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Abstract: Polyethylene glycol (PEG) has been conjugated to many drugs or drug carriers 

to increase their solubility and circulating lifetime, and reduce toxicity. This has motivated 

many experimental studies to understand the effect of PEGylation on delivery efficiency. 

To complement the experimental findings and uncover the mechanism that cannot be 

captured by experiments, all-atom and coarse-grained molecular dynamics (MD) simulations 

have been performed. This has become possible, due to recent advances in simulation 

methodologies and computational power. Simulations of PEGylated peptides show that 

PEG chains wrap antimicrobial peptides and weaken their binding interactions with lipid 

bilayers. PEGylation also influences the helical stability and tertiary structure of coiled-coil 

peptides. PEGylated dendrimers and single-walled carbon nanotubes (SWNTs) were 

simulated, showing that the PEG size and grafting density significantly modulate the 

conformation and structure of the PEGylated complex, the interparticle aggregation, and 

the interaction with lipid bilayers. In particular, simulations predicted the structural 

transition between the dense core and dense shell of PEGylated dendrimers, the phase 

behavior of self-assembled complexes of lipids, PEGylated lipids, and SWNTs, which all 

favorably compared with experiments. Overall, these new findings indicate that simulations 

can now predict the experimentally observed structure and dynamics, as well as provide 

atomic-scale insights into the interactions of PEGylated complexes with other molecules. 
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dendrimer; carbon nanotube 
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1. Introduction 

Polyethylene oxide (PEO) and polyethylene glycol (PEG) are polymers with the formulas, 

respectively, H3C–O–(CH2–CH2–O)n–CH3 and HO–(CH2–CH2–O)n–H, which have been widely used 

to replace various membranes, solvents, and nanocomposites for chemical, biomedical, and manufacturing 

applications. In particular, they have low toxicity and high solubility in water. Also, they can sterically 

shield molecules encapsulated in drug carriers and thus have been covalently or noncovalently 

conjugated to a number of pharmaceuticals, a process called PEGylation [1,2]. These biomedical 

applications of PEGylation have been shown to reduce the cytotoxicity as well as increase the water 

solubility and circulating lifetime of drug molecules or drug carriers such as peptides [3,4], 

oligonucleotides [5–8], lipid liposomes [9–13], biodegradable hydrogels [14,15] and nanoparticles [16–19]. 

Although experiments have revealed vital information on the large-scale interactions of PEGs with 

drugs and drug carriers, many atomic-level questions that cannot be answered by experiments remain 

to be solved. For example, the conformational and structural characterization of PEGylated complexes 

and their effects on delivery efficiency are not always easy to be interpreted by experiments. On the 

other hand, atomic-level phenomena can be captured in detail by molecular dynamics (MD) 

simulations, which offer insights into structure and dynamics, assuming that these simulations can be 

validated by successful comparisons to available experiment results. In particular, recent advances in 

computer performance and simulation methodology have allowed the direct comparison of simulation 

results with experiments, as well as visualization of the mechanism on atomic scale. 

Simulation studies have been performed for various PEGylated molecules such as proteins, lipids, 

drugs, nanomaterials, hydrogels, and block copolymers. Since this field is too broad to be fully covered 

in this review, we here consider only selective computational studies: PEGylated antimicrobial 

peptides (AMPs), coiled-coil peptides, dendrimers, and single-walled carbon nanotubes (SWNTs), 

which have been widely simulated but relatively less reviewed. In this review, we will first (Section 2) 

briefly review the parameterization of all-atom and coarse-grained (CG) force fields for PEO and PEG. 

Next (Section 3), MD simulations of PEGylated AMPs and coiled-coil peptides will be reviewed. 

Lastly (Sections 4 and 5), we will focus on simulations of PEGylated dendrimers and SWNTs. 

