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Abstract: Novel poly(vinyl alcohol) (PVA) nanofiber mats were prepared for the first time through
heterogeneous saponification of electrospun poly(vinyl acetate) (PVAc) nanofibers. The effect of
varying the saponification conditions, including temperature, time, and concentration of the alkaline
solution, on the morphology of the saponified PVA fibers were evaluated by field-emission scanning
electron microscopy. At 25 ◦C, the saponified PVA fibers exhibited a broad diameter distribution.
The average fiber diameter, however, was found to decrease with increasing saponification
temperature. When the saponification time was increased from 6 to 30 h, the average fiber diameter
decreased gradually from 1540 to 1060 nm. In addition, the fiber diameter and morphology were also
affected by the concentration of the alkaline saponification solution. The most optimal conditions
for fabrication of thin, uniform, and smooth PVA nanofibers corresponded to an alkaline solution
containing 10 g each of NaOH, Na2SO4, and methanol per 100 g of water, a temperature of 25 ◦C,
and a saponification time of 24 h.

Keywords: electrospinning; heterogeneous saponification; poly(vinyl alcohol); poly(vinyl acetate);
nanofiber mats

1. Introduction

Unlike most vinyl polymers, poly(vinyl alcohol) (PVA) cannot be prepared by direct polymerization of
the corresponding monomer as a result of its keto-enol tautomerism [1,2]. Instead, PVA is synthesized
by polymerizing vinyl acetate, followed by conversion of the resulting poly(vinyl acetate) (PVAc)
into PVA through saponification [3–5]. PVA nanofibers are currently used as drug [6] and protein
carriers [7] as well as nanocomposite electrospun fiber matrices for antibacterial treatments [8],
tissue engineering [9], and other biomedical applications [10]. Several research groups have used
heterogeneous saponification to manufacture PVA from PVAc. For example, Lee et al. prepared
PVA/PVAc microspheres through heterogeneous surface saponification of PVAc microspheres and
investigated the rate of saponification in the presence of various ions [11]. In another study, Lee et al.
developed a novel method of manufacturing syndiotactic PVA/poly(vinyl pivalate/vinyl acetate)
microspheres through heterogeneous saponification and also investigated the effect of their initial
diameter on the degree of saponification (DS) of PVA [12]. A simple, continuous heterogeneous
saponification method was applied by Lyoo et al. to obtain high-molecular-weight PVA from
suspension-polymerized PVAc, and the effect of saponification time and temperature on their DS was
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investigated [13]. In addition, the same group also prepared PVA/PVAc shell/core microspheres of
different sizes by surface saponification of emulsion-polymerized PVAc [14].

In this study, heterogeneous saponification is used to convert PVAc into PVA. Previously,
we reported the synthesis of PVAc/PVA/montmorillonite (MMT) nanocomposite microspheres by
suspension polymerization and heterogeneous saponification and described the effect of the MMT
presence on the PVAc polymerization and saponification rates [15]. In another report, we examined
a novel method of manufacturing PVA/clay microspheres through suspension polymerization and
heterogeneous saponification, where the formation of fully saponified nanocomposite microspheres
was confirmed by proton nuclear magnetic resonance (1H-NMR) spectroscopy [16]. Many researchers
have reported PVA nanofibers prepared by electrospinning of a PVA solution. Bai et al. demonstrated
an easy and effective electrospinning technique for fabricating PVA/Au composite nanofibers [17].
In another study, the preparation of PVA/multi-walled carbon nanotubes was explored [18]. The effect
of molecular weight on the fiber structure of electrospun PVA has been investigated by Koski et al. [19].
The preparation of electrospun PVA mats and their morphologies were studied by Zhang et al. [20],
while the effect of pH on the morphology and the average diameter of electrospun PVA fibers was
discussed by Son et al. [21]. Many researchers have also described cell propagation in modified
nanofibers. Zhang et al. [22] examined nanofiber-modified surface directed cell movement and
arrangement in a microsystem. The effect of the nanofiber arrangement in electrospun nanofibrous
scaffolds on cell growth and elastin appearance of muscle cells was reported by Zhong et al. [23].
Surface-modified nanofibers have some benefits as a result of the larger specific surface area compared
to smooth surface nanofibers. Recently, our group succeeded in converting PVAc nanofibers into
PVA nanofibers using heterogeneous saponification technique. However, this work reported only
the preparation of PVA nanofibers, without examining the effect and the most optimal nature of
saponification conditions [24]. The present study aims to fabricate PVA nanofiber mats with a potential
application in bio-materials, for example in animal testing, cell proliferation, and cell culture, and to
investigate further the nanofiber formation.

