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Abstract: Polymer membrane surfaces have been equipped with the digestive enzyme
trypsin. Enzyme immobilization was performed by electron beam irradiation in aqueous
media within a one-step method. Using this method, trypsin was covalently and
side-unspecific attached to the membrane surface. Thus, the use of preceding polymer
functionalization and the use of toxic solvents or reagents can be avoided. The resulting
membranes showed significantly improved antifouling properties as demonstrated by
repeated filtration of protein solutions. Furthermore, the biocatalytic membrane can be
simply “switched on” to actively degrade a fouling layer on the membrane surface and regain
the initial permeability. The membrane pore structure (pore size and porosity) was neither
damaged by the electron beam treatment nor blocked by the enzyme loading, ensuring a
stable membrane performance.
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1. Introduction

Porous polymer membranes are of increasing importance regarding modern separation technologies
such as waste water treatment, sterilization filtration, hemodialysis, production of fine chemicals, dairy
industry, etc. [1]. To comply with required process conditions (chemical and physical stability within
a broad range) these polymer membranes are predominantly fabricated from synthetic materials such
as polyethersulfone (PES), polysulfone (PSf), or polyvinylidene fluoride (PVDF) (see Figure 1) [2].



Polymers 2015, 7 1838

However, membranes made from these polymers are prone to fouling which is caused by hydrophobic
interactions of the membrane surface with biomolecules or colloids in the mixture to be filtered and
result in irreversible adsorption, aggregation, and finally in a reduced filtration performance [3–6].
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Therefore, membranes have to be regularly cleaned to remove the fouling layer, depending on the
filtration application. This may include a daily chemically enhanced backwash, a weekly maintenance
cleaning with a higher chemical concentration, and an intensive chemical cleaning once or twice a
year [7]. Commonly used cleaning agents are strong oxidants such as hypochlorite and citric acid.

To reduce the problem of initial fouling different approaches for surface hydrophilization have been
investigated such as copolymerization or grafting with hydrophilic monomers [8–14], blending using
hydrophilic polymers [15–20], and, finally, chemical modification of the membrane polymer [21].

It has been demonstrated that the resulting membranes show improved antifouling properties.
However, the cited methods exhibit serious disadvantages because a substantial number of process steps
is required (e.g., activation of the scaffold polymer for subsequent grafting and additional purification
steps), as well as the use of toxic reagents and solvents. Furthermore, contamination of the eluent by
non-permanently immobilized compounds or by used initiators/catalysts was reported.

Here, a new electron beam (EB) based method for efficient surface modification of polymer
membranes has been developed. This technology enables direct immobilization of functional organic
molecules [22,23], engineering polymers [24], or even biomolecules [25,26] on a membrane’s surface.
The use of low-energy EB radiation combines surface activation (formation of activated species) of
the membrane polymer and simultaneous covalent immobilization of the desired compounds from
an aqueous system. Because EB is capable of interpenetrating the entire cross-section of polymer
materials also the inner surface of porous membranes can be activated for desired modification
reactions. No catalysts, organic solvents, or other toxic reagents are required. Furthermore, additional
preceding surface functionalization and purification steps are avoided since the synthesis of specific
monomers/polymers is not necessary. Since immobilization is covalent, no compound leaching has been
observed. Irradiation of polymers such as PES [27,28] and PVDF [29] with electrons and γ-radiation
has been extensively studied and is well understood [30].

In the present paper we discuss the preparation of a self-cleaning antifouling membrane by
immobilization of the enzyme trypsin on the membrane’s surface. Trypsin is a well-studied proteolytic
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enzyme that catalyzes the hydrolysis of peptide bonds at an optimum pH value of 7.5–8.5 [31]. Since free
trypsin is stable within a pH range of 3–11 [32,33] this enzyme can be used in common membrane-based
water treatment applications, even when pH changes occur in the process. There are only few studies that
report on immobilization of trypsin by entrapping within [34] or coating [35] on the membrane polymer.
Furthermore, the covalent immobilization of trypsin on polymer membranes was reported [36–38].
However, the described covalent immobilization technique requires several synthesis steps including
critical reagents. Therefore, we chose to use electron beam-mediated immobilization as a one-step
procedure to create a biocatalytic membrane surface aiming to actively degrade a protein fouling layer,
and thus, to create a self-cleaning membrane surface (see Figure 2).
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Figure 2. Schematic concept of the self-cleaning membrane: the digestive enzyme trypsin
was immobilized on the membrane surface to enable the active degradation of a protein
fouling layer at an optimum pH range of 7.5–8.5.

