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Abstract: We consider four criteria of acceptability for single-chain mean-field entangled
polymer models: consistency with a multi-chain level of description, consistency with
nonequilibrium thermodynamics, consistency with the stress-optic rule, and self-consistency
between Green–Kubo predictions and linear viscoelastic predictions for infinitesimally
driven systems. Each of these topics has been considered independently elsewhere.
However, we are aware of no molecular entanglement model that satisfies all four criteria
simultaneously. Here we show that an idea from Ronca and Allegra, generalized to arbitrary
flows, can be implemented in a slip-link model to create a model that does satisfy all
four criteria. Aside from the direct benefits of agreement, the result modifies the relation
between the initial relaxation modulus G(0) and the entanglement molecular weight Me.
If this implementation is correct, current estimates for Me would require modification that
brings their values more in line with estimates based on topological analysis of molecular
dynamics simulations.
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1. Introduction

Since the single-chain mean-field nonlinear rheology model of Doi and Edwards [1–5], there has
been considerable progress in describing the dynamics of entangled polymers. With a small number
of adjustable parameters it is now possible to describe many experiments simultaneously [6–13].
Other work has recently suggested that one of these parameters—the entanglement density—might be
accessible from atomistic simulations [14–26]. As a result, the goal of ab initio polymer rheology
predictions now seems close.

There remain a few important obstacles to this goal, such as determination of the fundamental time
scales, related to friction coefficients. However, in this paper we focus on the determination of the
entanglement density. There are several issues that need to be resolved for this, which might be usefully
separated into two categories. The first set of issues involves extraction of the entanglement density
from atomistic simulations using topological analysis. For example, the literature contains discussions of
annealing versus geometrical methods [24,27,28]. Also, the results are necessarily statistical quantities,
and one therefore needs a coarse-grained model onto which these statistics are mapped: a target.
Candidate targets contain some set of assumptions, in particular which quantities are allowed to fluctuate,
such as entanglement number, entanglement spacing, monomer density, or entanglement positions. Since
chains are finite-sized objects, it seems obvious that the more fluctuations included in the model, the
better [29]. At least, this is the position that we take here.

The second category of issues involves relating the entanglement density parameters in the model to
the observed rheology, typically the plateau G0

N of the storage modulus, G′. We are primarily concerned
with these issues here. Determining how fluctuations affect the predicted plateau modulus has plagued
entanglement theories from early on [30–34]. The Doi–Edwards model contains very few fluctuations,
yet the question of a factor of 4/5 in the plateau modulus persisted for many years, presumably related
to monomer density fluctuations along a fixed, constant-length primitive path [7,35]. As one adds
primitive-path-length fluctuations (usually called “contour-length fluctuations” or CLF), entanglement
spacing fluctuations, etc., the prefactor changes more [10]. These fluctuations can be handled in a natural
way using slip-link models and nonequilibrium thermodynamics.

This manuscript focuses on entanglement spatial fluctuations (ESFs) in single-chain models. Unlike
in multi-chain simulations or models, inclusion of these effects does not appear to be so natural
or rigorous. Moreover, the effect is clearly important in relating the entanglement density to the
plateau modulus, since the primitive chain network simulations of Masubuchi and co-workers estimate
the entanglement density to be twice that found in most single-chain models, when comparing with
experiment [36]. A similar difference is seen when using topological analysis to estimate entanglement
density from a more fundamental basis [37].

There exist attempts to put ESFs in single-chain models, which involves virtual springs that attach
entanglements to an affinely deforming background. However, other issues that at first seem unrelated
come into play. For example, we know that we do not wish to include the contribution to stress from
these virtual springs, or the model would almost certainly violate the well-established empirical relation
between the stress tensor and the refractive index tensor: the stress-optic rule (SOR) [38]. However,
one can then run into difficulties satisfying linear response theory [39], which states that relaxation of
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spontaneous stress fluctuations should be identical to relaxation from small external perturbations [40].
Even more disturbing, one can violate the second law of thermodynamics [41]. A simple virtual-work
argument requires that the change of free energy of the virtual springs upon sample deformation should
contribute to the stress [42–45]. More sophisticated nonequilibrium thermodynamics formalisms, such
as GENERIC [46–50], give the same results. Yet each virtual spring represents a confinement potential
due to interaction of the probe chain with at least one other chain. Hence, even though the stress tensor
is derived from the free energy in a thermodynamically consistent way, for a single-chain model this
leads to overcounting of the confinement potentials. (According to the principle of virtual work, the
scalar product of the stress exerted on the system and the strain equals the change in free energy of the
system. For a single-chain model, the latter is calculated as nc〈∆F 〉, where nc is the number density of
chains and 〈∆F 〉 is the ensemble average of the change in the chain free energy.) If we do not include
virtual springs, we have no ESFs and an incorrect relation between the plateau modulus G0

N and the
entanglement molecular weight Me (and therefore the entanglement density) results. Hence, one seems
to go in a circle where resolution of one violation leads to another problem.

We seek here simultaneous resolution of these issues. We show that dynamics proposed for nodes in
cross-linked rubber by Ronca and Allegra [51], which we call RA dynamics, can resolve them and allows
one to include entanglement spatial fluctuations in single-chain models without creating any fundamental
violations. We consider then these four criteria for single-chain entanglement models:

1. Consistency with multi-chain models. The single-chain model should predict the same
magnitude for the elastic modulus as multi-chain models and therefore estimate the same
entanglement density when comparing with rheological data. Cross-linked network calculations
have already established the importance of node fluctuations for this agreement [30–34]. In
the present paper, we verify only qualitatively whether the effect of ESFs on the plateau
modulus in single-chain mean-field models is consistent with that observed in multi-chain models.
Specifically, the plateau modulus should decrease when the size of ESFs increases.

2. Consistency with nonequilibrium thermodynamics. Equilibrium thermodynamics and
statistical mechanics can be applied in a straightforward way to cross-linked systems [52].
Similarly one can apply nonequilibrium thermodynamics to entangled melts, using either
GENERIC or a simple virtual-work argument to derive the stress tensor. For cross-linked systems
we simply require that the entropy of the universe not decrease when reversibly deforming
a network.

3. Consistency with the stress-optic rule (for moderate deformations). It is well established
experimentally [38] that polymer melts show a linear relationship between the stress tensor and
the refractive index tensor when the chains are Gaussian [53,54]. The dependence of the refractive
index tensor on chain conformations has a straightforward derivation [55], so we assume that it is
correct. The refractive index tensor should be compared to the stress tensor from criterion 2.

4. Consistency between Green–Kubo predictions and the relaxation modulus predicted for
infinitesimal deformations. Linear response theory requires that the relaxation of stress from
small external perturbations should be the same as relaxation from small fluctuations that arise at
equilibrium [56]. Both expressions require as input an expression for the stress tensor, and this
expression should come from criterion 2.
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Since discussions of these topics individually exist in the literature already, we attempt to keep
mathematics to a minimum. We begin by summarizing, in Section 2, where each of several existing
single-chain models for entangled polymer melts fails for at least one of these criteria. Section 3 gives
a little history and an explanation of the RA dynamics [51]. We point out that equilibrium models by
Heinrich et al. [57], Rubinstein and Panyukov [58,59], and Everaers [60] for cross-linked entangled
networks have already incorporated the ideas from Ronca and Allegra. The RA dynamics in these
network models are based on a decomposition of node fluctuations in the principal strain directions.
A more general formulation is necessary for entangled melts, because entanglements have different
lifetimes, hence different deformation histories and different principal directions. We present such a
formulation, which we call the generalized RA dynamics. Finally, using these dynamics, we propose a
single-strand unentangled network model (Section 4) and a single-chain slip-link model (Section 5) that
both satisfy the four criteria.

A similar issue was recently considered by Everaers [37], vis-a-vis the entanglement molecular
weight that arises from topological analysis and is predicted by models for the plateau modulus. That
work focuses on the different ways to estimate the entanglement molecular weight from topological
analysis, but does point out the importance of ESFs and the front factor in the plateau modulus. Like we
do, Everaers concludes that the estimate of the entanglement molecular weight from the multi-chain
simulations is probably more accurate. On the other hand, he uses expressions for the topological
analysis that ignore fluctuations in the degree of entanglement, entanglement spacing, and monomer
density as well as the observed primitive-path persistence length, which is larger than the average
entanglement spacing. Unfortunately, these effects are all observed in atomistic simulations [16–18]
and give corrections of similar magnitude as ESFs [61].

As an aside, we mention a similar, but unrelated question about microscopic motion in cross-linked
gels. Nonaffine motion of beads embedded in such materials was observed experimentally by
Basu et al. [62]. However, the mean squared displacement relative to affine motion was two orders
of magnitude larger than what would be expected based on spatial fluctuations of cross-links. The
authors showed that the observed nonaffinity was more likely due to inhomogeneities in the distribution
of cross-linker during synthesis of the networks.

2. Existing Entangled Melt Models and the Four Criteria

We consider several network-like liquid models and their conformance to the four criteria. The
network is formed either through entanglements, or associating groups on the chain. We consider only
models that are valid for both linear and nonlinear flows. Although our focus is on single-chain models,
we also mention a few multi-chain simulations for entangled polymers.

2.1. Doi–Edwards Model and Öttinger’s Generalization

The famous Doi–Edwards model [1–5] exists on a very crude level of description: the second moment
of the orientation of a single entangled strand in the melt. It assumes affine motion for the strand,
constant entanglement spacing, and constant primitive-path length. The orientation vector is attached to
a tube segment, and the primitive path undergoes simple one-dimensional diffusion inside. The plateau
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modulus is proportional to the entangled strand density with a prefactor of 4/5. This prefactor is assumed
to arise from monomer density fluctuations along the primitive path, not from ESFs, so the plateau
modulus is consistent with nonfluctuating entanglement positions. However, the model is consistent with
the stress-optic rule, thermodynamics and the Green–Kubo relation. These conclusions are summarized
in Table 1.

