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Abstract: This article reviews the development of a novel all-around iterative methodology combining
living anionic polymerization with specially designed linking chemistry for macromolecular
architecture syntheses. The methodology is designed in such a way that the same reaction site
is always regenerated after the polymer chain is introduced in each reaction sequence, and this
“polymer chain introduction and regeneration of the same reaction site” sequence is repeatable.
Accordingly, the polymer chain can be successively and, in principle, limitlessly introduced to
construct macromolecular architectures. With this iterative methodology, a variety of synthetically
difficult macromolecular architectures, i.e., multicomponent µ-star polymers, high generation
dendrimer-like hyperbranched polymers, exactly defined graft polymers, and multiblock polymers
having more than three blocks, were successfully synthesized.

Keywords: living anionic polymerization; linking chemistry; µ-star polymer; high generation
dendrimer-like hyperbranched polymer; exactly defined graft polymers; multiblock polymers;
iterative methodology; benzyl bromide; α-phenylacrylate

1. Introduction

Macromolecular architectures generally involve graft, star-branched, and hyperbranched
polymers [1–3]. In this article, multiblock polymers with more than three blocks linked in a line
are also added, although they are not usually categorized in macromolecular architectures. These
architectural polymers have attracted increasing interest year by year because of the formation of
their unique and characteristic 3D long-range morphological nanostructures and supramolecular
assemblies, which can be fabricated to make nano devices important in the fields of nanoscience
and nanotechnology [4–14]. Since the method for forming such nanostructures and supramolecular
assemblies is strongly dominated by their architectures, it is essential to synthesize the well-defined
macromolecular architectures.

Polymers 2017, 9, 470; doi:10.3390/polym9100470 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
http://dx.doi.org/10.3390/polym9100470
http://www.mdpi.com/journal/polymers


Polymers 2017, 9, 470 2 of 30

All of the synthetic methodologies so far developed are specifically designed based on the
architectures [1–3]. In any case, synthetic difficulty and limitation are present because multistep
reactions and several reaction sites with different reactivities selectively worked in linking reaction
steps are always required. For this reason, the synthesis of macromolecular architectures has long been
recognized to be very difficult and still challenging even now.

To overcome the difficulty and limitation of systematically synthesizing macromolecular
architectures, we have been developing a novel all-around iterative methodology combining living
anionic polymerization with specially designed linking chemistry since the 1990s [15–20]. This
methodology is designed in such a way that the same reaction site is always regenerated after the
polymer chain introduction in each reaction sequence, and this “polymer chain introduction and
regeneration of the same reaction site” sequence is repeatable. If the synthetic design operates as
expected, the polymer chain can be successively, and in principle, limitlessly introduced to construct
macromolecular architectures. One more important advantage of this methodology is that the use
of multistep selective reactions and reaction sites with different reactivities generally required for
macromolecular architecture synthesis can be completely avoided because the polymer segment is
introduced one by one in each reaction step.

This iterative methodology was first applied to the synthesis of mixed arm star polymers and
found to be very successful. After that, the methodology has been widely applied to the syntheses
of high generation dendrimer-like hyperbranched polymers, exactly defined graft polymers, and
multiblock polymers with more than three blocks. Needless to say, these polymers are synthetically
very difficult even now due to their complex architectures along with structural perfection. Herein, we
report on the successful synthesis of well-defined complex macromolecular architectures by the novel
all-around iterative methodology combining living anionic polymerization with specially designed
linking chemistry.

2. Macromolecular Architecture Syntheses by Iterative Methodology

2.1. Star Polymers ((SP)s)

The first successful macromolecular architecture synthesized by the all-around iterative
methodology is a series of multicomponent (SP)s. Mixed arm (SP)s with a composition asymmetry
(hereinafter, called “µ-star polymers (µ-SP)”), have recently attracted interest due to their unique
morphologies on the basis of star-branched architecture [5,8,10–13,21–29]. However, the synthesis of
well-defined (µ-SP)s with more than three different compositions is very difficult by two requirements:
First, multistep selective reactions in a number that corresponds to all the different arms are required.
Secondly, several reaction sites with different reactivities selectively operating for different arm
introduction are required. For these requirements, the already reported methodologies using living
anionic polymerization allow access only to the synthesis of two components AxBy and several ABC
and ABCD (µ-SP)s [17,30–45]. Although a 5-arm ABCDE (µ-SP) was recently synthesized by the
combination of living polymerization with azide-alkyne cycloaddition reaction [46], multicomponent
(µ-SP) synthesis is quite limited even now.