2. Experimental Section

2.1. Chemicals and Materials

Poly(vinylidene fluoride) membranes (A: hydrophobic, Roti, 0.45 µm, Carl Roth; B: hydrophilic,
Durapore, 0.22 mm, Millipore; C: hydrophilic, Durapore, 0.45 µm, Millipore) were purchased from
Carl Roth GmbH & Co., Karlsruhe, Germany. Trypsin from bovine pancreas (24 kDa), albumin
from bovine serum (67 kDa), N-α-benzoyl-L-arginine 4-nitroanilide hydrochloride (BAPNA), ethanol,
dimethyl sulfoxide (DMSO), p-nitroaniline (p-NA) as well as calcium chloride dihydrate, hydrochloric
acid (HCl, reagent grade), and phosphate buffered saline (PBS, pH 7.4) were obtained from Sigma
Aldrich, Hamburg, Germany. Bicinchoninic acid (BCA, Pierce, IL, USA) protein assay reagent A + B
was provided by ThermoFisher SCIENTIFIC, Darmstadt, Germany. Deionized water was used for
preparing all buffer solutions. Unless otherwise stated, water was used in Milliporer grade. All
chemicals were of analytical grade and used without further purification.

2.2. Preparation and Characterization of Biocatalytic Membranes

The enzyme was immobilized via EB radiation on different PVDF microfiltration membranes
according to a recently described method [25]. The modifications were performed by immersing the
membranes for 5 min into an aqueous buffer solution (HEPES pH 8.0) of trypsin (2 mg/mL) at room
temperature followed by electron beam irradiation with an irradiation dose of 150 kGy. Irradiation was
performed in an N2 atmosphere with O2 quantities <10 ppm using a home-made electron accelerator. The
voltage and the current were set to 160 kV and 10 mA, respectively. The absorbed dose was adjusted
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by the speed of the sample transporter. The modified membrane was rinsed three times per 10 min with
buffer solution before performing subsequent analysis and characterization tests.

The three biocatalytic trypsin/PVDF membranes were analyzed regarding their immobilized enzyme
amount using the bicinchoninic acid (BCA) test [39]. Therefore, the samples were washed three times
with 1 mL of PBS buffer solution (pH 7.4). Then, the BCA reagent was added to the membrane samples
and the plate was incubated for 25 min at 37 ˝C. The plate was then shaken for 5 min at room temperature,
the solution was transferred to a new microtiter plate and light adsorption at 562 nm was measured using
a microtiter plate reader (Infinite M200, Tecan, Germany). For calibration, seven trypsin concentrations
of 1000, 500, 250, 125, 62.50, 31.25 and 0.00 µg/mL were used.

The residual proteolytic activity of the immobilized trypsin was determined using
N-α-benzoyl-L-arginine 4-nitroanilide hydrochloride (BAPNA) as substrate. Testing the activity
of immobilized trypsin was performed according to the method of Oliveira et al. [38]. The substrate
solution was prepared by mixing 0.3 mM BAPNA, 1 mL DMSO and 9 mL 50 mM TRIS-HCl buffer
containing 10 mM CaCl2¨ 2H2O, pH 8.5. Then, 1 mL of the substrate solution was added to the modified
and washed membranes. The plate with the samples was shaken for 5 min at room temperature and
200 µL of the supernatant were transferred to a 96 well microtiter plate. Then the optical absorption
of the solution at 405 nm was monitored over a period of 130 min using a microtiter plate reader
(Infinite M200, Tecan, Männedorf, Switzerland). After every sampling 200 µL of fresh substrate
solution were added to the samples. The resulting extinctions from the BAPNA assay were converted
(nmol) and displayed in concentrations vs. time diagrams. For calibration, seven standards based on a
0.3 mM p-nitroaniline stock solution with concentrations of 83.00, 41.50, 20.75, 10.38, 5.19, 2.59 and
0.00 µg/mL were used.