Table 1. Several models/simulations and their agreement with the four criteria, which
are numbered the same as in Section 1: ESFs = entanglement spatial fluctuations,
NETD = nonequilibrium thermodynamics, SOR = stress-optic rule, OC = overcounting,
GKR = Green–Kubo relation, NA = not applicable. The last three entries are cross-linked
network models. The others are entangled melt models/simulations.

Model ↓ Criterion → 1: ESFs 2: NETD 3: SOR/OC 4: GKR

Doi–Edwards model [1–5] × X X X

Öttinger model [63] X X ? X

Associating polymer model I [41] × X × X

Associating polymer model II [41] X × X X

Slip-link model [10,64] × X X X

Slip-spring simulation (2005) [65] X × X ×
Slip-spring simulation (2007) [39] X × X X

PCN simulation [66] X × X X

Heinrich–Straube–Helmis model [57] X X X NA
Rubinstein–Panyukov model [58,59] X X X NA
Everaers model [60] X X X NA

There is an interesting generalization by Öttinger [63] to include anisotropic tube cross section. On
one hand, his work relaxes the typical independent alignment assumption of the Doi–Edwards model in
a thermodynamically rigorous way. More interesting for our discussion is his introduction of anisotropy
in the tube cross section, motivated by Ianniruberto and Marrucci [67], who used virtual springs. These
virtual springs imply possible fluctuations in entanglement positions. This second generalization by
Öttinger required addition of another dynamic variable Q′, whose conformation distribution describes
the shape of the tube cross section. (We add primes to the variables and parameters from Öttinger [63]
to avoid confusion with other quantities used here.) Its dynamics were, like the tube orientation vector
u′, deterministic except for creation and destruction at the tube ends. Thermodynamic considerations
permitted two adjustable parameters α′ and β′, the first influencing deformation of Q′ directly by
flow and the second compression of Q′ by coupling with the stretching of the primitive-path length.
Thermodynamics also required two additional contributions to the stress tensor, and a modification of
the prefactor in the classical Doi–Edwards stress.

The tube cross-section variable has dynamics

d

dt
Q′ = −

(
δ − α′

Q′2
Q′Q′

)
· κ† ·Q′ − β′ (κ : u′u′)Q′ (1)
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where Q′ denotes the length of Q′ and κ is defined as the transpose of the velocity gradient tensor,
κ := (∇v)†. The stress tensor has three additive contributions; see Equations (19–21) of [63]. The
first one is proportional to the average tube-orientation dyad 〈u′u′〉, similar to the Doi–Edwards stress,
but with a prefactor (1 + β′). The second contribution is due to nonuniformity of the monomer density,
related to avoidance of the independent alignment assumption. This contribution is independent of the
tube cross-section dynamics and therefore not relevant to our discussion. Moreover, since it vanishes at
equilibrium, the second contribution does not affect the modulus front factor and thus does not improve
the consistency with multi-chain models. We refer to the literature for a discussion on preserving
thermodynamic admissibility with and without the independent alignment assumption [68–70]. The
third contribution is proportional to 〈Q′Q′/Q′2〉 with a prefactor α′. For comparison below, we point out
that the dyad ofQ′ has dynamics

d

dt
(Q′Q′) = −κ† ·Q′Q′ −Q′Q′ · κ+

α′

Q′2
Q′Q′ ·

(
κ+ κ†

)
·Q′Q′ − 2β′ (κ : u′u′)Q′Q′ (2)

as obtained from Equation (1) using the chain rule. Presumably, Q′Q′ should have isotropic initial
distribution, but might be coupled with the tube-segment orientation vector through a nonzero β′.

The concept of finite tube cross section implies the presence of ESFs, which suggests putting a check
mark in the first column of Table 1 for this model. A step-strain calculation shows that the modulus
front factor is 1 + α′ + β′; see Section 2.5 of [63]. The same result can be derived straightforwardly
from the Green–Kubo relation, hence the check mark in the last column. Assuming that entanglements
are binary interactions, which are analogous to tetrafunctional cross-links, consistency with multi-chain
network models [30–34] then suggests that α′ + β′ = −1

2
, so that the front factor becomes 1

2
. A second

relation between α′ and β′ may be obtained from consistency with the stress-optic rule. However, it is
not obvious to us how to derive the birefringence tensor for this model. Therefore we put a question
mark in the second column. Thus Öttinger’s reptation model satisfies at least three of the four criteria.

There is another model by Wagner and coworkers [71,72] that also considers changing tube cross
sections. This model includes an added dynamics for stretch of the primitive path due to a decrease in
the tube cross section (through a dynamic variable f , which represents the ratio of the “tube diameter”
at equilibrium and in flow). One justification for the specific form of this dynamical equation comes
from an argument by Marrucci and Ianniruberto [73] regarding pressure from the tube on the chain. In
these formulations the tube cross section is treated as a hard boundary instead of as harmonic springs.
Although, to the best of our knowledge, GENERIC compliance has not been checked for this model,
there does not appear to be any problem. A thorough check requires conversion of Wagner’s integral
equation to a differential form, which is given in Appendix A. Since there are no explicit fluctuations
here, and since the plateau modulus and relaxation function of the model are just phenomenological, we
do not place the model in our table. We do not consider further any similar models [74].

2.2. Associating Polymers

An associating polymer (AP) contains associative groups (often called stickers) along its
backbone [75,76]. In solution, the stickers aggregate to form micelles, and a polymer network
cross-linked by these micellar junctions is constructed above a certain polymer concentration. The
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binding energy between stickers is typically on the order of the thermal energy kBT , so that stickers can
dissociate from the junctions due to thermal agitation. On the other hand, detached free stickers recapture
other (or the same) junctions nearby. Thus the members of the junctions are frequently replaced, or the
junction itself created or annihilated. Therefore solutions of APs are physically cross-linked networks,
and are often called reversible or transient networks. The association/dissociation kinetics of stickers are
similar to the constraint dynamics (creation and destruction of entanglements away from the chain ends)
in entangled polymers. (The main difference is that the constraint dynamics in entangled polymers are
related to sliding dynamics of the ends of surrounding chains, whereas association and disassociation
events in APs may involve stickers located anywhere along the surrounding chains.) Therefore it is
appropriate to discuss a few AP models briefly.

A transient network model developed by Tanaka and Edwards (TE) was the first systematic theory for
rheological properties of unentangled AP networks [77–80]. This theory is based on the classical models
for entangled polymer solutions and melts that assume the entanglement points as temporal junction
points that can break and regenerate [81–86]. The TE theory is a single-chain model for polymers
carrying stickers only on both ends (called telechelic polymers), and chains are modeled by dumbbells.

Several modifications of the TE model have been proposed so far: inclusion of free chains [87],
imperfect relaxation of dangling chains and shear-induced enhancement of the association rate [88,89],
and competing effects between the nonlinear stretching of active chains and a stretch-induced
dissociation rate [90]. All of these are single-chain, dumbbell, affine network models like the TE model.
A stochastic model [91] belonging to this category was also proposed. (Cifre et al. [91] studied the
effects of nonaffine motion of junctions by assuming that the junctions have finite friction coefficient.
For example, the steady-state viscosity decreases with decreasing friction of the junctions [91]. However,
the mobile junctions are not connected with the background network by virtual springs, as often assumed
in the study of junction fluctuations [41,65,92]. A lack of virtual springs enhances the deviation of mobile
junctions from affine motion.)

Recently Indei and Takimoto [93] proposed a single-chain, affine network model for unentangled
APs having multiple stickers, based on an idea of Jongschaap et al. [94]. Indei et al. [41] also studied
the effects of junction fluctuations on the viscoelasticity of multisticker AP networks by relaxing the
affine-motion assumption. Fluctuations were implemented by introducing virtual springs that connect
associated stickers (which are supposed to be incorporated into junctions) with a background that
deforms affinely. Two situations were studied, i.e., whether or not to include the direct contribution
from the virtual springs into the total stress. If included (model I), the plateau modulus is not affected by
the fluctuations, which is inconsistent with the multi-chain prediction. A softening occurs, but only in the
lower frequency regime where the associative Rouse-like behavior [95] is observed. Also the stress-optic
rule is not obeyed because the virtual springs do not contribute to the optical properties but do contribute
to the stress [96]. It should be mentioned that the SOR is not as well established for AP networks as
it is for polymer melts and cross-linked networks. (For telechelic ionomers (α, ω-lithium sulfonato
polystyrene), the SOR is confirmed in a wide range of shear rates including the shear-thickening
regime [97]. On the other hand, for telechelic poly(ethylene oxide) (HEUR), the SOR is obeyed only
well inside the linear regime [98]. The authors attribute this observation to the formation of flowerlike
micelles. Due to the interference by a corona of looped chains, active chains connecting neighboring
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micelle cores may be stretched even at rest, thereby shifting the onset of SOR violation to smaller
strain.) Nevertheless, the problem of overcounting the virtual-spring contributions to the stress exists
for all these systems.

