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Abstract: In this paper, we propose the evaluation of the mannitol’s ability to reduce 

hyaluronic acid (HA) degradation using two different models of oxidative stress. Firstly, a 

solution of hyaluronan and a solution of the same HA including mannitol in PBS buffer 

were submitted to an oxidative stress generated by the addition of xanthine + xanthine 

oxidase generating oxygen free radicals. Different enzyme concentrations were used and 

the HA properties were studied after 24 h of contact at ambient temperature. Decreases of 

the viscosity of the solution were assessed by rheometry (viscous and elastic module) and 

that of HA molecular weight was determined by steric exclusion chromatography. 

Rheologic behavior was assessed on identical HA solutions subjected to another model of 

oxidative stress imposed by addition of hydrogen peroxide. The influence of mannitol 

concentration on HA degradation was also demonstrated. Whatever the stress applied, it 

appears very clearly that mannitol protects hyaluronic acid from mediated oxygen free 

radicals degradation. These in vitro results suggest that mannitol could be a simple way to 

significantly increase the intra-articular residence time of the injected hyaluronic acid and 

therefore might improve viscosupplementation effectiveness. 
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1. Introduction 

Intra-articular injections of hyaluronic acid (HA) of high molecular weight, is a symptomatic 

treatment of knee osteoarthritis [1,2] whose purpose is to replace [1–3] and or to induce the  

secretion [4] of endogenous HA in the osteoarthritic joint. This concept of viscosupplementation (VS) 

has been proposed by Balazs [1] noting that the elastic viscous behavior characterizing the healthy 

synovial fluid (SF) is altered in osteoarthritis and that alterations are directly correlated with the 

quantitative and qualitative decrease of the SF hyaluronate. The latter is indeed a key, but not the 

exclusive, element of the SF rheological properties [5,6], whose main roles are lubrication of the joint 

and shock absorption. In osteoarthritis, HA loss exposes the injured cartilage to increased mechanical 

stress and consequently to increase degradation. 

After 20 years of use, viscosupplementation is widely recognized as an effective and well tolerated 

treatment for knee osteoarthritis [7–9], although the real level of its effectiveness and its specific 

indications remain controversial subjects [10,11]. Discrepancies between conclusions of some  

meta-analyzes [8–10] can come from methodological dissimilarities, but also from possible differences 

in efficacy between the studied products which widely vary in concentration, molecular weight and 

molecular organization [7,12]. Indeed, the HA injected into the joint is rapidly degraded, limiting the 

time of intra-articular residence ranging from few days for linear molecules [13] to up to several  

weeks [14,15] for solutions of cross-linked HA. Among the many pathogenic mechanisms contributing 

to HA degradation, reactive oxygen free radicals or reactive oxygen species (ROS) have a main  

role [16,17]. Osteoarthritis is a degenerative joint disease in the pathogenesis of which ROS play a 

major deleterious effect [18]. It has been shown that interleukin-1β (IL-1β) activates production of 

ROS, which are involved in the synthesis and or activation of metalloproteinases (MMPs) and in 

chondrocyte apoptosis [19]. On the opposite, inhibition of ROS production was shown to reduce the 

expression of the pro-collagenase MMPs [20]. 

In addition to their effect on degradation of the extracellular matrix, ROS are directly involved in 

the mechanisms of degradation of both endogenous and exogenous (i.e., injected) HA in the synovial 

fluid [16]. Optimizing the efficiency and duration of action of VS by adding an antioxidant to HA in 

order to reduce its in situ degradation and to increase its time of contact with damaged tissue, is a 

challenging field of research. Mannitol and its isomer, sorbitol, which are known to be very well 

tolerated [21,22] are excellent candidates for this. In intra-articular injection into the knee, two studies 

with viscosupplements containing 0.5% mannitol [23] and 4% sorbitol [24] have been published. In 

both studies tolerance appeared similar to that of conventional viscosupplements and none of them 

revealed any serious or unexpected adverse effects. Addition of an antioxidant to HA has already been 

studied also in ophthalmology. In an animal model of oxidative stress using hydrogen peroxide (H2O2), 

Belda et al. [25] showed that HA associated with a low concentration of mannitol (0.5%) better 

protected the corneal endothelium, than HA alone. 
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Nevertheless the studied viscous products differed in molecular weight and concentration, which 

did not allow asserting with certainty that mannitol was responsible for this protection. Interestingly a 

number of hydroxyl rich polysaccharides, such as HA, have also antioxidant properties and are 

themselves inhibitors of oxygen free radical −O2* pointing the role of HA concentration [26,27]. 