The first successful synthesis of multicomponent (µ-SP) by an iterative methodology is shown
in Scheme 1 [47,48]. In the first reaction sequence, a living chain-end-X-functionalized polymer (A)
was prepared by the end-capping of a living polymer (A) with an X-substituted 1,1-diphenylethylene
(DPE). After the termination, the introduced X terminus was converted to a Y reaction site, which can
react with a living polymer. A living chain-end-X-functionalized polymer (B) was prepared and in situ
reacted with the resulting Y-functionalized polymer (A), thus forming an in-chain-X-functionalized
diblock copolymer. After converting the X to Y reaction site, a newly prepared slightly excess amount
of living chain-end-X-functionalized polymer (C) reacted with the Y-functionalized diblock copolymer
to result in an ABC (µ-SP). The objective coupling product was isolated by fractional precipitation using
appropriate solvent system or using preparative size exclusion chromatography (SEC). Similarly, an
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ABCD (µ-SP) was obtained by iterating the reaction sequence with a living chain-end-X-functionalized
polymer (D).Polymers 2017, 9, 470  3 of 31 
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Scheme 1. (µ-SP) synthesis by the iterative methodology. Reproduced with permission from
reference [47]. Copyright 2005 American Chemical Society.

The living chain-end-X-functionalized polymer was prepared by end-capping a living
anionic polymer with 1-(3-tert-butyldimethylsilyloxymethylphenyl)-1-phenylethylene (1). The
3-tert-butyldimethylsilyloxymethylphenyl ω-terminus was quantitatively converted to the benzyl
bromide (BnBr) reaction site with a 1:1 mixture of (CH3)3SiCl and LiBr. The results are summarized in
Table 1. All of the polymers possessed the well-controlled Mn values and compositions and extremely
low polydispersity indexes. The successful syntheses of the requisite ABC and ABCD (µ-SP)s are
thus obvious.

Table 1. Characterization results of (µ-SP)s synthesized by the iterative methodology.

Polymer
Mn (kg/mol) Mw/Mn Composition (wt % wt % wt %)

Calcd. RALLS a SEC Calcd. 1H NMR

A 10.4 10.0 1.02 100 100
AB 19.8 20.8 1.02 50/50 48/52

3-arm ABC 31.7 34.4 1.02 32/34/34 34/32/34
4-arm ABCD b 45.8 46.5 1.02 26/24/25/25 27/23/25/25

a Determined by SEC with RI, viscometer, and right angle laser light scattering (RALLS) detector. b A, B,
C, and D arms correspond to polystyrene, poly(α-methylstyrene), poly(4-methylstyrene), and poly(methyl
methacrylate), respectively.

As can be seen in Scheme 1, the reaction steps, (1) and (2), in each of all reaction sequences
are equal to the “polymer chain (arm in this case) introduction” and the “regeneration of the same
reaction site”. The living end-X-functionalized polymer plays as a key role in order to introduce both



Polymers 2017, 9, 470 4 of 30

the arm and the X functionality in each sequence. Since the final (µ-SP) still has the X functionality
convertible to the Y reaction site, this procedure enables further reaction sequence. Thus, the first
proposed iterative methodology works very satisfactorily as designed.

The DPE derivative, 1, is capable of not only reacting with a living polymer but also of offering
the X function. Thus, the use of 1 is indispensable in the methodology, but may provide a certain
restriction. The living polymer, which can react with 1, is essentially limited to highly reactive living
polystyrene (PSt), polyisoprene (PIs), poly(1,3-butadiene) (PBd), or living polymers derived from their
related monomers. Unfortunately, living poly(2-vinylpyridine) (P2VPy) and poly(methyl methacrylate)
(PMMA) with interesting functional groups cannot be used due to their very low or no reactivities
for the DPE functionality. The use of living P2VPy and (PMMA) in the linking reaction is possible to
introduce P2VPy or (PMMA) segment. In such a case, however, the reaction sequence can no longer be
repeated because the X functionality is not introduced in the linking reaction.