On the other hand, if the virtual-spring contribution is not included (model II), the fluctuations
decrease the plateau modulus consistently with the multi-chain result, but the second law of
thermodynamics is violated [41]. The stress-optic rule is satisfied because of the absence of
the virtual-spring contribution. In both cases, the Green–Kubo prediction at equilibrium can be
shown analytically to be consistent with the relaxation modulus after an infinitesimal deformation.
Thus, neither of these two models satisfies all four criteria. Ronca–Allegra dynamics resolve this
inconsistency issue in the same way as shown for the single-chain slip-link model in Section 5 and the
single-strand unentangled network model in Section 4. For the AP model with Ronca–Allegra dynamics,
consistency between the Green–Kubo prediction and the modulus under infinitesimal deformations can
be proven analytically.

2.3. Slip-Link Model

Hua and Schieber [99–101] introduced a single-chain stochastic tube/slip-link model in 1998 that
modeled the chain as a one-dimensional Rouse chain in a tube, but the entanglements were discrete, like
slip-links. This model was superseded by a more natural level of description without Rouse chains or
tubes [64]. In the newer model, the entanglements were explicitly slip-links and the number of Kuhn
steps between entanglements was treated as a stochastic variable. Many fluctuations arise naturally in
the model, such as spacing between entanglements, primitive-path length, monomer density along the
primitive path, and fluctuations in the number of entanglements. Most of these statistics were later
found to be in agreement with topological analysis of atomistic simulations, except at the smallest length
scales [17,18]. In particular, Tzoumanekas and Theodorou [18] found that entanglements appear to have
a short-range repulsive interaction that is not accounted for in the model.

Thermodynamics play a large role in restricting the dynamics of the model, and compliance with
GENERIC was demonstrated [102]. Entanglements are imposed by a chemical potential bath that allows
the number of entanglements on the chain to fluctuate. Together with the free energy of the chain, this
formulation allows analytic expressions for equilibrium chain conformations [21,103].

Initially, the number of Kuhn steps in an entangled strand was treated as a continuous variable [9,104],
but this formulation was supplanted by a more rigorous formulation that treats this number as a
discrete variable, and in which dynamics are modeled by a discrete hopping process [10–13]. In
particular, while the discretization in itself is a minor approximation, it allows a mathematically
rigorous implementation of entanglement creation and destruction at the chain ends by sliding dynamics.
Constraint dynamics (creation and destruction of the entanglements everywhere along the chain)
are determined self-consistently with sliding dynamics. This self-consistency is not required by
thermodynamics, but it does not cause any violation either, and is accepted on physical grounds.
Thermodynamics does restrict the rates of creation and destruction of entanglements insofar that they
are related by detailed balance.
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Although the model is thermodynamically consistent, it does not include fluctuation of the
entanglement positions. As a result, its relation between the plateau modulus and the entanglement
molecular weight is similar to that of Doi and Edwards. However, since it contains more fluctuations, it
has a somewhat smaller front factor. ESFs were incorporated in a more recent version of the slip-link
model by Schieber and Horio [92]. However, they showed analytically that the plateau modulus was the
same as for the original slip-link model, with affine motion of entanglements. Recall that this was also
found for AP networks. In Section 5, we show that the plateau modulus does decrease with the strength
of ESFs when these fluctuations become anisotropic under deformation according to the generalized
RA dynamics.

2.4. Slip-Spring Simulation

Likhtman [65] introduced a slip-spring simulation in 2005, which consists of a three-dimensional
Rouse chain, anchored to an affinely deforming elastic background through slip-links and virtual springs.
The simulation includes fluctuations of the entanglements through the virtual springs. Although the
resulting dynamics are similar to the slip-link model in the limit of stiff virtual springs, there are several
differences. The simulation requires an ensemble of chains, since it is not rigorously single-chain. The
number of slip-springs is fixed for a given simulation ensemble. Destruction of an entanglement at a
chain end due to Rouse motion requires creation of a new entanglement at a randomly chosen chain end
elsewhere in the ensemble. The creation rate is completely determined by this algorithm, whereas in the
slip-link model it is derived from the destruction rate through detailed balance. Upon slip-spring creation
at a chain end, another chain is chosen randomly and a slip-spring is added somewhere along its primitive
path. These two slip-springs are then permanently paired such that death of one by Rouse motion results
in death of the other. This is in contrast to the slip-link model, which shows disentanglement under flow.
Such disentanglement is crucial for agreement with shear flow data [13].

Also different from the slip-link model, the number of Kuhn steps between adjacent entanglements is
not treated as the stochastic variable, but this information is instead carried by the beads and springs of the
Rouse chain, whose dynamics are given by Brownian dynamics. Although the virtual springs modify the
chain dynamics, they do not contribute directly to the stress. A virtual-work argument suggests that the
model has thermodynamic issues [41]. However, the underlying mathematical model is not completely
specified, and therefore compliance with GENERIC has not been checked. Some challenges that need
to be overcome to enable a GENERIC check are (1) choosing convenient variables to describe the chain
conformations and the topology of the pseudo multi-chain system, and (2) deriving an evolution equation
for the probability density of these variables.

Similar issues were later confirmed in a paper by Ramı́rez et al. [39], where the relaxation modulus
found from a linear step-strain deformation did not agree with that found from Green–Kubo simulations.
The authors did find that the discrepancy could be eliminated by considering cross correlations between
the stress from virtual springs and that from the real chains in the Green–Kubo calculations [40]. Such
a repair does not address the problem of violation of the principle of virtual work and the second law of
thermodynamics, however. Therefore, we add an “X” under nonequilibrium thermodynamics (NETD)
for the 2005 version of the model, although we suspect that in nonlinear flow it could be repaired by the
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generalized RA dynamics, introduced below. Even though compliance has not been rigorously checked,
we also add an “X” under NETD for the 2007 version of the model, which is strongly suggested by the
principle of virtual work.

2.5. PCN Simulation

In 2001, Masubuchi and coworkers introduced the primitive chain network (PCN) simulation [66].
Although this is a multi-chain model, it is applied to nonlinear flows and we consider it worthwhile
to add a few comments here. The model exists on a level of description similar to the single-chain
slip-link model of Schieber and coworkers, since it treats the number of Kuhn steps as a stochastic
variable, instead of using Rouse chains. The chains are entangled through rigid slip-links, but they do
fluctuate in space by a force balance and Brownian forces in the network. The number of entanglements
is neither determined by a grand-canonical approach as in the single-chain slip-link model, nor held
fixed in an ensemble as in Likhtman’s model [65]. Instead, creation and destruction of entanglements
are determined by an algorithm involving the numbers of Kuhn steps in dangling chain ends. Because
of the multi-chain level of description, the authors also found it necessary to include “osmotic pressure”
forces between slip-links to avoid network collapse. These forces might be similar to the repulsive forces
observed by Tzoumanekas and Theodorou [18] mentioned above.

Interestingly, this model indeed predicts a relationship between the plateau modulus and the
entanglement molecular weight that is similar to multi-chain cross-linked models [36]. In fact, this
difference from the Doi–Edwards model raised some concern among the authors. However, we argue
here that their result is more in line with theory [30–34] than that of the single-chain models above.

On the other hand, the model has several critical thermodynamic issues. Rather than using
chemical potential differences between neighboring strands to drive Kuhn-step dynamics, they use
tensions. These same tensions also drive entanglement position dynamics. Hence there does not
appear to be a single consistent chain free energy in the model. Secondly, the osmotic pressure
forces preventing network collapse do not contribute to the stress, although they are argued to be
small. Perhaps more problematic, these forces do not exist on the same level of description as the
simulation formulation. Instead, the simulation box is discretized on a coarser level to estimate the local
entanglement density. Such a formulation cannot be examined in the limit of vanishing discretization,
and sensitivity to this conveniently chosen length scale is unknown. Ideally, the repulsive forces between
entanglements should be formulated on the same level of description as all other dynamics. Finally, the
underlying mathematical model is not fully specified, and compliance with thermodynamics has not been
examined rigorously.

Very recently there have appeared newer multi-chain simulations [105,106] that fix many of the
thermodynamic issues [107] associated with dynamics in the code by Masubuchi et al. Therefore,
these are a considerable improvement over the earlier PCN simulations. Both groups use the idea of
Schieber [103] to treat the number of entanglements as a stochastic variable, which is controlled by
a chemical potential bath as in a grand-canonical ensemble. However, they have also added springs
between the chains, which raises issues about three of the criteria above. First, since the model is
already multi-chain, these springs add additional fluctuation and relaxation to the plateau modulus.
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Therefore, one might expect a possible “overcompensation” between entanglement molecular weight
and the plateau modulus. Second, if the virtual springs contribute to the stress predictions, then one
would expect violation of the stress-optic rule. Third, if these springs do not contribute to the stress,
then one expects violation of the principle of virtual work. Chappa et al. [105] do not specify their
stress tensor expression, whereas Uneyama and Masubuchi [106] consider both forms of stress, with and
without the virtual springs.

3. Proposed Virtual-Spring Dynamics of Ronca and Allegra

Consideration of entanglements begins historically with cross-linked rubber [52]. The so-called
“phantom network models” treat strands that can pass through one another, but whose ends are
cross-linked to other chains. James and Guth [108–110] considered a multi-strand network model
with Gaussian strands, and made two different assumptions for cross-link dynamics when (to prevent
the network from collapsing) strand ends at the sample surface were fixed to an affinely deforming
boundary. The first assumption is that the cross-links initially move to their equilibrium position by
free energy minimization (or, equivalently, force balance) and are then themselves deformed affinely.
The second assumption was that these cross-links were free to fluctuate before and after deformation,
and only the boundary nodes were deformed affinely. They showed that these two assumptions give the
same stress predictions, and that the fluctuations in the second case are isotropic and their magnitude is
independent of deformation. Duiser and Staverman [30,34], and later Graessley [31,32], showed that the
fluctuations of the cross-links give a modulus of the phantom network that is proportional to its cycle
rank. It is important to note that one could also assume that the cross-links are deformed affinely from
their initial fluctuating positions instead of their average positions, but that this would give a modulus
higher than the cycle rank. For cross-links of functionality 4, this would give a modulus twice as large as
the fully fluctuating cross-links. Freezing the nodes at an instantaneous configuration followed by affine
deformation decouples all the strands, which makes the multi-strand system equivalent to an ensemble
of single-strand models; hence the larger modulus predicted for many single-strand models.

