting of seven fullerene hexaadducts, one of which located at the 

center and the remaining six at the surface of the dendrimer, has been described recently by the group 

of Hirsch [38]. One of the key components was obtained from cyclo2octylmalonate which has been 

involved in the nucleophilic cyclopropanation of C60 under the use of CBr4 and DBU to afford 

monofunctionalized Bingel adduct 55 in 28% yield. Within the next step, 55 was subjected to a 20-fold 

excess of bis-Boc-functionalized malonate 56 in the presence of 9,10-dimethylanthracene (DMA) and 

phosphazene base P1-tBu. Finally, the residual malonate group of [5:1]hexakisadduct 57 was engaged 

in the subsequent hexa-addition using again DMA and phosphazene base P1-tBu for the multiple 

Bingel cyclopropanation reaction and treated with TFA. This highly functionalized heptafullerene 

derivative 59 depicting a star-type architecture for the octahedrally functionalized C60 core had 60 

positive charges at the surface, hence showing the expected high affinity towards water (Scheme IX). 

According to the authors, this multicationic architecture constituted the largest monodisperse 

molecular polyelectrolyte to date with defined three-dimensional structure that could find application 

in the field of (nonviral) gene delivery as the spherical shape resembled the globular shape of the 

natural DNA-histone complex. 
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Scheme IX. Synthesis of star-shaped heptafullerene polyelectrolyte 59. 

 

4. Molecular Self-Assembly of Fullerene-Containing Dendrons 

The approach via self-assembly of dendrons using non-covalent interactions is particularly  

well-suited for the preparation of fullerene-rich macromolecules. Upon preparation of the dendritic 

branches the different moieties self-organize thus creating the dendritic macromolecular structure. This 

way, the often-encountered tedious final synthetic coupling reactions with a given multifunctional core 

can be avoided, as can problems regarding side reactions that may occur with potentially reactive 

functional groups like C60. Nierengarten et al. exploited the self-assembly approach for the 

construction of organooxotin-derived clusters (Scheme X) [39]. Simple heating of an equimolar 

mixture of 19 and nBuSn(O)OH in benzene to reflux for 12 h using a Dean-Stark trap afforded the 

hexameric organostannoxane derivative 60 in 99% yield. The six tin atoms were chemically equivalent 

as well as the six trivalent oxygen atoms. The Sn–O framework of the molecule could be described as 

a drum with top and bottom faces each being comprised of a six-membered (–Sn–O–)3 tri-stannoxane 

ring. The drum faces were joined together by six Sn–O bonds containing tri-coordinated oxygen 

atoms. The sides of the drum were thus comprised of six four-membered (–Sn–O–)2 distannoxane 

rings, each of which was spanned by a carboxylate group that formed a symmetrical bridge between 

two tin atoms. 
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Scheme X. Preparation of first generation organooxotin cluster 60. 

 

The optimized reaction conditions used for the preparation of 60 from carboxylic acid 19 were then 

applied to fullerodendrons 31 and 33. The corresponding organostannoxane derivatives 61-62 were 

thus obtained in almost quantitative yields (Figure 8) [40]. Though the size of the dendron increased 

significantly upon going to generation three, the self-assembly process was not severely affected by the 

increased steric demand of the starting carboxylic acids with the close to quantitative formation of the 

final ensemble after 12 h. The latter observations were in contrast with previous findings as described 

before for which slow reactions and often only moderate yields were obtained for such third generation 

derivatives when compared to the corresponding first and second generation. Apart of the proton and 

carbon NMR spectra displaying the characteristic signals of the starting dendritic carboxylic acids and 

the expected additional resonances ascribable to the n-butyl chains, the respective 119Sn NMR spectra 

brought final structural proof. The equivalence of all peripheral fullerene subunits as expected for a 

six-fold symmetric assembly with a drum-shaped organostannoxane core was found as a single 119Sn 

resonance observed at ca. −480 ppm. 

