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Abstract: A series of anilido–imine chromium complexes have been used as precursors to catalyze
homo- and copolymerization of ethylene and norbornene. The chromium complexes activated with
methylalumoxane (MAO) exhibit good activities for homopolymerization of ethylene (E) to produce
linear polyethylene and moderate activities for norbornene (N) polymerization to afford vinyl-type
polynorbornene. Ethylene–norbornene copolymers with high incorporation of norbornene can be
also produced by these catalysts. 13C NMR and differential scanning calorimetry (DSC) analyses
show that the copolymers are random products, and –NNN– and –EEE– units can be observed in the
microstructure of the copolymers.
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1. Introduction

Cyclic olefin copolymers (COCs) are of great interest owing to their remarkable properties, such
as high vapor and thermal resistance, excellent optical transparency, and high refractive indexes,
especially poly(ethylene-co-norbornene)s [1–4]. In fact, these properties can be precisely controlled by
varying monomer composition, sequence distribution, and the stereoregularity of norbornene units in
the copolymers, which depends on the different structure of the employed catalyst including metal
center and ligand structure. Compared with alternating and block poly(ethylene-co-norbornene)s,
random copolymer is amorphous and shows excellent optical transparency and high refractive indexes,
thereby can be used as optical materials. Driven by industrial application, developing catalysts for
preparation of random copolymerization of ethylene with norbornene is highly desirable [1–4].

Ethylene–norbornene (E–N) copolymers were first obtained with metallocene–methylaluminoxane
(MAO) based catalysts [5–7], and then metallocene, half sandwich or constrained-geometry Group IV
catalysts (CGCs) were widely reported [8–13]. With these catalysts, random E–N copolymers with up
to 70 mol % norbornene content have been described. Many non-metallocenes titanium complexes
such as bis(pyrrolide-imine) titanium [14,15], bis(imino-indolide)titanium [16], bis(β-enaminoketonato)
titanium [17], [2-(2,6-dialkylphenylamino)-1-phenylethoxy TiCl2] [18], titanium complexes bearing
tridentate [O´NXR] (X = S, O, Se, P) ligands [19,20], and bis(β-diketiminato) titanium [21] were also
used to effectively copolymerize ethylene (E) and norbornene (N) in the presence of MAO or modified
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MAO (MMAO). However, most of the non-metallocenes titanium catalysts produced alternating E–N
copolymer [22], and fewer successful examples have appeared for the efficient synthesis of random
copolymers with high norbornene contents (>50 mol %) [23].

Late transition metal nickel and palladium catalysts are highly active for norbornene
homopolymerization, whereas they usually afford low-molecular-weight polymer for norbornene
polymerization in the presence of ethylene because ethylene is a chain transfer agent. Rare
catalytic systems can afford alternating or block E–N copolymers [24–27]. For examples, neutral
nickel complexes containing bidentate [P,O] chelating ligands were efficient catalysts for the
alternating copolymerization of norbornene with ethylene [24]. Amine-imine nickel catalyst can
afford well-defined E–N block copolymers using a living polymerization technique [25]. α-Diimine
palladium catalysts catalyze ethylene–norbornene copolymerization to produce alternating E–N
copolymers [26,27].

Despite the widespread use of chromium catalysts for the polymerization of ethylene, only two
systems for ethylene–norbornene copolymerization have been described [27–29]. [CpRCrMeCl]2

activated with MAO was reported to be capable of catalyzing copolymerization of ethylene
and norbornene [28,29]. Cr(IV) alkyl complex Cr(CH2SiMe3)4/MAO was highly active for
ethylene/norbornene copolymerizations and gave high molecular weight copolymers with –NNN–
sequences [30]. Therefore, design of novel chromium catalysts for copolymerization of norbornene
and ethylene is still desirable, and chromium catalysts are expected to afford E–N copolymers with
different microstructures.