One seldom knows the cycle rank of a real network, but one can still make relative strain-dependent
predictions of stress with the phantom network model, and it was established that the phantom network
model does not give predictions in agreement with experiments [52]. Also shown experimentally was
the fact that stress in the network is linearly proportional to temperature at fixed strain. Thermodynamics
implies then that entropy dominates the contribution to stress, so the suspects in the discrepancy
were isolated to network conformations. One group, including Paul Flory [33] as well as Ronca
and Allegra [51], thought that the culprit might be modification of the fluctuations in the cross-links
during deformation from excluded volume forces, whereas another, including Sam Edwards [111],
thought that the culprit was the restriction of strand conformations from the topological constraints
imposed by surrounding strands. Individuals from both groups called these conformational restrictions
“entanglements”. While the view of Edwards has prevailed to the present, there were still some
interesting works by the other group that might have relevance for models that incorporate the topological
view of entanglements.



Polymers 2013, 5 654

To modify node fluctuations, Ronca and Allegra [51] took a single-strand description of a
cross-linked Gaussian network. (To be precise, they started with a multi-strand system, but they chose
the principal directions of the deformation as their coordinate axes. Since there is no correlation between
the principal components of node fluctuations, their model is equivalent to an ensemble of single-strand
models. The same is true for the more recent, similar formulations of Heinrich et al. [57], Rubinstein and
Panyukov [58,59], and Everaers [60].) Each node is attached via a virtual spring to an anchor stuck in an
affinely deforming background; see Figure 1. Ronca and Allegra considered the nodes to be cross-links,
but we might also think of them as entanglements, as in Figure 2. These sketches are special cases
of the general networks considered by James and Guth [108–110], where the anchors are those points
on the surface of the sample. As James and Guth proved, the nodes also move affinely on average.
(This is no longer true with RA dynamics; cf. Equation (71) in Appendix B.3, which gives the mean
strand end-to-end vector Q̂ for a single-strand model after a step strain.) It is straightforward to show
that thermodynamics requires that the virtual springs contribute to the stress of the system. Otherwise,
deformation would lead to a decrease in the entropy of the universe [41], which is not good. On the
other hand, if we include the virtual-spring contributions to stress, we overcount the contribution of the
potential and violate the stress-optic rule. To avoid these problems, we require that the free energy of
the virtual springs does not change during the deformation. Ronca and Allegra showed that this can
be (uniquely) accomplished by a special anisotropic deformation of the harmonic potential. If {Ri}
represents the positions in space of all the nodes, and {ri} represents the positions of all the anchors, we
write the (Helmholtz) free energy Fv of all the virtual springs

Fv

kBT
=

3

2a2K

∑
i

(Ri − ri) · n−1 · (Ri − ri) (3)

where kB is Boltzmann’s constant, T is the temperature, aK is the Kuhn length, and n is the shape tensor
of the virtual-spring potential. Due to its tensorial nature, n may couple the fluctuations in different
directions, but it cannot be a function of the node and anchor positions.

Figure 1. Sketch of single-strand network model on detailed level of description. The strand
(thick black line) is attached to cross-links (red dots) connected to affinely moving anchors
(blue crosses) by virtual springs (thin black lines). Position vectors and connector vectors
are indicated by black and colored arrows, respectively.
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Figure 2. Sketch of proposed slip-link model on detailed level of description. The chain
(thick black line) passes through slip-links (red circles) connected to affinely moving anchors
(blue crosses) by virtual springs (thin black lines). Position vectors and connector vectors
are indicated by black and colored arrows, respectively.

We now consider a deformation given by the velocity gradient transpose κ := (∇v)†, where the
dagger indicates transpose. Thus, the anchors have motions d

dt
ri(t) = κ(t) · ri(t) and the nodes have

motions d
dt
Ri(t) = κ(t) · Ri(t). Since the cross-links are always at equilibrium, we use t here as a

parametric label for the deformation, and t = 0 means the initial zero-stress state.
Thermodynamics demands that for an isomolar, isothermal deformation, the rate of work to perform

the deformation is equal to the rate of change of the system’s free energy. Since the rate of work is the
scalar product of the stress tensor and the velocity gradient, if Fv changes with t, then there should be a
contribution to the stress from the virtual springs. Taking the derivative with respect to t of each side of
Equation (3) allowing n to change, we obtain

d

dt

(
Fv

kBT

)
=

3

2a2K

∑
i

Xi ·
(
d

dt
n−1 + κ† · n−1 + n−1 · κ

)
·Xi (4)

where Xi := Ri − ri as shown in Figure 1. If n were held constant, then the free energy of the virtual
springs would change during the deformation, and they would need to contribute to the stress to avoid
thermodynamics problems. However, if we give n−1 lower-convected evolution,

d

dt

(
n−1

)
= −κ† · n−1 − n−1 · κ (5)

then the virtual springs do not contribute to the stress. Note that n has upper-convected dynamics, i.e.,
dn/dt = κ · n+ n · κ†, which can be proven by taking the derivative of n · n−1 = δ with respect to t.
These are the generalized RA dynamics.

The evolution requires an “initial” condition. For an initially isotropic system, it seems necessary
to assume that n(t = 0) = nδ, which introduces a new parameter n. We recently proposed a way to
estimate this parameter from topological analysis of atomistic simulations [61].

If the nodes are entanglements in a polymer melt, an additional modification is required. Since the
entanglements are created and destroyed by the sliding dynamics of the chains, we must assign a tensor
ni to each entanglement i upon creation at time tcr,i, and it needs an initial condition upon creation. To
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retain the proper isotropic equilibrium state, this initial condition should be ni(t = tcr,i) = nδ. Now
the parameter t becomes the independent variable time. The stress tensor can be derived rigorously by
applying a step strain, κ(t) = γδ(t), integrating over the infinitesimal free-energy increment dF from
t = 0− to t = 0+, taking the ensemble average, and finally using the principle of virtual work. (This
leads to τ : γ = −nc

〈∫ F (t=0+)

F (t=0−)
dF
〉

, where nc is the number density of chains. All stochastic terms in
dF average to zero, which is why we only considered the affine part of the node displacements in the
derivation of Equation (4). If the nodes are entanglements, dF contains additional deterministic terms,
which are independent of κ and therefore vanish identically when the integration is carried out [112].)
The free energy change due to deformation of each virtual spring then cancels with that due to the
deformation of its potential, analogous to the example given here for a cross-linked network. The same
holds true for associating polymer networks.

We finish this section with a few comments about the implied physics and previous work. The
generalized RA dynamics suggest that deformation gives anisotropy to the network node fluctuations.
For example, in uniaxial elongation the nodes would have greater fluctuations in the direction of stretch,
and smaller fluctuation in the perpendicular directions. In tube language, this looks like shrinking of the
tube diameter. Or, more generally, it allows anisotropic tube cross-section. In fact, the dynamics of n−1

are equivalent to those of the dyad Q′Q′ in Öttinger’s single-segment reptation model, Equation (2), in
the special case that α′ = 0 and β′ = 0 [63]. Note that this implies that Q′ should not be interpreted
as the tube radius, but rather as the “inverse” of the tube radius. More importantly, however, setting
α′ = β′ = 0 leaves the stress-tensor predictions unchanged from Doi and Edwards. Thus it seems that
there is no one-to-one correspondence between the tube cross-section dynamics in Öttinger’s reptation
model and the generalized RA dynamics. This is not necessarily a cause for concern, given the difference
in level of description between the models considered here (in which the entanglements are discrete
objects whose actual positions are tracked) and the reptation model (where these discrete objects are
replaced by a continuous tube). We will draw somewhat more definitive conclusions from a comparison
with the coarse-grained single-strand network model in Section 4.2.

On a more detailed level, Ianniruberto and Marrucci [67] considered a Rouse chain trapped in
a tube segment with anisotropic tube cross section, described by virtual springs along the primitive
path. They concluded that, when the virtual springs are included in the stress, there is no violation
of the stress-optic rule. Their calculation relies heavily on a slight modification of a Green’s function
that was first derived by Doi and Edwards for a Gaussian chain in a harmonic confinement potential.
Ianniruberto and Marrucci considered a straight, single tube segment in the z direction, with elliptical
harmonic potential in the x and y directions. Unfortunately, both the Doi–Edwards expression and
the Ianniruberto–Marrucci expression for the Green’s function are not exact, since they do not satisfy
the continuity condition and the boundary condition. We have recently derived the exact Green’s
function [96] for the problem and showed that the SOR is violated if the virtual springs are included
in the stress. Since the work of Ianniruberto and Marrucci is not a complete model, we do not place it in
Table 1.

Heinrich et al. [57], Rubinstein and Panyukov [58,59], and Everaers [60] implemented Ronca and
Allegra’s idea of anisotropic node fluctuations in cross-linked network models. Some of these include
entanglements between network strands, but entanglements involving dangling ends are not explicitly
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modeled. Therefore all nodes are permanent, and as a result the principal directions of their fluctuations
all correspond to those of the macroscopic deformation. When the coordinate system is aligned with
the principal directions, the virtual-spring tensors become diagonal and the system becomes equivalent
to an ensemble of single-strand models. The generalized RA dynamics, introduced in Equation (5),
can also be implemented in models for networks with entangled dangling ends [113] or melts. We did
not consider the cross-linked network models of references [57–60] above because we are primarily
interested in liquids. Because nonlinear deformations were considered, we still add them to Table 1 and
put check marks in all but the last column, which is not applicable for purely elastic models.