The use of metal coordination is perhaps the most widely developed method for the directed 

assembly of dendritic superstructures. In most cases, the metal center forms the core of the 

macromolecule, in which dendrons owing to their ligating groups at the focal point are able to be 

coordinated around a single, central metal ion. Nierengarten et al. used this method for the 

construction of large bis(1,10-phenanthroline)copper(I)-derived metal complexes 63-65 of first to third 

generation with up to 16 fullerene surface units (Figure 9) [41,42]. The synthetic procedure started 

from a modified 1,10-phenanthroline building block containing at the 2,9 positions pentanol groups. 

To these hydroxyl functions were then attached dendritic fullerene precursors 1, 16 and 18 using 

classical DCC/DMAP/HOBt conditions. The dendritic ligands have thus been obtained in decreasing 

yields of 75, 48 and 24% yields. Treatment with Cu(MeCN)4BF4 in a 2:1 mixture of CH2Cl2/MeCN 

provided the target metal-based compounds 63-65 in good yields. However, due to problems during 

the purification process and the ionic metal complex character of the dendrimers, the isolated yields 

ranging from 56 for 63 to 33% for 65 were considerably lower as some material remained adsorbed on 

the column stationary phase. Structural elucidation by the NMR technique was easily achieved and 

clearly indicated complex formation by significant shifts of approx. 0.6 ppm as observed for the 
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methylene protons at 2,9 positions. From the electronic properties of dendrimers 63-65, it could be 

deduced that the Cu(I) central core was strongly affected by the dendritic surrounding, i.e., they were 

embedded in a dendritic black box. Whereas for the lowest generation 63, oxidation of the central core 

was still possible though with lower amplitude, for the larger generation compounds 64 and 65, 

oxidation was prevented by the large fractal branches. Furthermore, due to the increasing number of 

peripheral fullerene subunits in 64 to 65, there was less and less light available for the core and the 

small portion of light energy able to excite the central Cu(I) complex was returned to the external 

fullerenes by energy transfer. 

Figure 8. Fullerene-rich tin drum shaped clusters 61-62. 
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Figure 9. Structures of G1 to G3 fullerene-rich Cu(II) phenanthroline-based metal 

complexes 63-65. 

 

A key concept in supramolecular chemistry is the molecular self-assembly via hydrogen bonds. 

Such non-covalent interactions determine for instance the three-dimensional shape of proteins and 

nucleic bases. Presumably, the most important example constitutes the double helical structure of DNA 

that is largely due to hydrogen bonding between the base pairs upon linking one complementary strand 

to the other thus enabling replication. It is therefore not surprising that this concept has also been 

adopted in the preparation of fullerene-rich dendrimers. The group of Nierengarten et al. has indeed 

demonstrated that the self-assembly of dendritic macromolecules using hydrogen-bonding interactions 

was particularly well-suited to construct such macromolecular ensembles. In this nexus, supramolecular 

dendrimer (69)2 has been obtained from the dimerization of a fullerene-functionalized dendron by a 

quadruple hydrogen bonding motif [43]. The self-complementary arrays of four hydrogen bonds, 

originally developed by Meijer et al., afforded remarkably stable dimers with high association 

constants in apolar organic solvents (Ka 4 × 107 M−1 in CHCl3) [44,45]. 

The required precursor namely a 2-ureido-4-[1H]pyrimidinone derivative bearing a residual  

Boc-protected amine function in position 2 and a 4-hydroxybutyl chain in position 6 has been obtained 

from diethyl 3-oxoheptanedioate following a three step procedure. To this end, dendrons 1 and 28 with 

either one or five C60 units and a focal carboxylic acid function have been coupled using standard 

esterification conditions (DCC/DMAP/HOBt). The resulting esters 67 and 70 have been obtained in 58 

or 70% yield, respectively. Initial attempts to purify the first generation compound by typical column 

chromatography resulted in rather low yields of 30% thanks to partial cleavage of the Boc protecting 

group of the amine function in position 7. On the contrary, gel permeation chromatography proved to 

be more efficient hence yielding target substrate 67 in 58% yield. Similar purification conditions have 

then also been applied for building block 70. The Boc-protecting groups of both dendrons were 
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N