2. Development of All-Atom and Coarse-Grained PEO/PEG Force Fields 

Potential parameters, which typically consist of Lennard-Jones (LJ), electrostatic (coulomb), bond, 

angle, and torsional terms, have been developed for all-atom and coarse-grained (CG) PEO/PEG force 

fields. Quantum mechanics (QM) calculations were first performed and used for the development of 

all-atom models, which were again used to parameterize CG force fields. The details of potential 

parameters for each model are given in the references and will not be discussed in this review. Instead, 

the development history of some well-known PEG models will be briefly introduced. 

The Smith group pioneered the development of the PEO/PEG model for the aqueous environment. 

The all-atom model for PEO was parameterized to reproduce relative free energies and conformer 

populations of 1,2-dimethoxyethane (DME) in water calculated from QM [20–23]. Their MD simulations 

captured the hydrogen bonding interaction between PEO and water, and predicted the conformational 

and structural properties of PEOs in water, in reasonable agreement with experiments [24,25]. Other 
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groups also developed their own force fields and studied conformation and structure of short PEO and 

PEG chains [26–31]. Recently, MacKerell, Pastor, and coworkers developed the CHARMM ether 

force field (version C35) from the QM calculation [32], and then they corrected the torsional potential 

and released the revised version (C35r) [33]. With the CHARMM C35r force field, MD simulations of 

9-mers, 18-mers, 27-mers, and 36-mers of PEOs and PEGs showed the persistence length λ = 3.7 Å, 

the radii of gyration Rg ∝ Mw
0.52 ± 0.02 (ideal chain behavior for short chains), hydrodynamic radii 

calculated from diffusivities, and the shape anisotropy of 2.59:1.44:1.00 [33], in excellent agreement 

with the polymer theories and experiments. Stepniewski et al. also parameterized PEGs with the OPLS 

all-atom force field and simulated the bilayer composed of PEGylated lipids, showing the electrostatic 

interaction between ions and PEG oxygens, and the penetration of PEGs into the hydrophobic region of 

the lipid bilayer in the liquid phase [34]. 

Although these all-atom models can accurately predict the conformation and structure of PEGs and 

their interactions with other molecules, their system size and time scale are limited. To overcome this, 

CG PEG models have also been developed. Initially, the implicit solvent models were developed by 

the Smith group and others, which predicted the experimentally observed chain dimensions, aggregation 

number, and critical micelle concentration [35–37]. Although not computationally demanding, the 

application of implicit solvent models to multicomponent mixtures is limited. For example, the implicit 

model cannot be used for the simulation of the complex with other molecules such as lipids and 

proteins. The CG PEO model with explicit solvent was developed by Klein and co-workers, showing 

the self-assembly of diblock copolymers in explicit water, and the strong interaction with lipid  

bilayers [38–40]. Our group parameterized a PEO/PEG model within a framework of the “MARTINI” 

CG force field developed by Marrink et al. [41,42]. The MARTINI PEO/PEG model predicted the size, 

diffusivities, hydrodynamics, end-to-end distances, and the distributions of bond lengths, angles, and 

dihedrals, all of which were close to those from all-atom simulations and experiments [43]. In Figure 1, 

mixtures of lipids and PEGylated lipids in water self-assemble to liposomes, bicelles, and micelles at 

the expected ratios of lipids and PEGylated lipids [44,45], showing that the aggregate size decreases 

with increasing PEGylated-lipid concentration, in qualitative agreement with experiment. Recently, 

this CG model was reparameterized by the Monticelli group, which has an increased time step, while 

maintaining the accurate prediction of PEG conformation [46]. Unlike other CG models, the CG model 

of mapping two monomers onto one bead was also developed [47]. 