4. Examples: Single-Strand Mean-Field Unentangled Network Models

Before introducing slip-link models that satisfy all four criteria, it is worthwhile to look at two
illustrative examples. We first consider a single-strand mean-field model for a cross-linked network.
Similar to the multi-strand phantom network model of James and Guth [108–110], entanglements are
neglected. Fluctuations of the cross-link positions are described by virtual springs with generalized RA
dynamics [51]. The first model is formulated on a detailed level of description, which resolves the
cross-link positions. The second model is obtained from the first by integrating out these positions. It is
shown that all four criteria are satisfied on both levels of description.

4.1. Detailed Single-Strand Unentangled Network Model

We choose the variables
Ω = {Q,X1,X2,n} (6)

whereQ and {Xi} are the end-to-end vectors of the strand and the virtual springs, as shown in Figure 1,
andn is the shape tensor of the potentials describing the cross-link fluctuations (or the compliance tensor
of the virtual springs).

Gaussian statistics are assumed for the strand as well as the virtual springs. The free energy is then

F (Ω)

kBT
=

3Q2

2Na2K
+

3

2a2K

2∑
i=1

Xi · n−1 ·Xi +
3

2
log

[(
2πa2K

3

)3

N |n|
2
3

]
(7)

where N is the number of Kuhn steps in the strand. The last term normalizes the equilibrium probability
density, which is given by the Maxwell–Boltzmann relation peq(Ω) = exp [−F (Ω)/(kBT )]. The choice
to include a normalization constant in the free energy or as a prefactor in the expression for peq is
arbitrary. However, the term log |n| is not constant—see Equation (5)—and therefore needs to be
included in the free energy.

In the mobile slip-link model, discussed in Section 5, the anisotropy of ESFs in flow is the result of
two competing processes. As long as an entanglement exists, its fluctuations become more and more
anisotropic due to the generalized RA dynamics, Equation (5). When the entanglement is destroyed,
this anisotropy is lost. Since newly created entanglements start out with isotropic ESFs, the process of
destruction and creation counteracts the generalized RA dynamics and, when the flow stops, restores
the isotropic equilibrium state. A similar relaxation occurs in the associating polymer model with
anisotropic confinement potentials, where detachment of a sticker removes the anisotropy built up by
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the generalized RA dynamics, and newly attached stickers have isotropic spatial fluctuations. On the
other hand, the equilibrium state of a cross-linked network changes with deformation. The amount of
anisotropy retained after flow depends on the relative numbers of finite-lifetime entanglements versus
permanent entanglements and cross-links. A finite-lifetime entanglement involves one or more dangling
ends, whereas a permanent entanglement involves only network strands. We consider an unentangled
network model here, which means that all of the anisotropy persists. Thus each confinement potential
has the same shape tensor n.

This model and the coarse-grained version of it, which is presented in the next section, are special
cases of slip-link models, whose thermodynamic consistency is proven elsewhere [114]. Therefore we
only need to verify three of the four criteria here: consistency of the stress tensor with the stress-optic
rule, consistency of the plateau modulus from the Green–Kubo relation with the relaxation modulus after
an infinitesimal deformation, and consistency with multi-strand network models.

4.1.1. Stress Tensor and Stress-Optic Rule

The stress tensor is obtained from the principle of virtual work, as explained in Section 3, or from
restrictions imposed by the GENERIC structure of nonequilibrium thermodynamics [114]. The result is

τ = −2nskBTδ −
3nskBT

Na2K
〈QQ〉 (8)

with ns the number density of strands. In the virtual-work derivation, the isotropic contribution
follows from the normalization term in the free energy, when taking the derivative using Jacobi’s rule,
d
dt
|n| = |n|n−1 : d

dt
n, together with Equation (5). Other than this, due to the generalized RA dynamics,

deformation of the virtual springs causes no change in the free energy and hence no contribution to the
stress tensor. The form of Equation (8) is consistent with the stress-optic rule [55].

4.1.2. Green–Kubo Relation and Infinitesimal Deformations

The single-strand contribution to the stress tensor is

τ̃ = −2kBTδ −
3kBT

Na2K
QQ (9)

According to the Green–Kubo relation, the relaxation modulus is given by the autocorrelation of the
stress at equilibrium. The initial relaxation modulus is

G(0) =
ns 〈τ̃yx(t)τ̃yx(0)〉iso, eq

kBT

∣∣∣∣∣
t=0

=
9nskBT

N2a4K

〈
Q2

yQ
2
x

〉
iso, eq

= nskBT (10)

Note that we have to specify whether the system is in the isotropic equilibrium state or some anisotropic
equilibrium state because we are dealing with a solid. The subscript “iso, eq” here indicates that the
system is in isotropic equilibrium. The right-hand side of Equation (10) is identical to the initial
relaxation modulus of the single-strand unentangled network model without RA dynamics, which is
known to be inconsistent with that of the multi-strand phantom network model.

The cross-link fluctuations are expected to be of the same order of magnitude as spatial fluctuations
of the Kuhn steps in the strand, which we coarse-grained out from the outset. By including virtual
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springs on this level of description, we keep track of the cross-link positions but, inconsistently, not of
the inner Kuhn-step positions. A self-consistent approach is possible either on a more-detailed level of
description, where all the Kuhn-step positions are resolved, or a less-detailed one, where the cross-link
positions are coarse-grained out like the inner Kuhn-step positions. The second option is more relevant
for our purpose, because node fluctuations are expected to relax on a time scale that is usually not
accessible in mechanical rheology. The plateau modulus of our model, which is relevant for comparison
with experimental data, is reached after relaxation of the cross-link fluctuations and is lower than the
initial modulus calculated in Equation (10).

The Green–Kubo result does agree with the relaxation modulus after an infinitesimal step strain γ.
This can be seen by substitutingQ = (δ + γ) ·Q0 in Equation (8), where the superscript 0 refers to the
system in the isotropic equilibrium state at t = 0, before the step. The stress tensor after the step is then

τ = −2nskBTδ −
3nskBT

Na2K

〈
Q0Q0 + γ ·Q0Q0 +Q0Q0 · γ†

〉
= τiso, eq − nskBT

(
γ + γ†

)
(11)

to first order in the strain, and hence the modulus is

G(t = 0+) = nskBT (12)

in agreement with the Green–Kubo result, Equation (10).
We have now established that three of the four criteria are satisfied. The remaining one is consistency

with multi-strand network models. This means that the plateau modulus, which is reached after the
virtual springs have relaxed, should be lower than that of a network with affinely moving cross-links.
Instead of checking this here, we proceed by coarse-graining out the cross-link fluctuations and verifying
that the resulting less-detailed model satisfies all four criteria. Since the plateau modulus of this
coarse-grained model corresponds to the plateau modulus of the detailed model after equilibration of
the cross-link fluctuations, the remaining criterion is then also satisfied for the detailed model.

4.2. Coarse-Grained Single-Strand Unentangled Network Model

We integrate the equilibrium probability density over all possible conformations of the virtual springs,
as explained in Appendix B.2. The level of description of the resulting coarse-grained model is expressed
in the set of variables

ω̂ = {q,n} (13)

The free energy in terms of these variables is

F (ω̂)

kBT
=

3

2a2K
q · σ−1 · q +

3

2
log

(
2πa2K

3
|σ|

1
3

)
(14)

where σ = Nδ + 2n. Note that ω̂ can be mapped onto the fully equivalent set Ω̂ = {Q̂,n} by means
of Equation (58) from Appendix B.1. The stress tensor and the modulus are more concisely expressed
in terms of Ω̂, as shown below.
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4.2.1. Stress Tensor and Stress-Optic Rule

The time derivative of the free energy is calculated in Equation (68) in Appendix B.2. According to
the principle of virtual work, the stress tensor is then

τ = −nskBT

(〈
3Q̂Q̂

Na2K

〉
+ δ −Nσ−1

)
(15)

The single-strand contribution to the stress tensor,

τ̃ = −kBT

(
3Q̂Q̂

Na2K
+ δ −Nσ−1

)
(16)

corresponds (on the detailed level of description) to the average of 3QQ/(Na2K) for fixed q and
n, assuming that the cross-link positions are at equilibrium. This proves that Equation (15) is the
appropriate stress tensor expression for our coarse-grained level of description and that it satisfies the
stress-optic rule.

4.2.2. Green–Kubo Relation and Infinitesimal Deformations

The term δ − Nσ−1 between the parentheses in Equation (15) is related to fluctuations of the
cross-links around their mean positions. In an undeformed network, these fluctuations are isotropic.
The Green–Kubo relation for an isotropic network at equilibrium yields the plateau modulus

G(0) =
ns 〈τ̃yx(t)τ̃yx(0)〉iso, eq

kBT

∣∣∣∣∣
t=0

=
9nskBT

N2a4K

〈
Q̂2

yQ̂
2
x

〉
iso, eq

= nskBT

(
N

N + 2n

)2

(17)

To prove that this result is consistent with the relaxation modulus under infinitesimal deformation,
we perturb the system by a step strain γ from the isotropic equilibrium state at t = 0. After the
step, the anchor connector is q = (δ + γ) · q0 and the shape tensor of the confinement potentials is
n = n

(
δ + γ + γ†

)
. Substituting these results in Equation (15) and using 〈Q̂0Q̂0〉 = N2a2K/[3(N +

2n)]δ, we find

τ = τiso, eq − nskBT

(
N

N + 2n

)2 (
γ + γ†

)
(18)

The relaxation modulus after the step is therefore

G(t = 0+) = nskBT

(
N

N + 2n

)2

(19)

as predicted by the Green–Kubo relation, Equation (17).
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4.2.3. Consistency with the Multi-Strand Front Factor

Consistency with the modulus front factor f = 1 − 2/φ from multi-strand network models [30–34],
where φ is the functionality of the network, suggests that the ratio of “virtual Kuhn steps” to real Kuhn
steps is

n

N
=

1

2

√
φ

φ− 2
− 1

2
(20)

For φ = 4, we find n/N = (
√

2 − 1)/2 ≈ 0.2. Hence the stiffness of the virtual springs, mapping a
tetrafunctional phantom network onto a single-strand model, is about five times the strand stiffness.