NN
N

O

O

OO

O
O

O

O

BF4
-

Gn Gn

Gn

Gn

G1
O

O

O
O
O

O

O

O

O
O

OO

O

RO

RO

RO

OR

O
O
O

O

O

O

O
O

O
O

O

RO

RO

RO

OR

O

O
O

O

O

O

O
O

O
O

O

RO

RO

RO

OR

O

O
O

OO
OO

O O
O

O

RO

OR
RO

OR

O

O
O

O
O

O

O

O

O

OO

O
O

O

OR

RO

RO

RO

O O
O

O

OO
OO

O O
O

O

RO

OR
RO

OR

O

O
O

O
O

O

O

O

O

OO

O
O

O

OR

RO

RO

RO

O O
O

O

O

G3
O

O

G2
O

O

63 n = 1
64 n = 2
65 n = 3

R = C8H17

R = C8H17

R = C8H17



Polymers 2012, 4 522 

 

 

final step of the synthetic sequence, the dendritic amines were subjected to reaction with octylisocyanate 

in the presence of triethylamine to give the desired supramolecular fullerene dimers (69)2 and (72)2 in 

yields of 48 and 87% (Scheme XI and XII). 

Scheme XI. Preparation of supramolecular architecture (69)2 resulting from the 

dimerization via quadruple hydrogen bonding. 

 

Spectroscopic characterisation via MALDI-TOF mass spectrometry indicated the formation of the 

proposed dimeric supramolecular structures. This technique, due to its mild ionization conditions and 

the concomitant marginal levels of fragmentations, was found to be a well-suited tool for characterizing 

such high-molecular-weight compounds. Even if the mass spectrum of (69)2 was dominated by the ion 

peak corresponding to the monomer 69, the molecular ion peak of dimer (69)2 was also clearly 

detected. Similarly, in the MALDI-TOF mass spectrum of fullerodendrimer (72)2 two peaks became 

apparent assignable to supramolecular dimer (72)2 and to the monomeric structure 72. These relatively 

low intensities as observed in the respective mass spectra could be easily rationalized by the rather 

weak non-covalent interactions. Nonetheless, the dimeric structures could be clearly detected and the 

absence of peaks corresponding to defected dendrons provided clear evidence for their monodispersity. 

Definitive evidence for dimer structures of 69 and 72 could be deduced from the proton NMR 

measurements conducted in CDCl3. For both dendritic assemblies, signals corresponding to single 

compounds were detected. Apart from the characteristic features emanating from Cs symmetrical  

1,3-phenylenebis(methylene)-tethered fullerene cis-2-bis-adducts, and the additional typical signals 

from the different subunits of the modified fullerene precursors, large downfield shifts were found for 

the protons of the hydrogen-bonding motif. In both cases, the urea NH protons were found at δ = 11.8 

and 10.1 ppm and the intramolecularly chelated pyrimidinone NH at δ = 13.2 ppm. This observation is 

fully consistent with four donor–donor–acceptor–acceptor (DDAA) hydrogen bonds in the 

supramolecular fullerene–dimer system.  
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Scheme XII. Preparation of supramolecular architecture (69)2 resulting from the 

dimerization via quadruple hydrogen bonding. 

 

The ammonium–crown ether interaction is well-known in the field of molecular self-assembly. The 

diameter of the crown ether macrocycle largely determines the binding affinity under formation of 

host-guest complexes. One of the most prominent examples is 18-crown-6 that has a high affinity 

towards alkali ions such as potassium but is also famous to form quite stable complexes with 

protonated amines. Though the interactions are relatively weak for the latter case, they have been 

exploited for the association with fullerodendritic derivatives [46]. Correspondingly, ditopic OPV 

compound 73 has been equipped with two 18-crown-6 units (Figure 10). On the other hand, a  

Boc-protected amine has been coupled to fullerene dendron 1 using DCC/DMAP/HOBt. The final step 

then involved deprotection with TFA to readily afford the cationic ammonium trifluoroacetate salt 74 

in 86% yield (Figure 10). 
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Figure 10. Structures of ditopic OPV host 73 and ammonium-containing dendrons of first 

to third generation 74-76. 