In this work, we demonstrate an inexpensive technique for preparing PVA nanofiber mats
through heterogeneous saponification of electrospun PVAc nanofibers, without the need for a PVA
solution. In addition, the effect of saponification conditions on the morphology and diameter of the
electrospun saponified PVAc nanofibers is investigated. The results showed that the optimal conditions
for fabricating thin, uniform, and smooth saponified PVA nanofibers corresponded to an alkaline
solution containing NaOH (10 g), Na2SO4 (10 g), and methanol (MeOH, 10 g) per 100 g of water, at a
temperature of 25 ◦C, and a saponification time of 24 h.

2. Materials and Methods

2.1. Materials

Vinyl acetate (VAc) (Sigma-Aldrich, St. Louis, MO, USA) was purified by treatment with an
aqueous solution of NaHSO4, followed by drying over anhydrous CaCl2 and distillation under N2

atmosphere. The PVA suspending agent with an average molecular weight of 127,000 and DS of
88% (Sigma-Aldrich) was recrystallized twice from MeOH before use. An aqueous alkaline solution
containing NaOH (Duksan, Ansan, Korea), Na2SO4 (Duksan), and MeOH (Duksan) was prepared for
heterogeneous saponification. Deionized water was utilized in all experiments.

2.2. Preparation of Poly(vinyl acetate) (PVAc) by Suspension Polymerization of vinyl acetate (VAc)

To prepare PVAc, the PVA suspending agent was dissolved in continuously stirred distilled
water (120 mL) in a 250 mL reactor equipped with a condenser. The VAc monomer and 2,2′-azobis
(2,4-dimethylvaleronitrile) (ADMVN) initiator were degassed and added to this mixture at a
polymerization temperature of 15 ◦C, and the reaction temperature was increased to 60 ◦C. After a
specified time period elapsed, the reaction was stopped and the resulting mixture was left for 1 h
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to isolate the obtained spherical PVAc particles. After a prearranged time has elapsed, the reaction
mixture was cooled and set aside for 1 day to allow the precipitation and partition of the PVAc particles.
After this time, the accumulated PVAc particles were washed with warm water. Gravimetric analysis
confirmed the successful conversion of the VAc monomer [16]. An overview of the polymerization
conditions is provided in Table 1.

Table 1. Reaction conditions for the suspension polymerization of VAc.

Condition Value

Type of initiator ADMVN
Type of suspending agent PVA

Initiator concentration 0.0001 mol/mol of VAc
Suspending agent concentration 1.5 g/dL of water

VAc/water 0.5 L/L
rpm 400

Temperature 60 ◦C

ADMVN: 2,2′-azobis(2,4-dimethylvaleronitrile); PVA: poly(vinyl alcohol); VAc: Vinyl acetate.

2.3. Electrospinning of PVAc Nanofibers

In order to prepare an electrospinning solution, the manufactured PVAc was dissolved over 2 h in
MeOH at room temperature, with continuous stirring. All experiments in this work employed PVAc at
15 wt % (a concentration based on the weight of the solution). During electrospinning, a high voltage
of 15 kV (CPS-60K02, VIT, Chungpa EMT Co., Ltd., Seoul, Korea) was applied to an alligator clip
attached to a syringe needle containing 30 mL of the PVAc solution. The solution was transported to
the blunt needle using a syringe pump to control the flow rate. An electrically grounded piece of Al
foil, placed at a vertical distance of 15 cm from the needle tip, was used to collect the obtained fibers,
which were subsequently air-dried and removed from the Al foil before saponification. These spinning
conditions were found to be the most optimal for manufacturing of PVAc mats.