The purpose of the present study was to investigate the ability of mannitol to reduce the degradation 

of HA by oxygen free radicals, using two different validated models of oxidative stress, firstly induced 

by xanthine (X) + xanthine oxidase (XO) (X/XO model), then by adding hydrogen peroxide  

(H2O2 model). 

2. Experimental Section  

2.1. Induction of an Oxidative Stress 

2.1.1. X/XO Model 

A linear HA obtained by biofermentation (ARD Corporation, Pomacle, France), in purified sodium 

salt powder form with a weight-average molecular weight (MW) 800,000 g·mol−1, was dissolved at a 

concentration of 8 g·L−1 of phosphate (PBS) buffer at pH = 7.4, and then a solution of the same HA 

supplemented with 35 g·L−1 of mannitol was made. Both were prepared in order to serve as control 

solutions. Before use, 3 mL of HA in PBS (or HA + 35 g·L−1 mannitol in PBS) were added of 300 µL 

of PBS. The rheological behavior of the control solutions was studied. They were the same and also 

compared with the same solutions added of 10 µL of XO at a concentration 30 mIU (International 

unite)·μL−1. XO is a flavoprotein generating large amounts of superoxide anion O2
− in the presence of 

xanthine catalyzing its oxidation in uric acid. The viscosity of these solutions was similar to that of the 

control thus showing that there was no XO/HA interaction and no degradation of HA in the presence 

of the enzyme alone (data not shown). 

To generate oxidative stress, 300 µL of xanthine (at a concentration of 100 mM) was added as a 

substrate in place of the 300 µL PBS of the control solutions. The experiment was repeated with XO 

quantities of 10 (Figure 1), 16 µL and 32 µL at a concentration 30 mIU·μL−1. 

Figure 1. Measurement of the steady state viscosity  as a function of the shear rate for 3 

solutions of hyaluronic acid (HA) at pH = 7.4:  initial HA in phosphate (PBS);  

 HA/PBS + xanthine;  HA/PBS + xanthine + xanthine oxidase. 
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2.1.2. H2O2 Model 

Hydrogen peroxide has been often used to degrade polysaccharides through a radical  

mechanism [28]. The same HA (MW = 800,000 g·mol−1) used in the previous test, alone then added 

with mannitol, was subjected to oxidative stress generated by the addition of hydrogen peroxide (H2O2 

30% supplied by Roth, South Watertown, NY, USA) at a final concentration of 2.7% and or 5.4% 

(v/v). The rheological behavior of the solutions was studied after exposure to oxidative stress of 

variable duration at room temperature [29]. The complex viscosity was measured using a cone-plate 

rheometer at 25 °C, at a frequency of 1 Hz as a function of the reaction rate. Two concentrations of 

mannitol, 10 g·L−1 and 35 g·L−1, were studied to evaluate possible dose effect of the latter. 

2.2. Rheology 

The rheological properties were measured using a cone-plate rheometer (ARG2, Texas 

Instruments®, Dallas, TE, USA) at 25 °C on the different solutions tested before and 24 h after 

oxidative stress at room temperature. The steady state viscosity  (in Pa·s) was determined according 

to the shear rate (·s−1). The dynamic experiments were carried out in the region of linear 

viscoelasticity, where the G′ elastic and G″ viscous module are independent of the applied frequency. 

The dynamic moduli G′ and G″ (Pa) and the complex viscosity |*| were determined according to the 

angular frequency (), expressed in Hertz. 