 

A mixture of compounds 73 and 74 self-assembled under formation of a stable 1:2 complex. UV/vis 

and fluorescence binding studies have been performed for the multicomponent photoactive devices in 

which the emission of the central ditopic receptor was dramatically quenched by the peripheral 

fullerene units. It turned out that the association constants were about one to two orders of magnitude 

higher than commonly observed for such systems, hence indicating additional recognition elements 

reinforcing the overall supramolecular structure. It was anticipated that favorable intramolecular 

fullerene–fullerene interactions were at the origin of this stabilization. Similarly, a two-center  

host–guest topography has been developed and it could be demonstrated that owing to the perfect 

complementarity of the two components, a bis-cationic substrate has been clicked on a ditopic crown 

ether derivative thus leading to a very stable non-covalent macrocyclic 1:1 complex [47]. As this 

approach appeared to be modular and easily applicable to a wide range of functional groups for the 

preparation of new supramolecular architectures with tunable structural and electronic properties, it has 

also been applied for the preparation of even larger dendritic nanoscale architectures (Figure 10) [48]. 

Accordingly, dendritic branches 16 and 18 were involved in the coupling to the same Boc-protected 

alcohol under the same conditions as conducted for 1 to yield the two cationic species 75 and 76 in 

good yields. Complexation with ditopic receptor 73 resulted in even enhanced binding constants thus 

displaying that there were even more secondary weak intramolecular interactions such as π-π stacking 

and hydrophobic interactions prevalent. These results mirrored another example for a remarkable 

positive dendritic cooperative effect. The authors emphasized that the size of the dendritic building 

blocks did not constitute a severe limitation for the self-assembly of large dendritic architectures. 

Hirsch et al. used several (non-)dendritic mono-Bingel adducts for the self-assembly onto various 

Hamilton-receptor appended scaffolds via complementary hydrogen bonding [49]. Consequently, an 
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unsymmetric malonate has been functionalized under formation of ester bonds at one end with  

3-bromo-1-propanol and on the other with t-butyl 4-hydroxybutanoate. The latter was subjected to 

hydrolysis and the free carboxylic acid employed in esterification reactions with different dendrons. 

Nucleophilic mono-cyclopropanation then readily produced the fullerene-containing dendritic wedges. 

Initial attempts to form the Bingel-adduct prior to the modification by dendrons were not successful. 

Within the last step of the synthetic sequence, the cyanurate moiety was introduced through reaction of 

the residual bromide function with cyanuric acid to produce the desired dendronized fullerene 

derivatives 77a-h. Association studies with trivalent receptor 78 revealed a positive cooperativity, that 

originated from the preferably adopted planar cis-cis conformation rather than the other two possible 

topologies, i.e., trans-trans or cis-trans (Figure 11). The authors also encountered a size-dependent 

behavior, i.e., very voluminous ligands disfavoured the introduction of the second and third ligand due 

to steric demand. This effect was found more pronounced for Newkome and Fréchet-type dendritic 

substituents in 77a-b and 77c-d, respectively. In continuation of research in this field, the same group 

reported on the self-assembly of the depsipeptide-derived fractal branches 77e-h onto different 

porphyrins to give photoactive supramolecular associates [50,51]. 

Figure 11. Supramolecular assemblies of monodendronized fullerene derivatives 77a-h 

onto Hamilton-receptor functionalized host molecule 78. 

 

5. Molecular Self-Assembly of Fullerenes on Dendritic Scaffolds 

Similar to the work of Tomalia as described above for the divergent functionalization of dendrimer 
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electrostatic interactions. Astruc et al. took advantage of the electrochemical properties of C60 to 
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was titrated at −30 °C a toluene solution containing pristine C60. After the addition of 64 equivalents of 

fullerene meaning a 1:1 stoichiometry, the deep blue greenish color of the ferrocene-modified POPAM 

dendrimer 79 disappeared, while leaving a black precipitate [79][C60]64 whose proposed structure is 

depicted in Figure 12. This black-colored precipitate gave a clean quadrupole doublet for the 

Mössbauer spectrum whose parameters at 77 K were consistent with the presence of an Fe(II) 

sandwich complex. Its EPR spectrum recorded at 298 K shows the characteristic feature observed for a 

model compound obtained from the reaction of C60 with the 19-electron complex [Fe(I)Cp(η6-C6Me6)]. 