2.4. Heterogeneous Saponification of PVAc Nanofibers

To convert the PVAc nanofibers into PVA nanofibers, heterogeneous saponification was performed
in a flask equipped simultaneously with a thermocouple, a reflux condenser, a dropping funnel, and a
stirring device. An alkaline solution for the saponification process was prepared by adding NaOH
(5–10 g), Na2SO4 (5–10 g), and MeOH (5–10 g) to deionized water (100 g). In our previous work,
we found that the optimum composition of the saponification solution consists of NaOH (10 g), Na2SO4

(10 g), and MeOH (10 g) added to deionized water (100 g) [24]. If more than 10 g of NaOH were used,
the saponified PVA nanofibers exhibited a yellow color. Therefore, we excluded such harsh conditions
from this study (i.e., above 10 g of NaOH). To investigate the effect of changing the saponification
solution, we specifically tested a solution prepared using NaOH (5 g), Na2SO4 (5 g), and MeOH (5 g) in
deionized water (100 g). Subsequently, the electrospun PVAc fibers were slowly added to the prepared
alkaline solution at various temperatures (25, 35, and 45 ◦C), employing moderate stirring. The PVA
nanofibers were formed from the PVAc fibers after different saponification times (6, 12, 18, 24, and 30 h).
The obtained alkaline solution mixture was poured into cold water for 1 min in order to precipitate the
resulting PVA nanofiber mats, which were subsequently washed several times with deionized water
and dried under vacuum for 24 h. The complete saponification conditions are recorded in Table 2.
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Table 2. The reagents and conditions employed in the heterogeneous saponification of PVAc nanofibers
and the resulting degree of saponification. (DS: Degree of saponification).

Figure NaOH (g) Na2SO4 (g) MeOH (g) H2O (g) Temparature (◦C) Time (h) DS (%)

Figure 2A 10 10 10 100 25 12 70.8
Figure 2B 10 10 10 100 35 12 98.17
Figure 2C 10 10 10 100 45 12 99.72
Figure 3A 10 10 10 100 25 6 0
Figure 3B 10 10 10 100 25 12 70.8
Figure 3C 10 10 10 100 25 18 79.14
Figure 3D 10 10 10 100 25 24 95.64
Figure 3E 10 10 10 100 25 30 99.93
Figure 4A 5 5 5 100 25 24 45.8
Figure 4B 7.5 5 5 100 25 24 80.85
Figure 4C 5 7.5 5 100 25 24 88.86
Figure 4D 5 5 7.5 100 25 24 69.64
Figure 4E 10 5 5 100 25 24 61.08
Figure 4F 5 10 5 100 25 24 68.94
Figure 4G 5 5 10 100 25 24 59.26

2.5. Characterization

The molecular weights of the electrospun PVA nanofibers and the fully saponified PVA nanofibers
were determined using gel permeation chromatography (GPC, Waters, Milford, MA, USA) [25].
The surface morphology of the saponified PVA nanofiber mats was studied using field-emission
scanning electron microscopy (FE-SEM, SU8220, Hitachi, Tokyo, Japan), and their DS values were
determined using a 1H-NMR spectrometer (AVANCE III 500, Bruker, Karlsruhe, Germany). A Fourier
transform infrared (FT-IR) spectrometer (Frontier, Perkin Elmer, Waltham, MA, USA) was utilized
to measure the conversion of PVAc nanofibers to PVA nanofibers. Fiber diameters were evaluated
from the obtained FE-SEM images using the Photoshop CS 7 software. The analysis examined at least
20 different fibers and 100 different randomly selected segments from each image. The tensile strength
was measured using the ZWICK Z005 testing machine (Zwick GmbH, Ulm, Germany).