Herein, we reported homo- and copolymerizations of norbornene and ethylene using
anilido–imino chromium complexes 1–3 (ArN = CHC6H4NAr)CrCl2(THF)2 (1, Ar = phenyl; 2,
Ar = 2,6-dimethylphenyl; 3, 2,6-diisopropylphenyl) activated with MAO. The anilido–imino ligand has
recently gained popularity in the field of organometallics and catalytic reactions [31–39]. The influences
of ethylene pressure and polymerization temperature on polymerization activity and incorporation
of norbornene were investigated in detail. Random E–N copolymers with successive norbornene
sequences –(N)n– (n > 3) were prepared in good catalytic activity.

2. Experimental Section

All manipulations involving air- and moisture sensitive compounds were carried out
under an atmosphere of dried and purified nitrogen with standard vacuum-line, Schlenk, or
glovebox techniques.

2.1. Materials

Solvents were purified using standard procedures. Methylene chloride, and tetrahydrofuran
(THF) were distilled from calcium hydride, and hexane was distilled from P2O5 under nitrogen.
n-Butyllithium (n-BuLi) solution in hexane (2.86 M) were purchased from Aldrich (Milwaukee, WI,
USA). Methylaluminoxane (MAO) solution (10 wt % in toluene) was purchased from Acros (Geel,
Belgium). Norbornene (bicyclo[2.2.1] hept-2-ene; Acros) was purified by distillation over potassium
and used as a solution in toluene. Polymerization grade ethylene was further purified by passage
through columns of molecular sieves. Other commercially available reagents were purchased and
used without purification.

Synthesis of anilido–imine chromium complexes. Anilido–imine chromium complexes were
prepared according to reported method [39]. Under nitrogen, ligands were dissolved in 40mL THF
in a flame-dried Schlenk flask, and n-butyllithium solution (2.6 M) was injected in a ´78 ˝C dry
ice/acetone bath, which was warmed room temperature overnight. CrCl3(THF)3 was added, and then
stirred for 24 h at room temperature. The solvents were removed under vacuum, and the residue was
extracted with CH2Cl2 (20 mL) and filtered. The filtrate was concentrated to 5 mL and mixed with
hexane (50 mL). The chromium complex was cooled in a freezer several days to obtain brown crystals.
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2.2. Measurement

13C NMR spectra of polymers were carried out on a Bruker 500 MHz (Bruker BioSpin, Fällanden,
Switzerland) at 120 ˝C o-C6D4Cl2 solution using solvent as a reference. DSC analyses were conducted
with a Perkin Elmer DCS-7 system (Perkin Elmer, Waltham, MA, USA). The DSC curves were recorded
at second heating curves at a heating rate of 10 ˝C/min and a cooling rate of 10 ˝C/min. Gel
permeation chromatography (GPC) analyses of the molecular weight and molecular weight distribution
(PDI = Mw/Mn) of the polymers at 150 ˝C were performed on a high-temperature chromatography,
PL-GPC 220 instrument (Polymer Laboratories, Reading, Berkshire, UK) equipped with a differential
refractive index (RI) detector. Wide-angle X-ray diffraction (WAXD) curve of the polymer powder
was obtained using a D/Max-IIIA powder X-ray diffractometer (Parr Instrument Company, Moline,
IL, USA).

2.3. Norbornene Polymerization

In a typical procedure, the appropriate MAO was introduced into a 50 mL round-bottom glass
flask placed in an oil bath at a prescribed temperature, and then the desired amount of norbornene
and toluene was added via syringe. The polymerization was initiated by injecting a chromium
complex solution and the reaction mixture was continuously stirred for an appropriate period at
the polymerization temperature. Polymerizations were terminated by the addition of acidic ethanol
(ethanol–HCl, 95:5). The resulting precipitated polymers were collected and treated by filtering,
washing with ethanol several times, and drying under vacuum at 60 ˝C to a constant weight.