Figure 1. Snapshots at the beginning (0 ns, left) and end (300 ns, columns 2, 3, 4, 5, and 6) 

of simulations with 0−99 mol % PEGylated lipids. Initial configuration is shown only for a 

simulation with 0 mol %, but this random configuration is applied for initial configurations 

of all other simulations. Blue, green, and light blue dots respectively represent head groups, 

glycerols, and tail groups of the lipid, and red dots represent PEG chains. (Reprinted with 

permission from [44]. Copyright 2013 American Chemical Society). 
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3. Simulations of PEGylated Peptides  

3.1. Antimicrobial Peptides 

AMPs are short (<50 amino acids), cationic, and amphipathic peptides that can be extracted from 

eukaryotic organisms such as plants, insects, and vertebrates [48]. Since cationic AMPs tend to interact 

electrostatically with anionic bacterial membranes rather than neutral animal membranes, they have 

been considered to be promising candidates for novel antibiotics [49,50]. To achieve this biomedical 

application, a high concentration of AMPs is required, but at high concentration they can also attack 

the human cell, indicating reduced specific targeting. To overcome this limitation, PEGylation has 

been applied to AMPs. Experimentally, nisin [51], magainin 2, and tachyplesin I [3,4] were PEGylated, 

showing increased solubility and decreased antimicrobial activity. In particular, the Matsuzaki group 

found that the decrease in antimicrobial activity was larger in β-sheet tachyplesin I than in α-helical 

magainin, showing the dependence on the peptide structure [3,4]. Most simulations and theoretical studies 

have focused on the secondary structure of AMPs and their interactions with lipid bilayers such as the 

formation of toroidal pores [52–54]. Here, simulations of PEGylated AMPs only will be reviewed. 

Wu et al. performed all-atom simulations of cecropin P1 linked to the silica surface via a PEO chain, 

showing conformation of immobilized AMPs and their interactions with the silica surface [55]. 

Recently, our group simulated PEGylated magainin 2 and tachyplesin I interacting with lipid bilayers [56]. 

First, AMPs were simulated in water, showing that PEG chains wrap both magainin 2 and tachyplesin I. 

The α-helix of PEGylated magainin 2 was broken, while the β-sheet of PEGylated tachyplesin I 

remains stable, in agreement with experiments. Simulations of unPEGylated and PEGylated AMPs in 

lipid bilayers showed that PEGylation inhibits the electrostatic interaction between peptides and lipid 

head groups. Interestingly, this PEGylation effect was more significant for magainin 2 than for 

tachyplesin I because the random-coiled magainin 2 are more completely covered by PEG chains and 

thus cannot interact with the bilayer surface as much as tachyplesin I do (Figure 2), which qualitatively 

support Matsuzaki’s experiments.  

Figure 2. Snapshots of PEGylated magainin 2 (left) and tachyplesin I (right) binding to the 

bilayer surface. PEG chains, peptide backbones, and cationic residues of the peptide are 

colored in red, gray, and blue, respectively. (Reprinted with permission from [56]. Copyright 

2013 American Chemical Society). 
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3.2. Coiled-Coil Peptides  

Coiled coils consist of two or more α-helices wound into a superhelix with a large pitch. The coiled-coil 

sequences contain a heptad repeat of seven amino acid residues, where hydrophobic residues are 

located in the core of coiled-coil helix bundles [57]. Since these coiled coils can self-assemble into 

protein fibers, synthetic coiled coils have been designed and used as scaffolds in 3D cell culture 

engineering, as templates for the assembly of other polymer and nanoparticle materials, and as protein 

building blocks [58–61]. To increase their solubility and structural stability, coiled coils have been 

conjugated with PEGs. Experimentally, the Klok group [62–66], the Kros group [67–71], and the  

Xu group [72–76] synthesized PEGylated coiled coils, characterized their conformation and structure, 

and investigated the effect of PEGylation on the self-assembled structures and the interactions with 

other molecules. Computationally, the sequenced-based programs were developed to predict the 

existence and structure of coiled coils [77–83], and MD simulations were performed to study the 

stability of coiled coils [84–93]. 