The authors concluded a probable C60 reduction to its monoanion (Scheme XIII), as designed for a 

process that is exergonic by 0.9 eV. The peripheral cationic Fe(II) units with their C60
- counteranion 

being very large, they were most likely located at the dendrimer periphery, presumably with rather 

tight ion pairs. 

Figure 12. Fifth-Generation polypropylene imine (POPAM) dendrimer decorated with 64 

ferrocene Fe(II)/(C60
·–) ion pairs.  

 

Scheme XIII. Electrochemical process accompanying the formation of the ferrocene-C60 

ion pairs. 
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Another system based on electrostatic interactions has been reported by van Koten et al. [53]. A 

core-shell dendrimer with a cationic tetra[bis(benzylammonium)aryl] silane core has been used as a 

template for the assembly of fullerene-carboxylate derivatives via a straightforward anion exchange 

reaction of [80]Br8 with Na[81] (Scheme XIV). In contrast to dendrimer 80, the supramolecular 

fullerene-rich assembly [80][81]8 was soluble in common organic solvents and its spectroscopic 

characterization could be easily achieved. In the 1H NMR spectrum of a solution of [80][81]8 in 

CDCl3, the specific signals of both [80]8+ and [81]- could clearly be observed. Furthermore, specific 

peak integrals showed that the octa-cationic dendritic moiety [80]8+ and the anions [81]− were present 

in a 1 to 8 molar ratio. In order to establish the molecular weight of the host-guest assembly, gel 

permeation chromatography coupled to a low angle laser light scattering (GPC/LALLS) instrument 

was performed using THF as eluent. The chromatogram displayed three peaks. The first one  

corresponded to the 1:8 host-guest octa-fullero-dendrimer assembly [80][81]8. The two additional 

peaks with higher molecular weights were assigned to superstructures consisting of aggregated 

assemblies derived from [80][81]8. Such behavior was commonly observed during the GPC analysis of 

poly-ionic macromolecules when an organic solvent was used as eluent. Importantly, no peaks 

corresponding to compounds with a molecular weight lower than [80][81]8 were detected, which 

further substantiates the formation of a stoichiometric assembly between octa-cationic [80]8+ and eight 

[81]− anions. 

Scheme XIV. Anion exchange reaction of [80]Br8 with Na[81] leading to the fullerene-

rich dendrimer [80][81]8. 

 

Aida et al. contributed to the field by introducing the metal-assisted coordination of modified 

fullerene derivatives to a multi-porphyrin dendrimer [54]. The synthetic protocol involved the 

preparation of a methanofullerene equipped with a long alkyl chain on one side and a spacered 
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carboxylic acid on the other. This precursor then served for coupling to mono-, di- and trivalent 

bipyridine-terminated alcohols using DCC/DPTS as reagents for the esterification reactions to provide 

the three different ligands in moderate to good yields. The structure of the ligand 83 containing three 

C60 moieties is depicted in Figure 13. On the other hand, large dendritic architecture 82 was 

constructed for subsequent complexation. This dendrimer 82 consisted of a hexaphenylbenzene core 

unit, a polarylester fractal part, 24 zinc porphyrins and at the outside relatively small appended 

polyarylether dendrons to confer solubility to the system. All bipyridines have been demonstrated to 

strongly bind to the zinc porphyrins with an average binding affinity, as estimated by simply assuming 

a one-to-one coordination between the individual zinc porphyrin and pyridine units, of 1.2 × 106 M−1. 

This value was more than two orders of magnitude greater than association constants reported for 

monodentate coordination between zinc porphyrins and pyridine derivatives and could be ascribed to 

the simultaneous coordination of two Zn centers of 82 by the two pyridine moieties of for instance 83. 

An in-depth study of the photophysical properties of this photactive device mirrored an almost 

quantitative intramolecular photoinduced electron transfer from the photoexcited porphyrins to the C60 

units as evidenced by means of steady-state emission spectroscopy and nanosecond flash photolysis 

measurements. Importantly, the ratio between the rate constants of charge separation and 

recombination for [82][81]12 was found to be more than an order of magnitude greater than those 

reported for preceding porphyrin–fullerene supramolecular dyads and triads. The larger number of the 

C60 units in large dendritic architecture [82][81]12 could enhance the probability of electron transfer 

from the zinc porphyrin units and probably also the opportunity for this electron transfer through 

efficient energy migration along the densely packed Zn(II) porphyrin array. 