The morphology of the membranes was studied by scanning electron microscopy (SEM, Ultra 55,
Carl Zeiss SMT, Oberkochen, Germany). In order to prevent charging the sample was sputtered with
a thin gold layer. For investigation of pore size and bulk porosity of the membranes the mercury
porosimeter PoreMaster PM-60-15 (Quantachrome GmbH & Co. KG, Odelzhausen, Germany) was
used. XPS (X-ray photoelectron spectroscopy) analyses were carried out on a Kratos Axis Ultra (Kratos
Analytical, Ltd., Manchester, UK) with a monochromatized Al excitation source at 150 W (15 kV,
10 mA, with a pass energy of 40 eV). Surface spectra were collected over a range of 0–1200 eV. The
nominal resolutions were 1.0 eV for the survey (pass energy = 160 eV) and 0.1 eV for the high-resolution
scans (pass energy = 20/40 eV), respectively. The binding energies were corrected for the static charging
of the samples by reference to the C1s peak set at a binding energy of 285.0 eV.

The chosen fouling experiment was performed as outlined in Figure 3 and was interpreted according
to the water permeation flux. In general, the permeation flux of the membrane was recorded after every
single step to be able to identify exactly the reason for performance changes (fouling, less fouling,
and self-cleaning). To simulate a long-time application, a high starting protein concentration was used,
and fouling cycles were repeated several times as also reported by others [40–44]. First, the initial
pure water permeation flux of a membrane disc sample (Φ = 45 mm) was determined (
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fouling step simulating real water treatment conditions. Finally, pure water permeation flux (
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was determined again after completion of the fouling cycle. Then, trypsin activation was achieved
by immersing the fouled membrane into a buffered solution at 37 ˝C and pH 8.0 overnight. After
self-cleaning the resulting pure water permeation flux (
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3. Results and Discussion

The EB treatment results in the generation of a mixture of ions, excited molecules and free radicals as
described for the radiolysis of water [45] ensuring the activation of both the dissolved trypsin [25,26,46]
as well as of the membranes [22–24,27–29,47]. The formed radicals/activated species can undergo
various reactions, such as cross-linking or recombination reactions. This way, links between the polymer
matrix and the enzyme can be formed that are assumed to be side-unspecific. Previous work demonstrated
the formation of covalent chemical bonds between the membrane polymer and the immobilized
molecules by XPS analysis, which was supported by extensive extraction experiments [22–24,26,47].
It is worth emphasizing that the use of an aqueous system is a crucial requirement since different results
were obtained in the dry state as also reported in the literature [48].

The enzyme trypsin was immobilized via EB radiation on three different PVDF microfiltration
membranes (A: hydrophobic, Roti, 0.45 µm, Carl Roth; B: hydrophilic, Durapore, 0.22 mm, Millipore;
C: hydrophilic, Durapore, 0.45 µm, Millipore) with different pore sizes and surface energies (see
Table 1). While membrane A has a hydrophobic surface (surface energy: 6.4 mN/mm2) with pores
of 0.45 µm membranes B and C are hydrophilized by the manufacturer (surface energy: 66.6 and
35.4 mN/mm2, respectively) with pores of 0.22 µm and 0.45 µm, respectively. The thickness of all
used membranes is comparable and in the range of 110–130 µm.
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Table 1. Characteristics of three different biocatalytic trypsin/polyvinylidene fluoride
(PVDF) membranes.

#
Surface energy a

[mN/mm2]
Contribution
polar/dispersive

Pore size b

[µm]
Thickness c

[µm]
Trypsin amount

[µg/cm2]
ktrypsin

[´10´5 s´1]

A 6.4 ˘ 1.9 0.2/6.1 0.45 130 30.9 ˘ 1.2 ´882

B 66.6 ˘ 3.8 25.9/40.8 0.22 115 3.0 ˘ 0.5 ´282

C 35.4 ˘ 5.1 9.6/25.8 0.45 110 0.6 ˘ 0.4 ´216

a Calculated via contact angle determination using water and diiodomethane, respectively (prior to enzyme
immobilization); b Manufacturer information; c Determined using a thickness gauge.

Furthermore, the successful enzyme immobilization was demonstrated by XPS analysis (Table 2).
According to the structure of PVDF (Figure 1) the theoretically expected elemental composition would
be 50% for C and F, respectively. However, the three different PVDF reference membranes consist of
different amounts of F and C. Since membranes B and C were hydrophilized by the manufacturer, the
high O ratio (membrane A: 0.13%; membrane B: 26.44%; membrane C: 14.58%) can be explained with
material modifications during the membrane preparation process which result in the before detected
differences in surface energy (Table 1). After EB-mediated trypsin immobilization new signals for N
and S occur (N: 5.21%–5.89%; S: 0.73%–1.21%) that indicate a successful enzyme attachment on the
membrane. In the case of membrane A also a significant increase of oxygen was detected (reference:
0.13%, after immobilization: 9.73%).