Jain and Ashbaugh performed replica exchange MD (REMD) simulations of PEGylated coiled  

coils [94]. PEG chains (20 and 40 monomers of EO; C–O–C) were conjugated to the N-terminal group 

of the lysine-rich peptide 1CW (pdb: 1COI, the peptide experimentally studied by the Xu group),  

the neutralized 1CW, and the polyalanine peptide. Figure 3 compares the fractional helicity of 

unPEGylated and PEGylated peptides as a function of temperature, indicating that larger PEG chains 

induce higher helicity of peptides, in quantitative agreement with experiments. Also, simulations 

showed that PEG chains have electrostatic interaction with cationic lysine residues of the peptide, 

which stabilizes the helical structure of each peptide but still does not influence the tertiary structure of 

the coiled coil. 

Figure 3. Helix melting curves of the pure peptide (1CW) and its conjugates with  

20- and 40-mers of ethylene oxide (EO). (Reprinted with permission from [94]. Copyright 

2013 American Chemical Society). 

 

Hamed et al. performed all-atom and CG simulations of the same α-helical peptide (pdb: 1COI) 

grafted with the PEG chain [95]. Figure 4 shows that the PEG chain with a larger end-to-end distance 

induces an increase in the solvent accessible surface area (SASA) of the peptide, which makes the 
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backbone hydrogen bonds more accessible to water molecules, leading to the lower helicity of the 

peptide. This indicates that peptide helicity is modulated by the SASA that depends on the PEG 

conformation and the PEG-peptide interaction. They also found that peptides interact with PEG chains 

because of the electrostatic interaction between cationic lysines and PEG oxygens as well as the 

interaction of hydrophobic amino acids with PEGs rather than with water. 

Figure 4. (a) Schematic of constant force pulling simulations, where the external force 

applies to the PEG chain (Mw = 882); and (b) the peptide helicity and solvent accessible 

surface area (SASA) as a function of the end-to-end distance of the grafted PEG. (Reprinted 

with permission from [95]. Copyright 2013 American Chemical Society). 

 

Besides these coiled coils, the self-assemblies of cyclic peptides grafted with PEG chains were 

recently simulated by Ruiz and Keten [96]. They calculated the binding free energies for a cyclic 

peptide dimer with and without PEGs, showing that the binding energy between peptides is modulated 

by the PEG length and grafting density. Their findings also agree with theories and experimental 

observations that showed the entropic penalty induced by the conformational transition of the 

conjugated PEG chains in assembled nanotubes. 

4. Simulations of PEGylated Dendrimers 

Polyamidoamine (PAMAM) dendrimers, which consist of a central core, regularly branched 

monomeric building blocks, and many surface terminal groups, are among the best candidate 

nanoparticles for use as antitumor therapeutics to detect and target tumor cells because of their 

controlled mass, surface valency, and surface functionality [97]. The conformation and structure of 
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PAMAM dendrimers and their interactions with conjugate molecules (DNA, peptides, and polymers) 

and lipid bilayers have been widely studied through experiments and simulations [98–129]. Here, the 

simulation studies on PEGylated dendrimers are reviewed. 

Tanis and Karatasos performed all-atom MD simulations of a dendrimer grafted with a single PEO 

chain and predicted the complex conformation and the extent of the hydrogen bonds between dendrimer 

and PEO at various pH values [130]. Our group performed CG MD simulations of PEGylated 

dendrimers, showing the inhibition effect of PEG chains on the interparticle aggregation in water [131] 

and on the dendrimer-induced pore formation in lipid bilayers [132]. In particular, we simulated 

generations 3, 4, and 5 dendrimers grafted with PEGs of different sizes (Mw = 550 and 5000) and 

grafting densities (12%–94% of surface terminals), showing that longer PEG chains with higher 

grafting density yield PEG–PEG crowding, which stretches dendrimer terminals towards water, 

leading to a larger size and a dense-shell structure of the dendrimer [133], as shown in Figure 5. Also, 

simulations showed that long PEG5000 chains at high grafting density self-penetrate into the attached 

dendrimer, occupying the dendrimer’s vacant interior that would otherwise be available for 

encapsulating hydrophobic compounds, implying that the encapsulation efficiency of dendrimers can 

be modulated by the PEG length and grafting density. 