To summarize, all four criteria are satisfied by our single-strand unentangled network model with
anisotropic cross-link fluctuations, when the actual positions of the crosslinks are included as dynamic
variables as well as when they are coarse-grained out. The RA dynamics play a key role in this.
They lead to a cancellation of virtual-spring contributions to the stress tensor. These contributions
should not be naively omitted, because that would violate thermodynamics [41]. The cancellation
prevents such violations. The resulting stress tensor expression agrees with the stress-optic rule and,
through the Green–Kubo relation, predicts a modulus lower than that of a network with fixed or
isotropically fluctuating cross-links. Finally, the modulus after a step strain is consistent with the
Green–Kubo relation.

We end this section by drawing a comparison between our coarse-grained single-strand unentangled
network model and Öttinger’s single-segment reptation model [63]. A straightforward derivation shows
that our tensor σ−1 evolves according to

d

dt

(
σ−1

)
= −σ−1 · κ− κ† · σ−1 +Nσ−1 ·

(
κ+ κ†

)
· σ−1 (21)

which is very similar to Equation (2) for the dyad Q′Q′ of Öttinger’s tube cross-section variable. The
equivalence suggests two things. First, as already pointed out in Section 3, Q′ should be interpreted as
the “inverse” of the tube radius, rather than the tube radius. Second, α′ must be positive. Recall that the
reptation model has modulus front factor f = 1 + α′ + β′. This means that we would need a negative β′

to agree with multi-chain models (f < 1). A negative β′ makesQ′ increase with stretch of the primitive
path. In the language of reptation models: the diameter of the tube shrinks when its length is stretched.

5. Proposed Slip-Link Models

We propose two slip-link models whose slip-links are allowed to fluctuate in an anisotropic harmonic
potential. The potential changes with imposed deformation according to the generalized RA dynamics.
As before, the numbers of Kuhn steps are treated stochastically instead of using Rouse-like beads. In the
detailed model, we track the positions of the slip-links. In the coarse-grained version, assuming that the
slip-link spatial fluctuations are sufficiently rapid compared with overall chain dynamics, we integrate
out these fast degrees of freedom. The first model is computationally more expensive, but provides
a check for the algorithm of the second model. These models are generalizations of the single-strand
network models discussed in Section 4, for which details of the derivations are given in Appendix B.
Since all derivations for the slip-link models are analogous, we omit the details here.
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5.1. Detailed Mobile Slip-Link Model

In the detailed model, our level of description is the number of strands Z, the number of Kuhn steps
Ni in each strand, the connector vectorQi between two slip-links, the vectorXi pointing from the center
of the confinement potential (the anchor) to the slip-link, and a dimensionless tensor ni describing the
strength and shape of the confinement potential:

Ω =
{
Z, {Ni}Zi=1, {Qi}Zi=1, {Xi}Z−1i=1 , {ni}Z−1i=1

}
(22)

Figure 2 illustrates the notation for the vectors used. The tensors {ni} are new compared with earlier
work [92]. The free energy on this level of description is given by

F (Ω)

kBT
=

Z∑
i=1

Fs(Ni,Qi) +
3

2

Z−1∑
i=1

[
Xi · n−1i ·Xi

a2K
+ log

(
2πna2K

3

)]
(23)

where Fs is the free energy of a strand, usually assumed to be Gaussian. Note that it is possible to write
the free energy either in terms of the set of connector vectors {Qi,Xi}, or {qi,Xi}, or the set of position
vectors {Ri, ri}. Which set is used is a matter of convenience. The tensors {ni} are assumed to obey
Equation (5) with the initial condition at creation ni(t = tcr,i) = ni,eq = nδ.

We discuss compliance with the four criteria briefly and without going into details of the derivations.
The single-strand unentangled network model presented in Section 4.1 satisfies the four criteria in an
analogous but mathematically simpler way. For the sake of clarity, we show more details there and focus
on results here. It is shown elsewhere that the mobile slip-link model is GENERIC [114], so we need
only consider three criteria here.

The stress tensor can be derived from the principle of virtual work or from GENERIC. In both cases
we find

τ = −nc

〈
Z∑
i=1

Qi
∂Fs

∂Qi

〉
(24)

where nc is the number density of chains. It can be seen that this agrees with the stress-optic rule [55]
by inserting the derivative of the Gaussian strand free energy, ∂Fs/∂Qi = 3kBTQi/(Nia

2
K).

The relaxation modulus can be calculated by inserting the single-chain contribution to the stress
tensor, τ̃ = −

∑Z
i=1Qi∂Fs/∂Qi, into the Green–Kubo relation. Using the Gaussian strand free energy,

we find the initial modulus

G(0) =
nc 〈τ̃yx(t)τ̃yx(0)〉eq

kBT

∣∣∣∣∣
t=0

= nckBT 〈Z〉eq (25)

This is equal to the plateau modulus for the fixed slip-link model [10] because the stress tensors of both
models are the same.

The relaxation modulus after a step strain is found to be

G(t = 0+) = nckBT 〈Z〉eq (26)

consistent with the prediction of the Green–Kubo relation, Equation (25). Since both results are equal
to the plateau modulus for the fixed slip-link model [10], and also equal to the plateau modulus for the



Polymers 2013, 5 663

mobile slip-link model without RA dynamics [92], it seems that we have no consistency with multi-chain
models. However, the modulus given by Equation (26) is not the rubbery plateau modulus because
it contains (indirectly) some stress from ESFs, which relax on a time scale that is not accessible by
mechanical rheology experiments. It is not some higher modulus either, since it neglects dynamics on
the level of single Kuhn steps, whose time scale is comparable to that of ESFs; see also the discussion
after Equation (10).

Our next step is to coarse-grain out the ESFs from this mobile slip-link model. The plateau modulus of
the resulting less-detailed model then corresponds more closely to the experimentally accessible plateau
modulus. If its value decreased with increasing ESFs, that would be consistent with multi-chain models.

5.2. Coarse-Grained Mobile Slip-Link Model

Since our model does not resolve dynamics on the time scale of single Kuhn-step motion, it is natural
to coarse-grain out the ESFs (which are on the time scale of single Kuhn-step motion). In other words,
we integrate the probability density over all possible {Xi} while holding {Z, {Ni}, {qi}, {ni}} fixed.
Based on the assumed separation of time scales between ESFs and strand conformations, the slip-links
may be considered to be equilibrated around their mean positions, set by the fixed variables. This allows
us to perform the integrations analytically. Our new level of description is then

Ω̂ =
{
Z, {Ni}Zi=1, {Q̂i}Zi=1, {ni}Z−1i=1

}
(27)

where {Q̂i} are the mean values of the strand end-to-end vectors for fixed anchor positions (given by
Equation (30) below), Kuhn-step numbers, and virtual-spring potentials. The new free energy is then

F (Ω̂)

kBT
=

3

2a2K

Z∑
i,j=1

Q̂i · σ̂−1ij · Q̂j +
3

2
log

[(
2πa2K

3

)Z

|σ̂|
1
3

]
(28)

with the variance matrix

σ̂−1 :=


1
N1

0 . . . 0

0 1
N2

. . . ...
... . . . . . . 0

0 . . . 0 1
NZ

 δ

+



n1

N2
1

− n1

N1N2
0 . . . 0

− n1

N1N2

n1+n2

N2
2

− n2

N2N3

. . . ...

0 − n2

N2N3

n2+n3

N2
3

. . . 0
... . . . . . . . . . − nZ−1

NZ−1NZ

0 . . . 0 − nZ−1

NZ−1NZ

nZ−1

N2
Z


(29)

Equation (28) is derived in Appendix C. The logarithmic term on the right-hand side contains the
determinant of σ̂, which involves the anisotropic tensors {ni}. This may seem strange, since the
determinant of σ̂iso := σ̂({ni} = nδ) would suffice to normalize the equilibrium probability density.
We come back to this point below.
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Sliding dynamics and constraint dynamics of the chains should now be governed by the new free
energy, but are otherwise unchanged. The anchors are assumed to move affinely. We can pass between
anchor connector vectors {qi} and mean strand end-to-end vectors by

Q̂i =
Z∑

j=1

σ̂ij ·
qj
Nj

(30)

and from this it is possible to derive the dynamics of the mean strand end-to-end vectors.
Now we are in a position to verify whether all our criteria are met for the coarse-grained mobile

slip-link model with generalized RA dynamics. We point out that, also for this model, a GENERIC
check is performed elsewhere [114], so we are concerned with only three of the four criteria here. The
generalized RA dynamics are again of crucial importance to achieve full consistency. Similar to the
previous subsection, we omit derivations here, and refer to the coarse-grained single-strand unentangled
network model in Section 4.2 as an example that displays the general issues.