2.4. Atmosphere Pressure Polymerization of Ethylene and Copolymerization

A 100 mL round-bottom glass flask was charged with toluene, prescribed amount of MAO and
norbornene (for copolymerization ethylene and norbornene) at initialization temperature. The system
was maintained by continuously stirring for 5 min, and then the chromium complex solution was
charged into the flask. The pressure was maintained by continuously feeding ethylene gas and the
reaction was carried out for a certain time. Polymerization was terminated by the addition of acidic
ethanol (ethanol–HCl, 95:5). The resulting precipitated polymers were collected and treated by filtering,
washing with ethanol several times, and drying under vacuum at 60 ˝C to a constant weight.

2.5. High Pressure Polymerization of Ethylene and Copolymerization

A mechanically stirred 100 mL Parr reactor (Parr Instrument Company) was heated to 150 ˝C
for 2 h under vacuum and then cooled to room temperature. The autoclave was then charged
with solution of MAO under ethylene at initialization temperature. The system was maintained
by continuously stirring for 5 min, and then 2 mL solution of chromium complex in CH2Cl2 was
charged into the autoclave. The ethylene pressure was raised to the specified value, and the reaction
was carried out for a certain time. Polymerization was terminated by addition of acidic methanol after
releasing ethylene pressure. The resulting precipitated polymers were collected and treated by filtering,
washing with methanol several times, and drying under vacuum at 40 ˝C to a constant weight.

3. Results and Discussion

Anilido–imino ligands were synthesized by our previously reported method [31], and
anilido–imino chromium complexes 1–3 (ArN = CHC6H4NAr)CrCl2(THF)2 (1, Ar = phenyl; 2,
Ar = 2,6-dimethylphenyl; 3, 2,6-diisopropylphenyl) were prepared by treating the anilido–imine
ligands with n-butyllithium in THF and addition of CrCl3(THF)3 (Scheme 1) [39].
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Scheme 1. Synthesis of anilido–imino chromium complexes 1–3.

In the presence of MAO, anilido–imino chromium complexes 1–3 were firstly investigated as
precursors for ethylene polymerization, and the polymerization data are summarized in Table 1.
The steric characteristic of the chelate anilido–imino ligand plays an important role in the catalytic
performances. Polymerization results in Table 1 clearly show that the order of the values of
catalytic activities for ethylene polymerization is 3 > 2 > 1 under the same conditions, suggesting
that bulky substituent on N-aryl moiety can enhance catalytic activity for ethylene polymerization.
Besides, increasing the steric hindrance of the anilido–imino ligand also obviously improves polymer
molecular weight.

Table 1. Ethylene polymerizations with 1–3/MAO.

Entry Cat. Tp (˝C) Yield (g) Activity (kg PE (mol¨ Cr¨ h)´1) Mw
a (kg¨ mol´1) Mw/Mn

a Tm
b (˝C)

1 1 20 0.34 34 762 3.54 134.7
2 1 40 0.46 46 667 2.13 133.8
3 1 60 0.37 37 444 2.46 133.1
4 1 80 0.22 22 305 2.52 129.1
5 2 40 0.68 68 845 1.95 132.9
6 3 40 1.86 186 1,020 1.88 133.6

Polymerization conditions: Cr complex, 10 µmol; Al(MAO)/Cr = 400; ethylene, 0.5 arm; reaction time, 60
min, solvent, 20 mL toluene; a Determined by high temperature gel permeation chromatography (GPC) in
1,2,4-trichlorobenzene at 150 ˝C; b Determined by DSC.

The reaction temperature also strongly affected the catalytic activities, and the results of ethylene
polymerizations using 1/MAO at various temperatures were also summarized in Table 1. It can be seen
that the catalytic activity for ethylene polymerization increased with an increase of reaction temperature
gradually and reached a maximal value of 46 kg PE (mol¨ Cr¨ h)´1 at 40 ˝C (PE: polyethylene).
Molecular weight decreases uniformly with the increase of polymerization temperature, which is the
same as a previous observation [39].