Figure 5. Snapshots of G4 dendrimers attached with 8 PEG5000 (left) and 32 PEG5000 

(right) at the end of simulations, leading to dense-core and dense-shell structures, 

respectively. Black and red colors represent dendrimers and PEG chains, respectively. 

(Reprinted with permission from [133]. Copyright 2013 American Chemical Society). 

 

 

Albertazzi et al. synthesized hybrid dendrimers with PEG cores [134], which are different from 

other PEGylated dendrimers that typically have PEG chains grafted onto outer terminal groups. Their 

experiments showed that the extent of cellular uptake and transfection is modulated by the complex 

structure and the topology of the PEG core. These results were supported by their MD simulations of 

dendrimers with 2-arm PEG cores and 4-arm PEG cores, which showed that the dendrimers with more 

PEG cores have a much more swollen conformation, as shown in Figure 6. 
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Figure 6. Snapshots of molecular dynamics (MD) simulations of dendrimers grafted with 

(a) 2-arm PEG cores and (b) 4-arm PEG cores. (Reprinted with permission from [134]. 

Copyright 2013 American Chemical Society). 

 

Recently, Karatasos simulated PEGylated hyperbranched polyesters with doxorubicin (a hydrophobic 

anti-cancer drug) [135]. Figure 7 shows that PEGylated polyesters form a complex with doxorubicin 

via their hydrogen bonding interactions. These hydrogen bonding interactions were modulated by the 

charge density of doxorubicin and the size of PEG chains, indicating the dependence on drug 

electrostatics and PEG conformation.  

Pavan et al. performed well-tempered metadynamics simulations of PEGylated dendrimers in water 

to obtain enough samples by overcoming energy barriers [136]. Radii of gyration and hydrodynamic 

radii of PEGylated dendrimers were calculated, in excellent agreement with those measured from their 

dynamic light scattering (DLS) experiments. The free energy surface of PEGylated dendrimers in 

water indicated that PEGylated dendrimers have a tight globular shape rather than an open 

configuration. They also found that larger PEGs induce a higher extent of crowding, leading to 

aggregation of the dendrimer-PEG complex.  
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Figure 7. Snapshots of the complex of PEGylated hyperbranched polyesters and 

doxorubicin. Doxorubicins are represented as differently colored sticks. The PEGylated 

polyesters are depicted in ball and stick form. The ions Na+ and Cl− are shown as red  

and green beads, respectively. (Reprinted with permission from [135]. Copyright 2013 

American Chemical Society). 

 

5. Simulations of PEGylated Carbon Nanotubes 

SWNTs have been considered to be promising nanomaterials for use as antitumor therapeutics and 

drug or gene transporters because of their excellent mechanical strength and chemical stability [137–139]. 

However, SWNTs are highly hydrophobic and thus aggregate in aqueous environment, which limits 

their biomedical applications in vivo. To overcome this, SWNTs have been covalently conjugated with 

PEG chains or noncovalently assembled with PEGylated lipids or surfactants. Experiments have 

shown (or proposed) the self-assembled structures of the SWNT-PEG complex, the conformation of 

the grafted PEG chains, the effect of PEGylation on SWNT aggregation, and the interaction of 

PEGylated SWNTs with lipid bilayers [140–149], which have motivated simulation studies. 

Computational studies have mainly focused on the self-assembly of SWNTs and surfactants  

(or lipids) [143,150–154], and the interaction between SWNTs and lipid bilayers [155–168]. 

Simulations have shown that the self-assembly of SWNTs and their interactions with lipid bilayers can 

be modulated by the structure and concentration of surfactant, and the size and chirality of SWNT.  