Very recently, a new and improved methodology has been proposed, as illustrated in
Scheme 2 [49–52]. The key of this methodology is to utilize two functionalities, X1 and X2,
which can be deprotected in turn to separately convert to the first and second Y reaction sites.
As the X1 and X2 functionalities, trimethylsilyl (TMS) and tert-butyldimethylsilyl (TBDMS) ethers
were selected. As the starting polymer, a living polymer (A) with TMS and TBDMS termini
was prepared by the living polymerization with the functional anion obtained from sec-BuLi and
1-(3-tert-butyldimethylsilyloxymethylphenyl)-1-(3-trimethylsilyloxymethylphenyl)ethylene (2). The
first reaction sequence involves deprotection of the TMS group and the subsequent conversion of the
regenerate OH group to an α-phenylacrylate (PA) reaction site, the reaction of a living polymer (B) with
the reaction site, deprotection of the TBDMS group, followed by conversion to the reaction site, and
the reaction of the functional anion with the reaction site to reintroduce the TMS and TBDMS ethers.
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As was seen in Scheme 2, the TMS group was deprotected with MeOH containing K2CO3.
The regenerated OH group was converted to the PA reaction site by the Mitsunobu reaction with
α-phenylacrylic acid. The resulting (PA and TBDMS ether)-functionalized polymer was reacted with a
living polymer (B) to result in an in-chain-(TBDMS ether)-functionalized AB diblock copolymer. The
TBDMS group was then deprotected with (C4H9)4NF, followed by conversion to the PA reaction site.
The functional anion, again obtained from sec-BuLi and 2, reacted with the reaction site to reintroduce
the TMS and TBDMS ethers.

An ABC (µ-SP) with TMS and TBDMS ethers at the core was synthesized by iterating the second
sequence. The reaction sequence was further continued to yield ABCD and ABCDE (µ-SP)s. Thus,
the first and second reaction sites are utilized for the arm introduction and the reintroduction of X1

and X2 functionalities convertible to the same reaction sites. The results are summarized in Table 2.
Agreement among the calculated Mn values, compositions and those observed was satisfactory and
low polydispersity indexes were attained in all the resulting (µ-SP)s. Thus, the new methodology
efficiently and expectedly operates to successively synthesize ABC, ABCD, and even ABCDE (µ-SP)s.
The synthesis of (µ-SP)s with more compositions would be possible, since the two silyl ethers were
introduced into the 5-arm (µ-SP).

Table 2. Characterization results of (µ-SP)s synthesized by the iterative methodology using X1 and
X2 functionalities.

Polymer
Mn (kg/mol) Mw/Mn Composition (wt % wt % wt %)

Calcd. RALLS a SEC Calcd. 1H NMR

3-arm ABC 32.2 33.8 1.03 38/31/31 37/32/31
4-arm ABCD 43.4 43.0 1.03 30/25/22/23 36/26/20/24

5-arm ABCDE b 52.0 51.5 1.03 24/21/18/19/18 26/20/16/20/18
a Determined by SEC with RI, viscometer, and right angle laser light scattering (RALLS) detector. b A, B, C, D, and
E arms correspond to (PMMA), poly(ethylmethacrylate), poly(tert-butylmethacrylate), poly(benzylmethacrylate),
and poly(2-methoxyethylmethacrylate), respectively.

Unlike the first methodology, the advantage of this new methodology is that various living
polymers, ranging from less reactive living (PMMA), P2VPy, to highly reactive living PSt, PIs, and
PBd, are usable for the arm introduction because any of these living polymers readily reacts with the
PA reaction site with the quantitative conversion of the reactive site. In fact, with this methodology,
less reactive living (PMMA), poly(ethyl methacrylate), poly(tert-butyl methacrylate), poly(benzyl
methacrylate), and poly(2-methoxyethyl methacrylate) all quantitatively reacted to afford a 5-arm all
poly(methacrylate)-based ABCDE (µ-SP) for the first time. In the methodology, the BnBr functionality
can also be used as the reaction site. However, as the conversion to the BnBr reaction site is usually
carried out under strongly acidic conditions, some poly(alkyl methacrylate)s are not stable and pyridine
ring in P2VPy might be formed to pyridinium salt under such conditions.