13C NMR analysis of the PE prepared at 20 ˝C shows only one peak at 30.0 ppm, and no signals
of branching carbons can be observed (Figure 1). At high temperature of 80 ˝C, a small amount of
butyl branch can be observed (Figure 1). DSC analysis shows that the polymer products display a
range of the melting temperatures (Tm) from 129.1 to 134.7 ˝C (Figure 2), indicating that the produced
polymers possess a linear structure.

Norboenene polymerizations were also carried out using 1–3/MAO, and the results were listed
in Table 2. In contrast to ethylene polymerization, bulky steric hindrance of the anilido–imino ligand
significantly decreases catalytic activity for norbornene polymerization. Polymerization results in
Table 2 clearly show that the order of the values of catalytic activities for ethylene polymerization is
1 > 2 > 3. This can be attributed to repulsion of bulky norbornene monomer inserted into metal center
and bulky ligand. Additionally, the catalytic activity for norbornene polymerization increases with
an increase of reaction temperature gradually and then decreases using 1/MAO system. The highest
activity can reach 174 kg PN (mol¨ Cr¨ h)´1 at 60 ˝C. Molecular weight decreases uniformly with the
increase of polymerization temperature because of an acceleration of chain transfer reaction [32].
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Table 2. Norbornene polymerizations with 1-3/MAO.

Entry Cat. Tp (˝C) Yield (g) Activity (kg PN (mol¨ Cr¨ h)´1) Mw
a (kg¨ mol´1) Mw/Mn

a

1 1 20 1.12 11.2 25.7 1.56
2 1 40 1.70 170 17.3 1.78
3 1 60 1.74 174 13.6 1.94
4 1 80 1.14 114 7.5 1.70
5 2 60 1.21 121 10.6 1.95
6 3 60 0.75 75 8.2 1.87

Polymerization conditions: Cr complex, 10 µmol; Al(MAO)/Cr = 400; norbornene, 4 g; reaction time, 60
min, solvent, 20 mL toluene; a Determined by high temperature gel permeation chromatography (GPC) in
1,2,4-trichlorobenzene at 150 ˝C.

The obtained polynorbornenes (PNs) are white solids with relatively low molecular weight
determined by high temperature gel permeation chromatography (GPC) (7.5–25.7 kg/mol). The IR
spectrum revealed no traces of double bond, which often appear at 1620 ~ 1680, 966, and 735 cm´1,
while the existence of vibration bands of bicyclics of norbornene at 941 cm´1 (Figure 3A). 1H NMR
spectrum of the polynorbornene further proved no traces of any double bond (Figure 3B). Therefore,
the obtained products are vinyl-addition polynorbornenes.
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Good activities of anilido–imino chromium catalysts for ethylene and norbornene
homopolymerizations allow us to prepare the ethylene–norbornene copolymers. Copolymerizations
of ethylene and norbornene were carried out with anilido-imino chromium complexes 1–3 activated
with MAO, and copolymerization data were summarized in Table 3. Considering great incorporation
of ethylene in copolymer, low polymerization temperature of 20 ˝C was chosen to evaluate the steric
effect on copolymerization of ethylene with norbornene (entries 5–7 in Table 3). Under the same
conditions, bulky catalyst 3 with 2,6-diisopropylphenyl groups showed the lowest copolymerization
activity, and catalyst 1 with phenyl groups afforded the highest incorporation of norbornene in
copolymer. This observation can be attributed to the low activity of bulky catalyst 3 for norbornene
homopolymerization.

Table 3. Copolymerizations of ethylene and norbornene with 1–3/MAO.

Entry Cat. Tp (˝C) PE (atm) Yield (g) Activity a Mw
b (kg mol´1) Mw/Mn

b Incorp.N c mol %

1 1 20 0.5 0.95 95 32.5 2.14 87
2 2 20 0.5 0.74 74 18.4 2.32 84
3 3 20 0.5 0.40 40 15.3 2.47 81
4 1 60 0.5 1.18 118 16.2 2.56 93
5 1 20 10 1.89 189 37.1 2.94 62
6 1 40 10 3.05 305 37.6 2.85 71
7 1 60 10 4.08 408 38.9 3.08 78
8 1 60 20 4.65 465 59.4 3.21 53

Polymerization conditions: Cr complex, 10 µmol; Al(MAO)/Cr = 400; norbornene, 4 g; reaction time, 60 min,
solvent, 30 mL toluene; a In unit of (kg P(E-N) (mol¨ Cr¨ h)´1); b Determined by high temperature gel permeation
chromatography (GPC) in 1,2,4-trichlorobenzene at 150 ˝C; c Determined by 13C NMR.