2.3. Molecular Weight Measurement 

Molecular weight of HA was measured by steric exclusion chromatography (SEC), before and after 

oxidative stress using a “Waters Alliance GPCV2000®” chromatograph (Milford, MA, USA) equipped 

with three detectors in line [30]. The injected concentration was 2 g·L−1, with an injection volume of 

100 µL using two columns in series (Shodex OH-Pack®, New York, NY, USA, 805 and 806). All 

samples were filtered through a membrane with pores of 0.2 m (Sartorius® AG, Goettingen, 

Germany, cellulose acetate filter) prior to injection in order to retain any aggregates. The eluent used 

was 0.1 M NaNO3 at an elution temperature of 30 °C and a flow rate of 0.5 mL·min−1. 

3. Results and Discussion 

3.1. X/XO Stress Model 

In the presence of substrate alone (X), the decrease of the HA solution viscosity was similar to that 

induced by the addition same amount of PBS (dilution effect). However the addition of xanthine to the 

HA solution containing XO, causing an X/XO reaction that leaded to ROS production, was responsible 

for HA degradation evidenced by a decrease of its viscosity (Figure 1), and a significant decrease  

(−36.6%) of its molecular weight (Table 1). 
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Table 1. Weight-average molecular weight (MW in g·mol−1) of hyaluronic acid alone and 

in presence of mannitol (35g·L−1) before and after exposure to an oxidative stress induced 

by xanthine/xanthine oxidase (X/XO) at increasing doses added in 4mL HA solution. 

Solution 
Initial MW 

(g·mol−1) 
Final MW (g·mol−1) 

+16 μL XO 
Final Mw (g·mol−1) 

+32 μL XO 

Difference (%)between 
initial and final MW 

with 32 μL XO 

Hyaluronic 
acid (HA) 

787,000 621,450 498,900 −36.6% 

HA + 
Mannitol 
35g·L−1 

768,900 717,750 677,150 −11.9% 

 

Similarly the addition of mannitol to the initial HA solution did not change significantly the 

rheological behavior of the latter (Figure 2). It is also shown that under the effect of oxidative stress, 

the viscosity of the solution of HA added with mannitol was not significantly changed compared with 

the HA in presence of xanthine alone. Concerning HA molecular weight, it is decreased very slightly 

(−11.9%) and only at the highest enzyme concentration (Table 1). 

Figure 2. Measurement of the steady state viscosity  as a function of the shear rate of four 

solutions of hyaluronic acid (HA):  HA/PBS;  HA/mannitol/PBS;  HA/mannitol + 

xanthine;  HA/mannitol + xanthine + xanthine oxidase. 

 

3.2. H2O2 Model 

Without mannitol, HA was rapidly degraded by hydrogen peroxide, as demonstrated by a rapid 

decrease of the complex viscosity |*| (Figure 3). 

However the rheological parameters of the HA solution containing 35 g·L−1 of mannitol were not 

modified in the presence of H2O2 over a period of 30 min. At a dose of 10 g·L−1, mannitol reduced the 

rate of HA degradation, but to a lesser extent and with a period of apparent induction (Figure 4 and 

Table 2). 
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Figure 3. Kinetic of hyaluronic acid degradation (HA 10 g·L−1) induced by hydrogen 

peroxide oxidative stress (0.3 mL of H2O2 in 3 mL HA solution) in presence () and 

without mannitol (35 g·L−1) (). The variation of the complex viscosity |*| is measured 

according to the time of degradation. 

 

Figure 4. Kinetic of hyaluronic acid degradation (HA, 10 g·L−1) according to mannitol 

concentration (10 g·L−1 () or 35 g·L−1 ()) measured by the variation of the complex 

viscosity |*| as a function of the time of hydrogen peroxide induced oxidative stress  

(0.6 mL of H2O2 in 3 mL HA solution). 