The new iterative methodology was further extended to the methodology with three different
protected functionalities, X1, X2, and X3, as illustrated in Scheme 3 [53]. The three functionalities
are designed to be sequentially converted one order to the first, second, and third Y reaction sites at
different steps. For this design, the TMS, TBDMS, and 2-tetrahydropyranyl (THP) ethers were chosen
as the X1, X2, and X3 functionalities. The TMS group was first deprotected with MeOH containing
K2CO3 and, on the other hand, the TBDMS and THP ethers remained unchanged. The TBDMS group
was then deprotected with (C4H9)4NF under the conditions where the THP ether was stable. The THP
ether was finally deprotected with 0.5 M HCl. The regenerated OH group in each step was converted
to the PA reaction site one by one.
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The starting α-terminal (TMS, TBDMS, and THP ethers)-functionalized poly(cyclohexyl
methacrylate) (PCHMA) was prepared by the living polymerization of CHMA with the functional
anion from 3-tert-butyldimethylsilyloxy-1-propyllithium and 1-(3-(2-tetrahydro-2H-pyranyloxy)
methyl)phenyl-1-(3-trimethylsilyloxymethylphenyl)ethylene (3). The reaction sequence involves
several steps as follows: the TMS ether deprotection and conversion to the PA reaction site, the linking
with a living polymer, the TBDMS ether deprotection and conversion to the reaction site, the second
linking reaction with another living polymer, the THP ether deprotection and conversion to the reaction
site, and the reaction with the functional anion to reintroduce the TMS, TBDMS, and THP ethers.
By iterating such the reaction sequence, the successive synthesis from ABC, ABCD, ABCDE, ABCDEF
and to even ABCDEFG (µ-SP)s were successfully achieved.
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As summarized in Table 3, the Mn values observed by RALLS agreed well with calculated values
and low polydispersity indexes were attained in all the (µ-SP)s. Their compositions were close to
calculated values. Thus, the successful syntheses of expected (µ-SP)s were evident from the results
listed in this table. Since the final ABCDEFG (µ-SP) still has the THP functionality, the reaction
sequence is possibly iterated. Thus, the third proposed methodology also works well as designed. The
two arms are introduced by the first and second reaction sites and the three ethers are reintroduced by
the third reaction site to enable further reaction sequence.

Table 3. Characterization results of (µ-SP)s synthesized by the iterative methodology using X1, X2, and
X3 functionalities.

Polymer
Mn (kg/mol) Mw/Mn Composition (wt % wt % wt %)

Calcd. RALLS SEC Calcd. 1H NMR

ABC 35.0 34.9 1.03 30/35/35 31/35/34
ABCD 45.9 47.1 1.03 23/26/27/25 24/25/27/24

ABCDE 56.6 53.5 1.04 20/21/22/20/17 20/23/21/20/16
ABCDEF 62.8 64.9 1.05 17/18/19/17/15/14 18/20/18/17/14/13

ABCDEFG a 73.8 74.2 1.04 14/16/17/15/13/13/12 16/17/16/14/12/12/13
a A, B, C, D, E, F, and G arms correspond to poly(cyclohexylmethacrylate), PSt, poly(4-methoxystyrene),
poly(4-methylstyrene), (PMMA), poly(ethylmethacrylate), and poly(2-methoxyethylmethacrylate), respectively.

In this section, we proposed three iterative methodologies. In the first methodology, the living
end-X-functionalized polymer was used as the building block in each reaction sequence and the
next sequence was continued after converting the X function to the Y reaction site. In the last two
methodologies shown in Schemes 2 and 3, the functional anions were employed to reintroduce X1,
X2 and X1, X2, X3 functionalities, with which their reaction sequences could be iterated. It should be
mentioned, however, that these methodologies are basically designed in the same concept so that each
reaction sequence involves two steps of the arm introduction and regeneration of the same reaction
site and can be iterated to synthesize a series of multicomponent (µ-SP)s. As often mentioned, one
more important advantage of such iterative methodologies is that, in essence, the use of multistep
selective reactions and several reaction sites with different reactivities generally required for the (µ-SP)
synthesis are completely avoided because one arm is introduced in each reaction step.