Thermodynamics gives the stress tensor expression

τ = −nckBT

〈
Z∑
i=1

(
3Q̂iQ̂i

Nia2K
+ δ − σ̂ii

Ni

)〉
(31)

It can be shown that the terms between parentheses are equivalent to the average (in the detailed
model) of 3QiQi/(Nia

2
K) for fixed {Z, {Ni}, {qi}, {ni}}. Therefore Equation (31) is the appropriate

coarse-grained stress tensor and satisfies the stress-optic rule. The terms δ− σ̂ii/Ni in Equation (31) are
related to fluctuations of the entanglements around their mean positions. Now it becomes clear why the
logarithmic term in the free energy, Equation (28), has to be of the form 1

2
log |σ̂| rather than 1

2
log |σ̂iso|.

In the latter case, the stress tensor is τ = −(3nckBT/a
2
K)〈
∑Z

i=1 Q̂iQ̂i/Ni〉 and the stress-optic rule is
violated. For an associating polymer model with generalized RA dynamics, one obtains a stress tensor
expression analogous to Equation (31), with Z corresponding to the number of bound stickers per chain
and {Ni} to the numbers of Kuhn steps between neighboring bound stickers.

With the single-chain contribution to the stress tensor,

τ̃ = −kBT
Z∑
i=1

(
3Q̂iQ̂i

Nia2K
+ δ − σ̂ii

Ni

)
(32)

the Green–Kubo relation gives the plateau modulus

G(0) =
nc 〈τ̃yx(t)τ̃yx(0)〉eq

kBT

∣∣∣∣∣
t=0

= nckBT

〈
Z∑

i,j=1

(σ̂iso,ij)
2

NiNj

〉
eq

(33)

The matrix on the right-hand side is the scalar part of the variance matrix σ̂iso = σ̂isoδ when all virtual
springs are isotropic. The derivation of G(0) is similar to that given in reference [92] for the mobile
slip-link model with isotropic ESFs, although the result is different.

Applying an infinitesimal step strain, starting from equilibrium at t = 0, we find that the modulus
directly after the step is

G(t = 0+) = nckBT

〈
Z∑

i,j=1

(σ̂iso,ij)
2

NiNj

〉
eq

(34)
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The right-hand side of Equation (34) is identical to the Green–Kubo prediction, Equation (33). This
self-consistency, like the agreement with the stress-optic rule, is obtained only if the logarithmic term in
the free energy has the form given in Equation (28).

Finally, σ̂iso decreases with increasing ESFs, which is consistent with multi-chain results. From
Equations (25) and (33), or Equations (26) and (34), follows the front factor

f =
1

〈Z〉eq

〈
Z∑

i,j=1

(σ̂iso,ij)
2

NiNj

〉
eq

6 1 (35)

Thus our mobile slip-link model satisfies all four criteria on both the detailed and the coarse-grained
level of description. A quantitative comparison between this model and multi-chain simulations, using
primitive-path analysis, is presented in a separate paper [61].

6. Conclusions

We have introduced four consistency criteria for single-chain mean-field entangled polymer melt
models and proposed a slip-link model that (to our knowledge, for the first time) satisfies all these
criteria. The free energy of the model is given in Equation (28), which is equivalent to

F (ω̂)

kBT
=

3

2a2K

Z∑
i,j=1

qi · σ−1ij · qj +
3

2
log

[(
2πa2K

3

)Z

|σ|
1
3

]
(36)

where the set of stochastic variables is

ω̂ =
{
Z, {Ni}Zi=1, {qi}Zi=1, {ni}Z−1i=1

}
(37)

Here {qi} are the anchor connector vectors, see Figure 2, and

σ :=



N1δ + n1 −n1 0 . . . 0

−n1 N2δ + n1 + n2 −n2
. . . ...

0 −n2 N3δ + n2 + n3
. . . 0

... . . . . . . . . . −nZ−1

0 . . . 0 −nZ−1 NZδ + nZ−1


(38)

The evolution of the probability density p(ω̂) is given by the differential
Chapman–Kolmogorov equation,

Dp(ω̂)

Dt
= −

Z∑
i=1

∂

∂qi
· [κ · qip(ω̂)]−

Z−1∑
i=1

∂

∂ni

·
{[
κ · ni + ni · κ†

]
p(ω̂)

}
+

∫
[W (ω̂|ω̂′)p(ω̂′)−W (ω̂′|ω̂)p(ω̂)] dω̂′ (39)

whereDp/Dt := ∂p/∂t+∇·(vp) is the substantial derivative of the scalar density p [48]. The transition
probabilities are

W (ω̂|ω̂′) =
Z′−1∑
i=1

[
Wsh,i(ω̂|ω̂′) +W SD

d,i (ω̂|ω̂′) +W SD
c,i (ω̂|ω̂′) +WCD

d,i (ω̂|ω̂′) +WCD
c,i (ω̂|ω̂′)

]
(40)
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where W SD
d,i , W SD

c,i , WCD
d,i , and WCD

c,i are the transition probabilities for destruction (d) and creation (c) of
entanglements by sliding dynamics (SD) and constraint dynamics (CD), which are given in Equations
(6,10–13,16,17) of Andreev et al. [13]. Shuffling of Kuhn steps through entanglements is given by Wsh,i

from Equation (7) of Khaliullin and Schieber [10], where τK has to be replaced by τK(β + 1), as pointed
out in the text following Equation (6) of reference [13].

The generalized RA dynamics play a central role in satisfying the four criteria. The slip-link
model with generalized RA dynamics is consistent with nonequilibrium thermodynamics [114]. The
stress tensor

τ = −nckBT

〈
Z∑
i=1

[
3Ni

a2K

Z∑
j,k=1

(
σ−1ij · qj

) (
σ−1ik · qk

)
+ δ −Niσ

−1
ii

]〉
(41)

which is required for thermodynamic consistency, leads to compliance with the other three criteria
as well.
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Appendix

A. Differential Formulation of the Molecular Stress Function Model

Wagner and coworkers [71,72] have given several versions of the “molecular stress function model”.
The model is in integral form, and involves two dynamic variables: a function f that represents the
inverse of the dimensionless “tube diameter”, and a unit vector u for the tube orientation. The variations
in model formulation involve modifications to the evolution equation for f . The model also involves
a phenomenological memory function that is found from a fit to linear viscoelasticity. We give here a
differential form of the model. This form is necessary for checking compliance with the nonequilibrium
thermodynamic formalism GENERIC [47–50], or for finite element calculations in complex flow fields
using conformation fields [115,116].

In order to make the model differential, we use a probability density pwith an added dynamic variable
j, which is an integer indicating the mode. The number of modes m is determined by a fit to the
relaxation function G(t) =

∑m
j=1 gj exp(−t/λj). The Markovian evolution equation for the conditional

probability density p ≡ p(f,u, j; t|f0,u0, j0; t0) (probability that the tube segment has conformation in
the neighborhood of {f,u} with mode j at time t given that it had conformation {f0,u0} with mode j0
at time t0) is

∂p

∂t
= − ∂

∂f

[
ḟ(f,κ)p

]
− ∂

∂u
· [(δ − uu) · κ · up]

+
m∑

j′=1

∫ ∫
[W (f,u, j|j′)p′ −W (f ′,u′, j′|j)p] df ′du′ (42)
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where we have used the shorthand p′ ≡ p(f ′,u′, j′; t|f0,u0, j0; t0), and ḟ depends on the particular
formulation in the model. The jump transition probability is given by

W (f,u, j|j′) =
1

λj′
peq(f,u, j) (43)

The equilibrium probability density is given by

peq(f,u, j) =
gj

(
∑m

k=1 gk)

1

4π
δ(|u| − 1)δ(f − 1) (44)

The probability density evolution Equation (42) has solution

p(f,u, j; t) =
m∑
j=1

gj

∫ t

−∞
exp

(
−t− t

′

λj

)
δ(f − f̄(t, t′))

× 1

4π

∫
δ

(
u− E(t, t′) · u0

|E(t, t′) · u0|

)
δ(|u0| − 1)du0 (45)

where f̄(t, t′) is the solution to the differential equation

df̄

dt
= ḟ(f̄ ,κ) (46)

with “initial condition” f̄(t = t′, t′) = 1. When the stress tensor is found by the average

τ =
m∑
j=1

∫ ∫
f 2uup(f,u, j; t)dfdu (47)

the formulation is mathematically equivalent to the molecular stress function model. Therefore
Equations (42–44) are a Markovian representation of Wagner’s integral model, suitable for study
by GENERIC.

B. Details of the Single-Strand Mean-Field Unentangled Network Models

B.1. Derivation of the Mean Strand Conformation

The goal here is to derive the mean cross-link positions {R̂i} and their relation to the anchor positions
{ri}. From this information, we then calculate the mean strand end-to-end vector Q̂ and its relation to
the anchor connector q. This is useful for the coarse-grained model derived in the next section, in which
part of the stress tensor turns out to be proportional to 〈Q̂Q̂〉.