Figure 13. Polyporphyrin dendrimer 82 and bipyridine 83 for metal-ligand  

complexation studies. 
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Very recently, large dendrimer architectures with up to 16 porphyrins (the second generation 85 is 

depicted in Figure 14) discussed before were also engaged in the coordination of fullerene spheres 

equipped with one pyridine function [55]. According to this, fulleropyrrolidine 84 bearing a pyridine 

has been obtained upon reaction of C60 with p-pyridine carboxaldehyde applying Prato conditions. 

Complexation of the pyridine subunit of fulleropyrrolidine 84 to the multiple zinc porphyrins of for 

instance 85 led to the supramolecular photoactive dendrimer assemblies. Multiple photosynthetic 

reaction centers combined with antenna complexes have thus been successfully constructed. The 

excited energy migration occurs efficiently between porphyrin units followed by charge separation in 

the supramolecular complex of the largest G3 dendrimer with pyridine-functionalized fulleropyrrolidine 

84 as a result of the dendrimer effect. Measuring the charge-separated state of the supramolecular 

complex produced upon laser excitation had a particular long lifetime of 0.25 ms. Similarly, Ogawa et al. 

exploited the same fulleropyrrolidine 84 for the complexation with zinc porphyrins [56]. Upon the 

preparation of a π-conjugated porphyrin polymer, this molecular wire has been subjected to the 

coordination by 84. The electrical devices fabricated from the two electroactive units showed  

photo-responsive conduction with a tunneling mechanism at low temperatures and thermionic emission 

at high temperatures. 

Figure 14. Multiple metal-ligand complexation between polyporphyrin dendrimer 85 and 

fulleropyrrolidine 84. 

 

The supramolecular formation of host/guest complexes has also been described by Shinkai et al. [57]. 
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rotational axes responsible for the spatial arrangement of the porphyrin-derived macrocycles. Addition 

of C60 to a solution containing dendritic host 86 led to the formation of sandwich complexes in an 

allosteric manner resulting from the tweezering of one fullerene molecule by two zinc porphyrins. The 

complexation thereby strongly affected the molecular shape as the host-guest complexes suppressed 

rotational freedom upon formation. Binding studies furthermore evidenced considerably enhanced 

association constants owing to the binding in a positive allosteric manner. 

Figure 15. Rigid star-shaped receptor-fullerene complex [86][C60]3. 

 

Similarly, a less rigid system has been introduced aiming at the first organic photovoltaic system 

using supramolecular complexes of porphyrin dendrimers with fullerenes [58–61]. Accordingly, 

terminal amines of generation one to three POPAM dendrimers have been modified through grafting 

of porphyrin derivatives endowed with an activated ester. Porphyrin dendrimers 87-89 were then 

employed in the formation of supramolecular assemblies with C60 and using an acetonitrile/toluene 

mixed solvent system led to the clusterization of the nanoscale ensembles (Figure 16). They have then 

been deposited onto nanostructured SnO2 electrodes to show an efficient photoresponse in the visible 

and near-infrared regions, as well as a high photoenergy conversion efficiency due to the effective 

electron transfer from the excited porphyrin to fullerene within the dendritic matrix. 

Márquez et al. presented the inclusion of C60 molecules within the internal cavities of a fifth 

generation POPAM dendrimer with 64 terminal amine groups [62]. Following the procedure by 

Meijer, the product was obtained by adding C60 to a solution of a POPAM fifth dendrimer in CH2Cl2 

and the presence of triethyamine. The resulting mixture was stirred for one day upon which was added 

N-t-Boc-L-phenylalanine N-hydroxysuccinimide ester as bulky substituent in order to build a 

protecting shell at the dendrimer surface. After additional stirring for 24 h, the crude has been purified 

and characterized by MALDI-TOF mass spectrometry and UV-vis spectroscopy. It turned out that the 

final complex structure [90][C60]x contained an average number of approx. 4 fullerenes that were 

encapsulated within the dendrimer voids (Figure 17). The dense external shell created with the  