 

Table 2. Elastic modulus (G′), viscous modulus (G″) and complex viscosity (|*|) of a 

solution of hyaluronic acid and mannitol (10 g·L−1 and 35 g·L−1), before and after 15 min 

exposure to an oxidative stress (0.6 mL H2O2 in 3 mL HA) at ambient temperature. 

Mannitol 
Concentration (g·L−1) 

Rheological 
properties 

Initial 
values 

Final values in 
presence of H2O2 

(2.7%) 

Ratio (difference in %) 
Initial / Final 

10 G′ (Pa) 0.88 0.64 1.37 / (−27.2%) 
10 G″ (Pa) 2.90 2.40 1.21 / (−17.2%) 
10 |*| (Pa·s) 0.49 0.40 1.22 / (−18.4%) 
35 G′ (Pa) 0.87 0.82 1.06 / (−5.7%) 
35 G″ (Pa) 2.90 2.77 1.05 / (−4.4 %) 
35 |*| (Pa·s) 0.48 0.46 1.04 / (−4.2%) 
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This in vitro study, using two different models of oxidative stress, shows clearly that the addition of 

mannitol to hyaluronic acid allows the reduction of HA-ROS-mediated degradation as related to its  

anti-oxidant power towards the rich reactive hydroxyl function previously shown in various  

diseases [31–35]. Then, the beneficial effect of mannitol (C6H14O6) having potent free radical 

scavenger properties is confirmed from our data. Concerning the mechanism involved, when HA is 

administered intra articularly, HA macromolecules, containing many OH groups, react with ROS, 

resulting in the rupture of the macromolecular chains and accelerated degradation of the highly viscous 

solution (or partially crosslinked HA gel) [16]. The rapid depolymerisation of HA is a major reason for 

the short intra-articular half-life of viscosupplements made of non-cross-linked HA [13], cross-linking 

being another way to protect HA from degradation by ROS [14,15]. 

In addition, the chemical characteristics of mannitol make it as an antioxidant of choice in 

combination with HA, particularly because of its hydro-solubility compared with other antioxidants 

such as vitamin E which is lipid soluble, or -caroten which is insoluble in water. Furthermore its 

resistance to heat allows sterilization by autoclaving, unlike other numbers thermolabile antioxidants 

(i.e., polyphenols, vitamin C). Moreover mannitol does not increase the ionic strength of the medium 

and thus does not significantly alter the rheological performance of the HA as shown in Figure 2. As well 

as HA, mannitol has a perfect safety, many animal tests showing that it was non-cytotoxic, non-genotoxic, 

non-carcinogenic and non-mutagenic, even at high doses [21]. In humans it is widely used per os and 

through parenteral injections (intravenous, intra-ocular) at very high concentration including 

hyperosmolar one [22]. Almost non-metabolizable carbohydrate, mannitol is eliminated by the renal 

glomeruli and is not reabsorbed. That is the reason why it is also used as a substitute for glucose for 

diabetic patients; its sweetness is almost equivalent to the latter, while not being metabolized. 

The benefit of combining HA and mannitol has previously been studied in vitro. In a model of 

oxidative stress using hydrogen peroxide and copper, Mendoza et al. [24] showed that 50% inhibition 

of degradation of HA by hydroxyl radicals was obtained from low concentrations of mannitol  

(26.5 mM or about 5 g·L−1). Our study suggests that the protective effect of mannitol on HA 

degradation is also dose-dependent and that, low concentrations (10 g·L−1) protected HA from ROS 

mediated depolymerisation to a lower degree than higher concentrations (35 g·L−1). It has to be noted 

that the concentrations of H2O2 used in our model are very high and clearly highlight the importance of 

mannitol content. 

4. Conclusions 

In summary, these in vitro results suggest that high concentrations of mannitol added into a 

viscosupplement, protect HA from oxidative degradation and could therefore increase its intra-articular 

residence time without modifying its rheological properties. Thereby, mannitol might improve the 

efficiency and or duration of action of viscosupplementation. These first in vitro results fully justify 

the in vivo studies already in progress, in order both to confirm or refute this hypothesis and to assess 

the safety of this new association. 
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