3. Results and Discussion

Owing to the various advantages of PVA polymers, many research groups have attempted to
fabricate electrospun PVA bulk nanofiber mats. In this work, we have prepared for the first time
saponified PVA nanofiber mats from PVAc nanofibers through heterogeneous saponification. Figure 1
shows a schematic illustration of the heterogeneous saponification process employed in the synthesis
of PVA nanofiber mats from PVAc nanofibers. The morphology of the saponified PVA nanofiber mats
was found to vary depending on the different saponification conditions, such as the temperature, time,
and the concentration of the saponification solution (i.e., the alkaline solution).Polymers 2016, 8, 376  5 of 12 
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Figure 2 shows the FE-SEM images of the PVA nanofiber mats produced by heterogeneous
saponification of PVAc nanofibers for 12 h at different temperatures (25, 35, and 45 ◦C), employing an
alkaline solution containing 10 g each of NaOH, Na2SO4, and MeOH added to 100 g of H2O. We found
that 25 ◦C was the optimal temperature for obtaining thin and uniform saponified PVA nanofibers with
a smooth surface. Figure 3 presents the FE-SEM images of PVA nanofibers produced by heterogeneous
saponification of PVAc nanofibers at various times (6, 12, 18, 24, and 30 h), at a temperature of 25 ◦C,
and a constant alkaline solution concentration corresponding to 10 g of NaOH, 10 g of Na2SO4, and
10 g of MeOH per 100 g of H2O. The obtained results indicate that the saponification time affects the
fiber morphology significantly. Specifically, comparatively smooth, thin, and uniform saponified PVA
fibers with small diameter were easily obtained after 24 h saponification time (Figure 3D). In contrast,
such fibers were not observed at shorter saponification times of 6 or 18 h (see Figure 3A,C, respectively).
Furthermore, rough surface fibers with a small diameter were produced when the saponification time
was increased to 30 h (Figure 3E).
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Next, a series of experiments were conducted using different concentrations of saponification
solution reagents and a constant temperature and time of 25 ◦C and 24 h, respectively. The results
presented in Figure 4 indicate that the fiber morphology depends strongly on the ratio of the
saponification solutions constituents (NaOH, Na2SO4, and MeOH). After a careful comparison of
the FE-SEM images displayed in Figure 4, we were able to conclude that preparation of saponified
PVA nanofibers at low concentrations of NaOH and Na2SO4 is not possible (see Figure 4A,C,D,G).
On the other hand, the saponified fibers could be easily obtained at high concentrations of NaOH
and Na2SO4 (Figure 4E,F). The presence of MeOH also affected the morphology of the saponified
PVA nanofibers significantly (Figure 4A,D,G). While saponified PVA was unable to retain its fibrous
morphology at high MeOH concentrations (Figure 4D,G), this effect of MeOH addition on the fiber
morphology became insignificant at higher concentrations of NaOH and Na2SO4 (Figure 3D).

Polymers 2016, 8, 376  6 of 12 

 

 
Figure 3. FE-SEM images of saponified PVA nanofiber mats obtained at different saponification times: 
(A) 6 h; (B) 12 h; (C) 18 h; (D) 24 h; and (E) 30 h. The quantities of the reagents in the saponification 
solution (NaOH = 10 g, Na2SO4 = 10 g, MeOH = 10 g, and H2O = 10 g) and the reaction temperature 
were kept constant (25 °C). 

Next, a series of experiments were conducted using different concentrations of saponification 
solution reagents and a constant temperature and time of 25 °C and 24 h, respectively. The results 
presented in Figure 4 indicate that the fiber morphology depends strongly on the ratio of the 
saponification solutions constituents (NaOH, Na2SO4, and MeOH). After a careful comparison of the 
FE-SEM images displayed in Figure 4, we were able to conclude that preparation of saponified PVA 
nanofibers at low concentrations of NaOH and Na2SO4 is not possible (see Figure 4A,C,D,G). On the 
other hand, the saponified fibers could be easily obtained at high concentrations of NaOH and Na2SO4 
(Figure 4E,F). The presence of MeOH also affected the morphology of the saponified PVA nanofibers 
significantly (Figure 4A,D,G). While saponified PVA was unable to retain its fibrous morphology at 
high MeOH concentrations (Figure 4D,G), this effect of MeOH addition on the fiber morphology 
became insignificant at higher concentrations of NaOH and Na2SO4 (Figure 3D). 

 
Figure 4. FE-SEM images of saponified PVA nanofiber mats obtained using saponification solution 
prepared using different respective quantities of NaOH, Na2SO4, and MeOH per 100 g of H2O: (A) 5, 
5, and 5 g; (B) 7.5, 5, and 5 g; (C) 5, 7.5, and 5 g; (D) 5, 5, and 7.5 g; (E) 10, 5, and 5 g; (F) 5, 10, and 5 g; 
and (G) 5, 5, and 10 g. The saponification temperature and time were kept constant at 25 °C and 24 h, 
respectively. 

Figure 4. FE-SEM images of saponified PVA nanofiber mats obtained using saponification solution
prepared using different respective quantities of NaOH, Na2SO4, and MeOH per 100 g of H2O: (A) 5,
5, and 5 g; (B) 7.5, 5, and 5 g; (C) 5, 7.5, and 5 g; (D) 5, 5, and 7.5 g; (E) 10, 5, and 5 g; (F) 5, 10, and
5 g; and (G) 5, 5, and 10 g. The saponification temperature and time were kept constant at 25 ◦C and
24 h, respectively.