To simulate PEGylated SWNTs and their interactions with lipid bilayers, our group recently 

parameterized CG SWNT and its interaction with CG PEG within a framework of the MARTINI force 

field [169]. We simulated the mixtures of SWNTs and lipids (or PEGylated lipids), which visualized 

the experimentally observed (or proposed) structures of the self-assembled SWNT-lipid complex. In 

Figure 8, lysophospholipids (single tail per lipid), phospholipids (double tails per lipid), and PEGylated 

phospholipids adsorb onto SWNTs in different conformations as “helical half-cylinders”, “cylindrical 

micelles”, and “hemimicelles (or random-adsorption)”, respectively. These simulation findings 

indicate the dependence on the size of the lipid headgroup and tail, indicating the effects of lipid types 

and PEGylation, implying important roles of PEGylation and lipid types on the self-assembled 

structure and mechanism, which favorably compared with experimental findings. 
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Figure 8. Snapshots at the end (500 ns) of simulations of single-walled carbon nanotubes 

(SWNTs) adsorbed onto lysophospholipids (1st row), phospholipids (2nd row), and 

PEGylated phospholipids (3rd and 4th rows). A cross section of the lipid-SWNT complex 

(left image) and a whole section of the SWNT with the ending (the last carbon).  

Coarse-grained (CG) beads of the lipid tail are depicted. Black, blue, and red colors 

respectively represent SWNTs, lipid tails, and PEG chains. (Reprinted with permission 

from [169]. Copyright 2013 American Chemical Society). 

 
Lysophospholipids

(single tail) 

 

Phospholipids 

(double tails) 

 

PEGylated lipids 

 

To understand the effects of PEGylation on interparticle aggregation, we also simulated multiple 

copies of the SWNT-lipid complex in water [170]. Figure 9 shows that all pure SWNTs aggregate, 

lipid-wrapped SWNTs partially aggregate, but PEGylated lipid-wrapped SWNTs completely disperse, 

indicating that short PEG chains (Mw = 550) can inhibit interparticle aggregation, in agreement  

with experiment. 

Figure 9. Snapshots at the beginning (0 ns, left) and end (500 ns, columns 2–4) of the 

simulations of three copies of the SWNT-lipid complex in water. Initial configuration is 

shown only for the system without lipids. (Reprinted with permission from [170]. 

Copyright 2013 American Chemical Society). 

 

                Initial     Pure SWNTs Lysophospholipid-

wrapped SWNTs 

PEGylated lipid-wrapped 

SWNTs 

The interactions between SWNTs and lipid bilayers were also investigated [170,171].  

Un-PEGylated SWNTs insert into the lipid bilayer at the beginning of the simulation because of the 

hydrophobic interaction with the bilayer tails, while PEGylated SWNTs do not for the whole 
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simulation time, indicating that long hydrophilic PEG chains can weaken the hydrophobic interaction 

and inhibit SWNT insertion (Figure 10). For unPEGylated SWNTs, the inserted SWNT beads are 

surrounded by entire tails of neighboring lipids in one leaflet of the bilayer, which induces positive 

curvature along the SWNT. This indicates that the insertion of SWNT into the bilayer and membrane 

curvature can be modulated by PEGylation. Our simulations also found that the PEGylation method 

influences the distribution of PEG chains along the SWNT, and that PEG size and grafting density 

modulate the conformation of PEG chains on SWNTs [172], which supports the experimentally 

proposed conformation of PEGs [173] and compares favorably with the mushroom-brush transition of 

the Alexander-de Gennes theory [174]. 

Figure 10. Snapshots of simulations of the lipid bilayer and the SWNT wrapped with 

PEGylated and unPEGylated lipids (respectively, left and right). The cross section of 

SWNT shows positive curvature in the lipid bilayer (upper right). (Reprinted with 

permission from [170]. Copyright 2013 American Chemical Society). 