Table 2. XPS (X-ray photoelectron spectroscopy) data of the unmodified and modified
PVDF membranes.

# Sample C 1s [mol %] F 1s [mol %] O 1s [mol %] N 1s [mol %] S 2p [mol %]

A
reference 43.12 56.75 0.13 - -

trypsin/PVDF 51.97 31.47 9.73 5.89 0.95

B
reference 62.38 11.19 26.44 - -

trypsin/PVDF 62.36 6.79 24.91 5.21 0.73

C
reference 53.25 32.17 14.58 - -

trypsin/PVDF 59.31 12.59 21.03 5.87 1.21

The trypsin immobilization was most successful on the hydrophobic membrane A with an enzyme
loading of 30.9 µg/cm2 and a corresponding reaction rate constant k of ´882 ˆ 10´5 s´1 (Table 1).
Compared to the hydrophilic membranes this corresponds to a 10 to 50 fold amount of immobilized
trypsin. This effect can be explained by hydrophobic interactions between the hydrophobic PVDF
membrane A and the protein backbone of the enzyme which enhances surface immobilization.

While these hydrophobic interactions are usually a problem because they promote fouling, here,
they are beneficial for the desired enzyme immobilization. Since the immobilization reaction by EB
is performed within a very short time interval of 5 min, no pore blocking by the enzyme itself occurred
during the process (see Figure 4). Furthermore, the pore structure of the membranes was not damaged by
the EB treatment. The surface structure was not altered as demonstrated by the SEM images (Figure 4).
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Regarding the results of pure water permeation flux, pore size, and porosity of the membranes before
and after EB treatment (see Table 3) no significant changes were observed. Water permeation flux was
not changed by the EB-induced trypsin immobilization. Regarding the median pore size the enzyme
immobilization led to slight decrease of the pore size for membranes A and B while membrane C showed
a slight increase. When comparing the pore size determined by mercury porosimetry (Table 3) with the
pore size information delivered by the manufacturer (Table 1) we can see significant differences, e.g.,
according to the manufacturer membrane A should possess a pore size of 0.45 µm. Mercury porosimetry
revealed a median pore size of 0.95 µm for this membrane. However, there are different methods to
determine the pore size of a membrane and no standard method to obtain comparable results. So we
explain the differences of the determined pore sizes by a different measurement method used by the
manufacturer. The porosity of all modified membranes was slightly reduced. However, the changes are
not significant, and we can assume that the membrane structure was not destroyed or altered by the EB
treatment nor blocked by the immobilized enzyme. Further investigation on the impact of EB on the
membrane material was published before and confirms these results [22,24,25].

Table 3. Membrane properties before (reference) and after electron beam (EB)
treatment (EB).

# Sample
Water permeation flux
[mL/(min¨ cm2¨ bar)]

Pore size a

[µm]
Porosity a

[%]

A
reference 29.7 0.95 ˘ 0.2 72.1 ˘ 2.4

EB 30.3 0.94 ˘ 0.2 66.6 ˘ 1.9

B
reference 6.1 0.55 ˘ 0.1 59.7 ˘ 1.4

EB 6.1 0.51 ˘ 0.1 52.3 ˘ 1.5

C
reference 30.7 1.16 ˘ 0.4 62.7 ˘ 2.1

EB 30.7 1.25 ˘ 0.4 58.8 ˘ 1.9
a Determined by mercury porosimetry.
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Because of the highest enzymatic activity membrane A was chosen for investigating the fouling
properties as well as the ability to self-clean its surface. The fouling experiment was conducted by
filtration of 4.8 L of protein solution through the membrane and subsequent investigation of the change
in pure water flux (for details see Section 2.2). Then, trypsin activation was achieved by immersing
the fouled membrane into a buffered solution at 37 ˝C and pH 8.0. Under these conditions the enzyme
catalyzes the hydrolysis of peptide bonds and therefore it shall degrade the protein fouling layer on the
membrane surface. After self-cleaning the resulting pure water permeation flux was determined again
before a next fouling cycle was started. This procedure was repeated several times to investigate and
compare the modified biocatalytic membranes.