N-t-Boc-protected amino acid was thus successfully able to hermetically lock the internal space 

preventing the trapped fullerene molecules to escape. Interestingly, the fluorescence spectrum revealed 

that the confinement into a dendritic structure had a noticeable influence on the emission spectra of the 

guest molecule since under these conditions the emission band of C60 experienced a strong 
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bathochromic shift of ca. 132 nm with respect to the emission of C60 in solution (λem = 675 nm after 

λexc = 285 nm). This impressive red shift turned out to be solvent-dependent due to favorable electronic 

communication between host and guest molecules that could be stronger due to the different solvent 

polarities that significantly affected the macromolecular dendrimer host structure. 

Another approach towards supramolecular structures has been introduced by Kono et al. [63]. 

Decoration of the surface of G4-PAMAM dendrimer by β-cyclodextrins (β-CD) through reaction with 

the corresponding monotosylated β-CD followed by the coupling of monomethoxy polyethylene glycol 

PEG 4-nitrophenyl carbonate gave the target dendrimer scaffold. 1H NMR studies revealed the average 

number of bound β-CDs to be 29. It is a well-known phenomenon that cyclodextrins form non-covalent 

associates with fullerenes. For instance, in the case of β-CD the ball-shaped C60 is encapsulated within 

two cyclic oligosaccharides. Addition of pristine fullerene led indeed to the proposed host-guest 

conjugates with concentration reaching values of 2.8 μM aqueous fullerene solutions. 

Figure 16. Noncovalent ensembles of C60 with first to third generation POPAM 

dendrimers 87-89 decorated at the surface by multiple porphyrin macrocycles. 
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Figure 17. Schematic representation of encapsulated fullerene moieties within the 

backbone of a POPAM G5 dendrimer according to Márquez et al [62]. 

 

Martín et al. also reported the tweezering of fullerene by extended tetrathiafulvalene (ex-TTF)  

units [64]. The dendrimer skeleton has been prepared employing the general concept of repetitive 

synthetic sequences to provide the polyester backbone with either 6, 12 (91) or 24 ex-TTF moieties at 

the dendrimer surface. In agreement with previous findings of the same group, tweezering of fullerene 

was envisaged and indeed, it was found that regardless of the dendrimer size C60 could be accommodated. 

A schematic representation of a possible supramolecular associate of G3 ex-TTF dendrimer 90 and 

several C60 units is depicted in Figure 18. Initial UV/vis titration studies with the first generation 

species evidenced a positive cooperative binding of three equivalents of C60 by the present six ex-TTF 

units. Similar experiments have then been conducted with the next higher generation structures, which 

exhibited a similar degree of cooperativity in the binding events. The authors explained the cooperative 

effect most probably to arise from the need to disassemble the dendrimers prior to complexation of C60. 
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Figure 18. Supramolecular complexation of C60 units at the surface of an ex-TFF appended 

third generation dendrimer 91. 

 

6. Conclusions 

Since the first specimens of fullerene-containing dendrimers were reported in the early 90s, 

tremendous efforts have been performed making nowadays accessible a huge variety of new materials 

with virtually no restriction of dendritic addends that can be linked to the sphere-shaped fullerene 

molecule. The efficient methodologies that have been developed allow us to attain dendrons with 

several fullerene moieties in predetermined sites. Most importantly, these synthetic advances in the 

preparation of fullerodendrimers allow also the tuning of the materials properties to a great extent. The 

driving force for the steady demand of new materials in chemistry and materials science originates 

from the peculiar physical properties of this carbon allotrope. It is thus not surprising that the designed 

fullerodendrons have been incorporated into large dendritic assemblies by either covalent bonds or 

supramolecular interactions. However, despite the remarkable recent achievements, it is clear that the 

examples summarized herein do only represent the first steps towards the design of fullerene-rich 

molecular assemblies which can display functionality at the macroscopic level. More research in this 

area is clearly required to fully explore the possibilities offered by these materials, for example in 

nanotechnology or in photovoltaics. 
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