The fiber diameter distributions for the saponified PVA nanofibers produced at different
saponification temperatures are shown in Figure 5. The obtained data revealed a decrease in the
average fiber diameter with increasing saponification temperature. Large amounts of thin fibers
with diameters below 1000 nm were observed at a saponification temperature of 45 ◦C. The fiber
arrangement in samples prepared at this temperature, however, was not regular (Figure 5C). In contrast,
regularly-arranged fibers with an average diameter of 1350 nm were obtained at 25 ◦C (Figure 5A).
A narrow fiber diameter distribution was observed at the higher temperature of 45 ◦C, while at
the lower temperature of 25 ◦C, the fiber diameter exhibited a broad distribution. Increasing the
temperature (and thus the saponification rate) promotes the conversion of PVAc into PVA, which in
turn stimulates the formation of thinner fibers since the PVA species formed during saponification
can be better dissolved in the aqueous solution. The effect of saponification time on the diameter
distribution of the saponified PVA nanofibers is shown in Figure 6. The diameter of the saponified
PVA nanofibers was found to gradually decrease from 1540 to 1060 nm with increasing saponification
time from 6 to 30 h. The longer saponification times increase the dissolution rate for the PVA surface
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layers in aqueous solutions, thereby decreasing the resulting fiber diameter (Figure 6E). These smaller
diameter fibers are, however, characterized by a rough surface (Figure 3E). Therefore, the most optimal
saponification time for the formation of PVAc nanofibers was found to be 24 h, which produces
an average fiber diameter of 1150 nm (Figure 6D). Varying the concentrations of reagents in the
saponification solution was also found to change the fiber diameter, as shown in Figure 7. With a
saponification solution employing concentrations that correspond to 5 g of NaOH, 5 g of Na2SO4,
and 5 g of MeOH per 100 g of H2O, the obtained fibers were essentially affixed to each other, and their
average diameter was equal to 1520 nm (Figure 7A). However, the fiber morphology changed when
the concentration of NaOH was increased to 10 g per 100 g of H2O. Specifically, the fiber structure
changed from the united morphology to a segregated one, thus decreasing the corresponding fiber
diameter (Figure 7C). On the other hand, the average fiber diameter obtained using 7.5 g of Na2SO4

(Figure 7D) was greater than that produced at 10 g of Na2SO4 (Figure 7E).
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Figure 7. Fiber diameter histogram plots and FE-SEM images for saponified PVA nanofiber mats
obtained using a saponification solution prepared with different respective quantities of NaOH, Na2SO4,
and MeOH per 100 g of H2O: (A) 5, 5, and 5 g; (B) 7.5, 5, and 5 g; (C) 10, 5, and 5 g; (D) 5, 7.5, and
5 g; and (E) 5, 10, and 5 g. The saponification time and temperature were kept constant at 24 h and
25 ◦C, respectively.

The dependence of DS on the saponification temperature is shown in Figure 8A. The obtained
DS value was much higher at 45 ◦C than those observed at 25 and 35 ◦C, most likely as a
result of the accelerated rate of saponification at higher temperatures [13]. The DS of PVA
prepared by heterogeneous saponification exceeded 99% at a saponification temperature of 45 ◦C.
The corresponding average fiber diameter, however, was also larger at this temperature compared to
that obtained at 25 and 35 ◦C (Figure 2). The dependence of DS on the saponification time at 25 ◦C
is plotted in Figure 8B, showing that the DS increases with increasing length of saponification time.
The maximum DS for the PVA nanofibers saponified for 30 h exceeded 99%. The effect of varying the
quantity of reagents in the saponification solution (i.e., NaOH, Na2SO4, and MeOH per 100 g of H2O)
on the DS of the saponified PVA nanofiber mats was also investigated in this work. The DS values
for the saponified PVA at three different concentrations of NaOH are presented in Figure 9A, which
shows an increase in the DS with increasing concentration of NaOH, reaching the highest DS value
at a NaOH content of 10 g per 100 g of water. The DS dependence on the Na2SO4 concentration is
shown in Figure 9B. The DS value was found to increase with increasing concentration of Na2SO4