Figure 5 summarizes the resulting membrane properties concerning fouling and self-cleaning activity.
First, the pristine PVDF membrane A was investigated according to the experimental procedure
described in Figure 3. Since no enzyme is immobilized on this reference membrane, no self-cleaning is
possible. The membrane fouling after one cycle of the experiment is enormous since the resulting water
permeation flux was decreased to 27% compared to the initial flux (see Figure 5).
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Figure 5. Fouling and self-cleaning properties were characterized by initial water permation
flux, water flux after fouling treatment, and water flux after self-cleaning. Displayed
are PVDF reference membrane A (prior to enzyme immobilization, REF), as well as
trypsin/PVDF membranes A after repeated fouling cycles (1–5; 1–3) determined directly
after enzyme immobilization, and after one week of storage, respectively.

In contrast, the biocatalytic trypsin/PVDF membrane was less prone to fouling, and the water
permeation flux after one cycle was reduced to 50%. Obviously, the presence of the enzyme on the
membrane surface partially prevents a direct contact of the fouling protein with the PVDF surface.
Therefore, undesired hydrophobic attractions that can result in surface blocking and subsequent
reduction of water permeation flux (as experienced in case of the reference membrane) are reduced
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compared to the reference membrane. Water permeation flux after fouling is significantly higher
compared to the reference membrane. Furthermore, the biocatalytic membrane is able to actively
self-clean its surface and 90% of the initial water permeation flux could be regained. When the same
membrane is exposed to further fouling treatment cycles the fouling effect slightly increases with every
additional cycle. The self-cleaning activity of the biocatalytic membrane is effective for the length of
four cycles. However, we have chosen to use a highly concentrated protein solution (3 g/L) within the
fouling experiment to demonstrate the self-cleaning property of the immobilized trypsin on the PVDF
membrane. Thus, it is likely that with repeated fouling cycles (4.8 L protein solution per cycle) at one
point there will be adsorption of the protein onto the enzyme of the biocatalytic membrane resulting
in decreased water permeation flux, as well as blocking of the active site of the enzyme. After five
cycles the water permeation flux after fouling is comparable to that of the reference membrane. The
self-cleaning effect was determined to improve the water permeation flux now by only 6% compared to
flux after fouling.

The biocatalytic membrane is still active after one week of storage (at 4 ˝C and pH 7.0). It shows
comparable flux recovery as determined for non-stored membranes (Figure 5) within two repeating
fouling cycles. However, the efficiency is depleted after that. Probably, the enzyme is less robust after
this storage period and tends to higher protein adsorption.

However, to simulate a long time fouling in real systems it is necessary to repeat several fouling cycles
(using high protein concentrations) which is also described by many others in the literature [40–44]. The
method by which we performed the test aimed for proving that the self-cleaning effect is originated
by the enzyme activity, and not by back-washing steps or surface modification effects. However,
when this membrane is used in an application, the system would be much easier since realistic system
provide much less concentrated protein solutions (less fouling) and the membrane would not have to be
removed from the system for self-cleaning. Typically, membrane modules are constructed in a way that
regular back-washing steps are performed with the same water that is cleaned at that moment. Then,
chemical cleaning is necessary by immersing the entire module for several hours into an extra tank with
hypochlorite solution or acidic media [7]. This step could be replaced by immersing the module into a
buffer solution as demonstrated by our method which would be beneficial because no toxic or aggressive
chemicals would be necessary, the membrane material would not be degraded by the oxidative cleaning,
and the disposal of waste that is required after chemical cleaning can be avoided.

In future experiments we aim to immobilize different enzymes for different pH ranges and extend the
storage period. Instead of the here chosen model enzyme trypsin more stable enzymes should be used that
were designed for industrial applications. Even a combination of different enzymes on the membrane
is envisaged to enable an application of one membrane for different pH ranges and/or different target
molecules (e.g., proteins, saccharides, lipids) in the fouling system.

4. Conclusions

Trypsin was successfully immobilized via electron beam irradiation on different polymer membranes.
The best enzyme loading and highest resulting catalytic activity was obtained using highly hydrophobic
membranes for immobilization.
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The biocatalytic membranes showed significantly improved antifouling properties compared to the
pristine one, and furthermore, by changing the pH trypsin can be “switched on” to actively degrade
a fouling layer of proteins. This process leads to a 90% recovery of the initial water permeation flux
compared to a reduction to 27% of the non-modified membrane. This new antifouling self-cleaning
membrane system shall enable efficient and ecological use in filtration applications avoiding extensive
chemical cleaning treatments, and therefore, reduce waste and energy effort.
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