Supplementary Materials

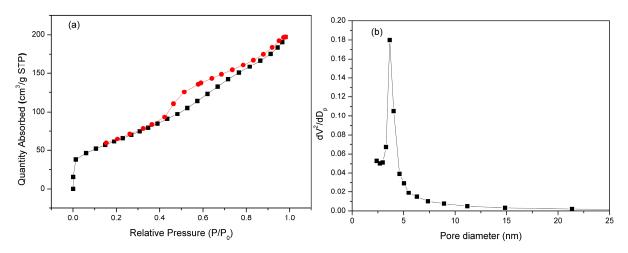


Figure S1. (a) N₂ adsorption/desorption isotherms and (b) Pore size distribution curves of MnO₂.

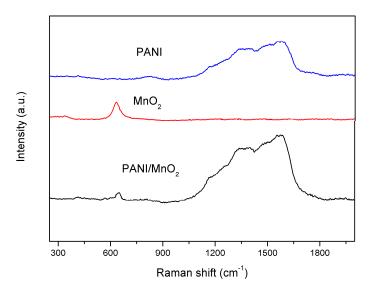


Figure S2. Raman spectroscopy of PANI, MnO₂, PANI/MnO₂

The N₂ adsorption/desorption isotherms and pore size distribution curves of MnO₂ was shown in Figure S1. As is shown in Figure 1a, it can be observed that the MnO₂ has a typical IV isotherm and display a distinct hysteresis loop of H1 in the range of 0.4–0.8 P/Po, indicating the presence of mesopores in the MnO₂ nanomaterial. The pore size distribution curves are exhibited in Figure 1b. It is easily found that the mean pore diameter of MnO₂ is 3.648 nm. The BET surface area of MnO₂ nanomaterial is 232.96 m²/g.

Raman spectroscopy was employed to analyze the PANI, MnO₂, PANI/MnO₂ in Figure S2. The band which appears at 1170 cm⁻¹ corresponds to the C–H bending. The peaks at 1333 and 1555 cm⁻¹ can be assigned to the N–H bending and C–N⁺ stretching vibrations, respectively. The presence of MnO₂ on the composites is confirmed by the slight peaks at 646 cm⁻¹ (corresponding to the pure MnO₂), attributed to the Mn–O vibration. The decrease of the intensity may be due to the cladding of PANI.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).