2.2. Dendrimer-Like Hyperbranched Polymers ((DHBH)s)

A (DHBP) has emerged as the new class hyperbranched polymer with structural perfection since
1995 [54]. In order to clearly image the structure of (DHBP), the fifth-generation (5G) (DHBP) and
its block copolymer are shown in Figure 1. These polymers are similar in branched architecture to
dendrimers, but comprise several polymers connected between the layers. Accordingly, (DHBP)s
are much higher in molecular weight and much larger in molecular size than dendrimers. DHPBs,
believed to be globular macromolecules in shape, have many features, such as topologically specific
hyperbranched architectures, hierarchic repeated layer structures, so-called “generation”, different
branched densities among the core and layers, and many termini [55–59].

Although various (DHBP)s have been synthesized to date, most of them were limited to 2G~4G
polymers with Mn values of 105 g·mol−1 order due to several reaction steps for the introduction
of additional polymer chains [60–79]. As for high-generation (≥4G) and high-molecular-weight
(≥106 g·mol−1) (DHBP)s with well-defined structures, there were reported only two examples
synthesized by Gnanou et al. (7G DHB PSt with a Mn of 1.92× 106 g·mol−1 and 8G DHB poly(ethylene
oxide) with a Mn of 6.50 × 105 g·mol−1) and several (DHBP)s synthesized by Hirao et al. which will
be described in this section [80–87].

As can be seen in Figure 1, (DHBP)s comprise several repeating units on the basis of layer
structures. It is, therefore, expected that the iterative methodology is applicable to the synthesis
of (DHBP)s, as illustrated in Scheme 4 [82,83]. In the first reaction sequence, a living α-chain-
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end-(X)2-functionalized polymer reacted with a core having four Y reaction sites to result in a
4-arm (SP). The introduced eight X termini were then converted to the Y reaction sites. In the
second sequence, the resulting (SP) with (Y)8 termini was linked with a separately prepared living
α-chain-end-(X)2-functionalized polymer to yield a 2G (DHBP) with sixteen X termini. Thus, the
living α-chain-end-(X)2-functionalized polymer is used as the building block in each reaction sequence.
As was seen, the (DHBP) was obtained from the second sequence. The linking of the living polymer
with either the core compound or the polymer with (Y)8 termini and the conversion to the Y reaction
site are exactly equal to (1) the arm introduction and (2) regeneration of the reaction site, respectively.
Since the 2G (DHBP) possesses the sixteen Y reaction sites, the reaction sequence can be repeated.
Indeed, it was repeated to successively synthesize 3G, 4G, 5G, 6G, and even 7G (DHBP)s (see Scheme 5).
As can be seen, the polymer obtained in one reaction sequence before becomes the starting polymer in
the next sequence [83].
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the iterative methodology using the living α-chain-end-(TBDMS ether)2-functionalized polymer as 
the building block. This success also made it possible to synthesize other (DHBP)s made up of 
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The building block was prepared by the living polymerization of MMA with the initiator obtained
from sec-BuLi and 1,1-bis(3-tert-butyldimethylsilyloxymethylphenyl)ethylene (4). Similar to the
previous methodologies, the introduced TBDMS ether (X) is readily and quantitatively converted to
the BnBr (Y) reaction site. The linking reactions proceeded with ~100% efficiencies at −40 ◦C for a few
hours with 2 equivalents of living α-chain-end-(TBDMS)2-functinalized (PMMA) to afford 2G, 3G, and
4G polymers. The use of 3–5 equivalents of living (PMMA) and longer reaction times to 48 h were
needed to complete the reaction, yielding 5G, 6G, and 7G polymers.