Catalyst 1 was further selected to investigate the effects of temperature and ethylene pressure
because of the high incorporation performance of norbornene. Increasing the temperature from 20
to 60 ˝C leads to an increase in copolymerization activity and incorporation of norbornene. In this case,
the high temperature is favorable for norbornene polymerization. With an increase in ethylene pressure,
the copolymerization activity and molecular weight of copolymers increase, whereas the incorporation
of norbornene in copolymers decreases. Generally, the obtained E–N copolymers have high norbornene
incorporation (>50 mol %), which is mostly higher than by alternating E–N copolymer obtained by
non-metallocenes titanium and late transition metal (Ni, and Pd) catalysts (<50 mol %) [14–22,24–27].

Microstructures of the E–N copolymers were further investigated by 13C NMR spectroscopy. As
shown in Figure 4, the spectrum of the copolymer containing norbornene incorporation of 93% obtained
at 0.5 atm ethylene pressure significantly displays signals of polynorbornene, and several small peaks
can be observed and assigned to isolated sequences containing ethylene units. However, the spectrum
of the copolymer containing norbornene incorporation of 53% obtained at 20 atm pressure shows
more complex resonances. According to previous reports and assignments [30], signal at 28.3 ppm



Polymers 2016, 8, 69 7 of 10

can be assigned as characteristic of –NN– units, and –NNN– units are also presented in copolymer.
Besides, –EE– units are also observed in the copolymer, and –EEE– unit are also confirmed by the
characteristic peak at 29.7 ppm. The existence of –NNN– and –EEE– sequences in the microstructure
of the copolymers suggests that the copolymers are random products.
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The random structure of copolymer was also proved by the differential scanning calorimetry (DSC)
analysis. As shown in Figure 5, the DSC curves of the copolymers exhibit different glass transition
temperatures (Tg) depending upon norbornene incorporation in the copolymers. The copolymers
containing high norbornene incorporation of 93 mol % cannot show thermal transitions, which is
similar to the DSC result of polynorbornene [32]. However, copolymers containing low norbornene
incorporation show simultaneously Tg and melting temperature (Tm). The copolymers with low
norbornene incorporation show a small melt peak (~120 ˝C), which is a result of relative long ethylene
sequences. The melting temperatures of the copolymer are lower than those of the polyethylenes,
which can be attributed to long PE sequences containing very low isolated N unit ((E)mN(E)n) [7,22,23].
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Wide-angle X-ray diffraction analysis (WAXD) (Figure 6) shows that polynorbornene is
non-crystalline [32], while polyethylene is semicrystalline with two characteristic diffraction peaks
at 21.3 and 23.5˝ [34]. However, the obtained E–N copolymer is also amorphous and has low
stereoregularity because of the presence of a broad halo. This result is well consistent with 13C
NMR and DSC analysis.
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4. Conclusions

Anilido–imine chromium complex is a kind of highly active precursor for homo- and
copolymerization of ethylene and norbornene. Anilido–imine chromium catalyst shows opposite steric
effects for ethylene and norbornene polymerization. Increasing steric hindrance can enhance ethylene
polymerization activity but decrease norbornene polymerization activity. The ethylene–norbornene
copolymers with high incorporation of norbornene (>50 mol %) can be synthesized by changing the
ethylene pressure and reaction temperature. The obtained E–N copolymers possess a random structure,
and long norbornene sequences (–NNN–) as well as long ethylene sequences (–EEE–) can be observed
in the microstructure of the copolymers.
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