We choose as our set of variables the position vectors of the cross-links and anchors (see Figure 1)
and the compliance tensor of the virtual springs n,

Ω+ = {R1,R2, r1, r2,n} (48)

The superscript + indicates that, on this level of description, the center-of-mass position of the strand is
known. We assume Gaussian statistics for the end-to-end vector of the strand,

Fs({Ri})
kBT

=
3 (R2 −R1)

2

2Na2K
(49)
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as well as the virtual springs,

Fv({Ri}, {ri},n)

kBT
=

3

2a2K

2∑
i=1

(Ri − ri) · n−1 · (Ri − ri) (50)

The free energy of the system is the sum of these strand and virtual-spring contributions plus an
additional term that normalizes the equilibrium probability density. The latter can be derived by writing
the free energy in the form

F (Ω+)

kBT
=

3

2a2K

2∑
i,j=1

(
Ri − R̂i

)
· σ̃−1ij ·

(
Rj − R̂j

)
+
F0({ri},n)

kBT
(51)

where F0 includes the normalization term. Between Equations (49,50) and Equation (51), we match up
the terms quadratic in {Ri} to find the inverse variance matrix,

σ̃−1 =

(
n−1 +N−1δ −N−1δ
−N−1δ n−1 +N−1δ

)
(52)

and the terms linear in {Ri} to find the mean cross-link positions,

R̂i =
2∑

j=1

σ̃ij · n−1 · rj (53)

Equations (52) and (53) are used below to find the mean strand end-to-end vector and its relation to the
anchor connector.

Merely for completeness, we note that the terms depending only on {{ri},n} add up to

F0({ri},n)

kBT
=

3

2a2K

2∑
i,j=1

ri · s−1ij · rj +
3

2
log

[(
2πa2K

3

)4

|σ̃|
1
3 |s|

1
3

]
(54)

where
s−1ij = n−1δij − n−1 · σ̃ij · n−1 (55)

and the last term in Equation (54) provides the normalization.
Since the variance matrix is symmetric,

σ̃ =

(
σ̃11 σ̃12

σ̃12 σ̃11

)
(56)

we obtain from Equation (53)

Q̂ = R̂2 − R̂1 = (σ̃11 − σ̃12) · n−1 · q (57)

and from the inverse of Equation (53), using Equation (52),

q = r2 − r1 = (Nδ + 2n) · Q̂
N

(58)

Another way to derive Equation (58) is by taking the derivatives of the free energy with respect to {Ri}
and using the fact that these derivatives are zero when {Ri} = {R̂i}. See for example Read et al. [117]
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and the supplementary material of Steenbakkers and Schieber [112]. Combining Equations (57) and
(58) yields

σ̃11 − σ̃12 = N (Nδ + 2n)−1 · n =
N

2

[
δ −N (Nδ + 2n)−1

]
(59)

Equation (59) also follows from multiplication of σ̃ with σ̃−1, given by Equation (52), and subtraction
of the resulting two expressions. Those expressions can be solved for σ̃11 and σ̃12, but we need only the
difference of these tensors here.

B.2. Coarse-Graining

For common rheological predictions, it is not necessary to track the center of mass of the strand
and it is therefore more convenient to replace the absolute positions of the cross-links and anchors by
their relative positions. If we choose the variables Ω as in Equation (6), the free energy is given by
Equation (7).

We now coarse-grain our unentangled network model by integrating the equilibrium probability
density over all possible {Xi}. To facilitate this, we first write the free energy in a canonical Gaussian
form for these variables. The same approach was taken by Schieber and Horio [92] and Steenbakkers and
Schieber [112] for the mobile slip-link model. Details can be found in Section S III of the supplementary
material of the latter paper.

If we choose
ω = {q,X1,X2,n} (60)

as our variables for the strand conformation, the free energy can be written in the form

F (ω)

kBT
=

3

2a2K

2∑
i,j=1

(
Xi − X̂i

)
· σ̃−1ij ·

(
Xj − X̂j

)
+

3

2
log

[(
2πa2K

3

)2

|σ̃|
1
3

]
+
F0(ω̂)

kBT
(61)

with ω̂ = {q,n} as in Equation (13). The fact that the variance matrix of the virtual-spring free energy
is σ̃ follows from the terms in Equations (7) and (61) that are quadratic in {Xi}. Matching up the terms
linear in {Xi}, we find

X̂1 = −X̂2 = (σ̃11 − σ̃12) ·
q

N
(62)

The terms that depend only on ω̂ give

F0(ω̂)

kBT
=

3

2a2K
q · σ−1 · q +

3

2
log

(
2πa2K

3

N |n| 23
|σ̃| 13

)
(63)

with
σ−1 =

1

N
δ − 2

N2
(σ̃11 − σ̃12) = (Nδ + 2n)−1 (64)

where we have made use of Equation (59). It can be shown that

|σ| = N3|n|2|σ̃−1| (65)
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and hence
F0(ω̂)

kBT
=

3

2a2K
q · σ−1 · q +

3

2
log

(
2πa2K

3
|σ|

1
3

)
(66)

By integrating the equilibrium probability density over all possible {Xi}, we obtain

F (ω̂)

kBT
= − log

[x
exp

(
−F (ω)

kBT

)
dX1dX2

]
=
F0(ω̂)

kBT
(67)

as the free energy of the coarse-grained model.

B.3. Change of Free Energy and Mean Path Under Infinitesimal Deformation

We merely present a few expressions that are used in Section 4.2. The time derivative of the free
energy is

d

dt

(
F (ω̂)

kBT

)
=

3

2a2K
q ·
(
d

dt
σ−1 + κ† · σ−1 + σ−1 · κ

)
· q + σ−1 :

d

dt
n

=
3N

2a2K
q · σ−1 ·

(
κ+ κ†

)
· σ−1 · q + σ−1 :

(
κ · n+ n · κ†

)
=

(
3Q̂Q̂

Na2K
+ 2σ−1 · n

)
: κ

=

(
3Q̂Q̂

Na2K
+ δ −Nσ−1

)
: κ (68)

In the last step, Equations (59) and (64) were used. By the principle of virtual work, this result leads to
the stress tensor Equation (15).

Given the affine deformation of q and the upper-convected evolution of n, the variance tensor of the
free energy is

σ = (N + 2n) δ + 2n
(
γ + γ†

)
(69)

to first order in the strain. Its inverse is

σ−1 =
1

N + 2n

[
δ − 2n

N + 2n

(
γ + γ†

)]
(70)

According to Equation (57) in Appendix B.1, the mean strand end-to-end vector after an infinitesimal
step strain is then

Q̂ =

[
δ + γ − 2n

N + 2n

(
γ + γ†

)]
· Q̂0 (71)

C. Coarse-Graining of the Detailed Mobile Slip-Link Model

We integrate the equilibrium probability density of the slip-link model from Section 5.1 over all
possible {Xi}, keeping the other variables,

ω̂ =
{
Z, {Ni}Zi=1, {qi}Zi=1, {ni}Z−1i=1

}
(72)

fixed. This is a straightforward generalization of our coarse-graining of the single-strand unentangled
network model in Appendix B.2. The derivation is equivalent to that for the slip-link model with isotropic
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ESFs, which has been presented in detail ([112] [supplementary material, section S III]). Here only one
step is repeated, which is not obvious for our slip-link model with generalized RA dynamics. Equation
numbers preceded by an “S” refer to equations from the supplementary material of reference [112].

In the case of anisotropic ESFs, the coarse-grained free energy is

F (ω̂)

kBT
=

3

2a2K

Z∑
i,j=1

qi · σ−1ij · qj +
3

2
log

[(
2πa2K

3

)Z

|σ|
1
3

]
(73)

with
σ−1ij =

1

NiNj

(δNiδij − σ̃ij + σ̃i−1,j + σ̃i,j−1 − σ̃i−1,j−1) (74)

The second term on the right-hand side of Equation (73) is not determined by the coarse-graining, but
by the requirement that the stress-optic rule be obeyed, as explained in Section 5.2. Equation (74) has
the same form as Equation (S26), but the inverse of the matrix σ̃ is now

σ̃−1 =



n−11 + δ
N1

+ δ
N2

− δ
N2

0 · · · 0

− δ
N2

n−12 + δ
N2

+ δ
N3

− δ
N3

. . . ...

0 − δ
N3

n−13 + δ
N3

+ δ
N4

. . . 0
... . . . . . . . . . − δ

NZ−1

0 · · · 0 − δ
NZ−1

n−1Z−1 + δ
NZ−1

+ δ
NZ


(75)

instead of Equation (S15). Differences are due to the anisotropy of the ESFs and the absence of virtual
springs at the chain ends in the current model.

Minimization of the free energy of the detailed model with respect to the entanglement positions, for
fixed ω̂, leads to the mean strand end-to-end vectors given by Equation (30). Here we write this as

Q̂i = Ni

Z∑
j=1

ξ−1ij · qj (76)

with
ξij := NiNjσ̂

−1
ij = (Niδ + ni−1 + ni) δij − ni−1δi−1,j − niδi+1,j (77)

The evolution equation for the inverse of this matrix is

d

dt

(
ξ−1ij

)
= −ξ−1ik ·

d

dt
ξkl · ξ−1lj

= −κ† · ξ−1ij − ξ−1ij · κ+
Z∑

k=1

Nkξ
−1
ik ·

(
κ+ κ†

)
· ξ−1kj (78)

due to the generalized RA dynamics, Equation (5). In the same way, the time derivative of σ̃ can be
calculated from Equation (75). Substitution in Equation (74) yields, after some algebra,

d

dt

(
σ−1ij

)
= −κ† · σ−1ij − σ−1ij · κ+

Z∑
k=1

Nkσ
−1
ik ·

(
κ+ κ†

)
· σ−1kj (79)
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In previous work ([112] [supplementary material]), we confirmed that σeq = ξeq. Since σ and ξ have
the same time evolution, we can generalize this to

σij = ξij = NiNjσ̂
−1
ij (80)

Substituting this in Equation (73) and making use of Equation (30), we obtain Equation (28) for F (Ω̂).
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47. Grmela, M.; Öttinger, H.C. Dynamics and thermodynamics of complex fluids. I. Development of
a general formalism. Phys. Rev. E 1997, 56, 6620–6632.
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