As summarized in Table 4, the resulting DHB (PMMA)s all had well-controlled Mn values in
agreement with those calculated and low polydispersity indexes, (Mw/Mn ≤ 1.03). Agreement between
the calculated values and those observed in end-functionality is excellent in each of all samples. The
7G DHB (PMMA) was a huge macromolecule with a Mw value of 1.97 × 106 g·mol−1 and consisted
of 508 (PMMA) segments having 512 BnBr termini, which enable further synthetic sequence of more
generation (DHBP)s. Thus, the synthesis of well-defined (DHBP)s was quite successful by employing
the iterative methodology using the living α-chain-end-(TBDMS ether)2-functionalized polymer as
the building block. This success also made it possible to synthesize other (DHBP)s made up of
poly(tert-butyl methacrylate) (PtBMA), PSt, and a mixture of these two polymers by a slightly modified
procedure using the PA reaction site. Several amphiphilic generation-based block copolymers with PSt
and poly(methacrylic acid) layers could be obtained from the DHB block copolymers consisting of
(PtBMA) and PSt, followed by hydrolysis of the (PtBMA) segments [86].

A highly dense 3G DHB (PMMA) with four polymer chains branched at the core as well as in
the two layers was synthesized by the iterative methodology with a living α-chain-end-(TBDMS
ether)4-functionalized (PMMA) (see Scheme 6) [84]. The resulting polymer had a Mn value of
9.30 × 105 g·mol−1 and 256 BnBr termini (see Table 5). Further synthesis was not possible in this
case. Instead, three different 4G (DHBP)s shown in Figure 2 could be synthesized by using the living
α-chain-end-(TBDMS)2-functionalized (PMMA) in either the second, third, or fourth reaction sequence.
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All of the polymers were around 2 million in Mn value with 512 BnBr termini even in the 4G polymers
(see also Table 5) [85].

Table 4. Characterization results of the DHB (PMMA)s (1G–7G).

Polymer Mn (kg/mol) Mw (kg/mol) Mw/Mn End-Functionality

Calcd. 1H NMR Calcd. SLS a SEC Calcd. 1H NMR

1G 14.6 14.2 14.9 14.8 1.02 8 7.90
2G 43.0 42.9 43.9 44.2 1.02 16 16.0
3G 97.3 98.4 99.2 105 1.02 32 32.6
4G 219 219 223 230 1.02 64 64.0
5G 452 449 462 472 1.03 128 127
6G 980 974 1000 1060 1.02 256 254
7G 1950 1940 1980 1970 1.02 512 509

a static light scattering (SLS). Arm segments are adusted to be in the range of 3500~4000 g·mol−1 in Mn value.
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1G 52.8 52.2 51.6 1.02 16 16.1 
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3G 938 959 930 1.01 256 259 

4G-1 2350 2330 2330 1.02 512 521 
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Scheme 6. Successive synthesis of highly dense DHB (PMMA)s (1G–3G). Reproduced with permission
from ref. [84]. Copyright 2006 WILLEY-VCH Veriag GmbH & Co. KGaA, Weinheim, Germany.

Table 5. Characterization results of highly dense DHB (PMMA)s (1G–4G).

Polymer
Mn (kg/mol) Mw/Mn Composition (wt % wt % wt %)

Calcd. 1H NMR SLS SEC Calcd. 1H NMR

1G 52.8 52.2 51.6 1.02 16 16.1
2G 236 234 247 1.02 64 63.6
3G 938 959 930 1.01 256 259

4G-1 2350 2330 2330 1.02 512 521
4G-2 1860 1900 1860 1.03 512 528
4G-3 1910 1930 1880 1.02 512 516

PMMA arm segments are adjusted to be ca. 10,000 g·mol−1 in Mn value.
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well-defined functional hyperbranched and nano-size globular macromolecules with many potential 
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An ideal (GP), in which the three parameters are perfectly controlled, is termed an “exactly defined 
graft polymer (EDGP)” [88]. Although the physical and mechanical properties as well as morphology 
of (GP) are significantly influenced by such three structural parameters, their relationships have not 
been enough elucidated due to the synthetic difficulty of (EDGP) [1,2,89–91]. In practice, various 
(GP)s have been synthesized so far, but all of them are not (EDGP)s, except for the PIs–graft–PSt 
reported by Hadjichristidis et al. [88] and several graft polymers synthesized by Hirao et al., which 
will be introduced in this section [92–97].  