SWNT wrapped with  SWNT wrapped with lipids                 Positive curvature 

500 ns                         0 ns              100 ns                     500 ns  

Recently, Crescenzo et al. performed all-atom MD simulations of SWNTs grafted with PEGs 

(homopolymer) and PEG-propylene sulfide (PEG-PPS; block copolymer), and compared the extent of 

covering the SWNT surface, showing that PEG-PPS more tightly wrap SWNTs than pure PEG do [175]. 

Aslan et al. simulated the self-assembly of PEGylated lipids and either an isolated or bundled SWNT, 

showing different density profiles of PEGs and their effects on antimicrobial activity [176].  

Skandani and Al-Haik performed all-atom MD simulations of unPEGylated and PEGylated SWNTs 

with different diameters and chiralities in lipid bilayers [177]. Simulations showed that PEGylated 

SWNTs penetrated into the lipid bilayer slower than unPEGylated SWNTs. Also, penetration of the 

PEGylated SWNT showed a less energy-dependent mechanism, indicating lower adhesion energy, 

which favorably compared with their previous experiments [178].  

6. Conclusions 

Recent advances in simulation methodologies and computational power have made it possible to 

accurately predict conformation and dynamics. The all-atom models for PEO and PEG have been 

parameterized to reproduce free energies and conformer populations calculated from quantum 

chemistry calculations, which were again used to parameterize CG models. Initially, implicit solvent 

models were developed, but the explicit solvent models have become more popular, since they can be 

easily applied to multicomponent mixtures. All-atom and CG models predicted the conformation, 
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hydrodynamics, and shape anisotropy of PEO and PEG, in excellent agreement with experiments and 

polymer theories. In particular, the CG models have been applied to large-scale systems such as the 

self-assembly of PEG and other molecules, and the interaction with lipid bilayers. 

MD simulations have revealed much useful information about the structure and dynamics of 

PEGylated molecules. Since PEG chains are hydrophilic, they have been shown to have either 

attractive interactions with charged or hydrophilic molecules or repulsive interactions with highly 

hydrophobic molecules. For example, antimicrobial peptides, which consist of cationic amino acids, 

are wrapped by PEG chains. Also, PEG chains adsorb onto coiled coils that form helix bundles 

because of the core packing with hydrophobic residues and the electrostatic interaction between 

charged residues. All-atom simulations showed that the stability of secondary and tertiary structures of 

these peptides is modulated by PEGylation, implying the possible application of PEGylation into the 

peptide-based drugs and nanofibers. PEGylated nanoparticles such as dendrimers and SWNTs have 

also been computationally studied. Simulations of PEGylated dendrimers showed that the PEG size 

and grafting density influence the size, shape, and structural transition between the dense core and 

dense shell. Also, PEGylation inhibits the interparticle aggregation of dendrimers and weakens the 

interaction between dendrimers and lipid bilayers. For PEGylated lipids, CG simulations captured the 

self-assembled liposomes, bicelles, and micelles at the expected ratios of lipids and PEGylated lipids.  

The conformations of PEG chains grafted onto SWNTs, and the structures of the self-assembled  

SWNT-lipid (or PEGylated lipid) complex, the effects of PEGylation on interparticle aggregation and the 

interaction with lipid bilayers were favorably compared with polymer theories and experiments.  

As reviewed above, all-atom and CG MD simulations have successfully matched experimentally 

measured properties and have provided atomic-scale insights into the structure and dynamics of PEG 

and its interactions with other molecules. However, more computational studies are still needed to 

complement or explain experimental observations. For example, different mechanisms for the 

penetration of polymers and nanoparticles into cell membranes have been proposed but are still not 

well understood. Also, simulations with ions have always been challenging due to force-field issues. 

For peptide simulation, the secondary structure and folding state need to be more accurately predicted 

within the limited simulation timescale. To resolve this in the future, advances in force field and 

simulation methodology should be attempted. This information from simulations can help in 

optimizing the size and grafting density of PEG chains to increase drug-delivery efficiency for 

applications in nanomedicine. 
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