up to 7.5 g per 100 g of water. Further increase in concentration resulted in a decrease in the value
of DS. The maximum DS value was obtained at 7.5 g of Na2SO4, however, the formation of thin
saponified nanofibers was no longer possible at this particular concentration of Na2SO4 (Figure 4C).
Figure 9C shows the effect of changing the MeOH concentration on the DS of the saponified PVA
nanofibers. The obtained dependence exhibits a trend similar to that observed for Na2SO4 (Figure 9B).
The maximum DS value of over 68% is reached at a MeOH concentration of 7.5 g per 100 g of water
(Figure 9C). The obtained fiber quality at this MeOH concentration, however, was not very good
(Figure 4D).
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Figure 9. The effect of: (A) NaOH; (B) Na2SO4; and (C) MeOH concentration on the DS (%) of
saponified PVA nanofibers. The saponification time and temperature were kept constant at 24 h and
25 ◦C, respectively.

In this work, all saponified samples were characterized by 1H-NMR and Figure 10A shows the
corresponding 1H-NMR data for the PVA nanofibers saponified for 30 h at 25 ◦C. The DS of the
saponified PVA nanofibers can usually be calculated from the ratio of the area of the methyl group and
the area of the methylene groups present in the 1H-NMR spectrum (appearing at 1.74 ppm and 1.4 ppm,
respectively). However, no methyl peaks were observed in the spectra shown in Figure 10 indicating
that all of the PVAc methyl groups have been converted into hydroxyl groups during saponification.
Therefore, the NMR analysis confirmed that fully saponified PVA nanofibers can be obtained at
saponification conditions corresponding to an alkaline solution containing 10 g each of NaOH, Na2SO4,
and MeOH per 100 g of H2O, a temperature of 25 ◦C, and a saponification time of 30 h. The FT-IR
spectra of both the un-saponified PVAc and saponified PVA nanofibers were measured as shown in
Figure 10B. The vibrational bands at 2923 and 2865 cm−1 correspond to CH3 asymmetric stretch and
PVAc symmetric stretch, respectively [26]. The broad band viewed in the 3600–3200 cm−1 region after
the saponification process can be assigned to the O–H stretch, arising from both intermolecular and
intramolecular hydrogen bonds. The vibration band in the 3000–2800 cm−1 region corresponds to
the C–H alkyl group stretch [27], further demonstrating the successful formation of PVA nanofibers
from PVAc nanofibers. The molecular weights of the fully saponified PVA nanofibers and general
electrospun PVA nanofibers were obtained by GPC and are listed in Table 3. Examination of the tensile
strength revealed that the tensile strength (Figure 11) of the electrospun PVA nanofibers is similar to
that of the fully saponified PVA nanofibers. The results of the molecular weight determination and the
tensile strength analysis indicated that the mechanical properties of fully saponified PVAc nanofibers
do not deteriorate as a result of the heterogeneous saponification process.
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Figure 11. Stress-strain curve of: (A) general electrospun PVA nanofibers; and (B) fully saponified PVA
nanofibers formed by heterogeneous saponification of electrospun PVAc nanofibers. The concentration
of these nanofibers was at 15 wt % and the saponification solution was prepared using NaOH (10 g),
Na2SO4 (10 g), MeOH (10 g) and H2O (100 g). The saponification temperature and time were 25 ◦C
and 30 h, respectively. The DS value of the fully saponified nanofibers was 99.93%.

4. Conclusions

In this study, completely saponified PVA nanofiber mats were obtained successfully through
heterogeneous saponification of PVAc nanofibers, and the effect of saponification conditions, including
temperature, saponification time, and the alkaline solution concentration on the morphology of
the fabricated PVA nanofibers was evaluated. The obtained FESEM images demonstrated that the
resulting fiber diameter decreases with increasing saponification time and temperature, while varying
the concentration of the alkaline solution affected both the fiber diameter and morphology. In addition,
the DS of PVA nanofibers was also found to depend on the saponification time, temperature, and
alkaline solution concentration. The most optimal saponification conditions for the fabrication of thin,
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uniform, and smooth PVA nanofibers were found to correspond to an alkaline solution containing 10 g
each of NaOH, Na2SO4, and MeOH per 100 g of H2O, a temperature of 25 ◦C, and a saponification
time of 24 h.
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