As shown in Scheme 7, a living PIs reacted with 1,4-bis(phenylethenyl)benzene (5) to introduce 
a DPE terminus. After the termination, a living PSt reacted with the DPE terminus to prepare a PIs–
block–PSt in-chain anion, from which isoprene was polymerized. The resulting living 3-arm (SP) 
reacted with 5 to again introduce the DPE terminus. The same reaction sequence was iterated to 
synthesize a PIs–graft–PSt with two PSt graft chains. In the resulting polymer, the three structural 
parameters are perfectly controlled by the living polymerization of either isoprene or styrene in each 
step. Although the synthesis of (EDGP)s with more than three graft chains is possible by iterating the 
reaction sequence, it seems difficult because an exact stoichiometry is required in each reaction 
between living PSt and the DPE terminus. If the stoichiometry is deviated in the reaction, many side 
products difficult in separation are by-produced. Later, an (EDGP) having five graft chains was 
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Figure 2. SEC Profiles of 4G-1, 4G-2, and 4G-3 DHB (PMMA)s. Reproduced with permission from
reference [85]. Copyright 2009 American Chemical Society.

We demonstrated the effectiveness of the iterative methodology for the synthesis of
high-generation and high-molecular-weight (DHBP)s. The methodologies shown in Schemes 4–6 are
basically the same as that shown in Scheme 1, except for the use of different building blocks and the
core compound. Since highly reactive BnBr or PA termini are present in the intermediate and final
polymers, various useful functionalities, such as perfluoroalkanes, olefins (double bonds), acetylenes
(triple bonds), alkoxy and hydrosilanes, epoxide, thiol, phosphine, ferrocene, and monosaccharide
residues, etc., can be introduced at any generation, internal, and external positions [55]. As a result,
well-defined functional hyperbranched and nano-size globular macromolecules with many potential
applications are synthesized. Novel and interesting morphological nanostructures and supramolecular
assemblies will also be expected from generation-based DHB block polymers [55,56,58,76,77,79].

2.3. Graft Polymers ((GP)s)

As illustrated in Figure 3, a (GP) is defined by three structural parameters: (1) molecular weight
of the main chain; (2) molecular weight of the graft chain; and (3) distance between the graft chains.
An ideal (GP), in which the three parameters are perfectly controlled, is termed an “exactly defined
graft polymer (EDGP)” [88]. Although the physical and mechanical properties as well as morphology
of (GP) are significantly influenced by such three structural parameters, their relationships have not
been enough elucidated due to the synthetic difficulty of (EDGP) [1,2,89–91]. In practice, various (GP)s
have been synthesized so far, but all of them are not (EDGP)s, except for the PIs–graft–PSt reported
by Hadjichristidis et al. [88] and several graft polymers synthesized by Hirao et al., which will be
introduced in this section [92–97].

As shown in Scheme 7, a living PIs reacted with 1,4-bis(phenylethenyl)benzene (5) to introduce
a DPE terminus. After the termination, a living PSt reacted with the DPE terminus to prepare a
PIs–block–PSt in-chain anion, from which isoprene was polymerized. The resulting living 3-arm (SP)
reacted with 5 to again introduce the DPE terminus. The same reaction sequence was iterated to
synthesize a PIs–graft–PSt with two PSt graft chains. In the resulting polymer, the three structural
parameters are perfectly controlled by the living polymerization of either isoprene or styrene in each
step. Although the synthesis of (EDGP)s with more than three graft chains is possible by iterating the
reaction sequence, it seems difficult because an exact stoichiometry is required in each reaction between
living PSt and the DPE terminus. If the stoichiometry is deviated in the reaction, many side products
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difficult in separation are by-produced. Later, an (EDGP) having five graft chains was successfully
synthesized by an improved methodology based on the termination procedure [92].Polymers 2017, 9, 470  12 of 31 
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block. It was prepared by the sequential addition of styrene, 1, and MMA and, after the termination, 
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Scheme 7. Synthesis of (EDGP) with two PSt graft chains. Reproduced with permission from
reference [92]. Copyright 2009 American Chemical Society.

It is considered that the iterative methodologies are applicable because (EDGP)s comprise several
repeating units linked each other. As can be seen in Figure 4, one building unit of graft polymer
corresponds to an AB diblock copolymer and the two block copolymers are linked between the
chain-end and in-chain of diblock copolymers to make the graft unit. Therefore, if the linking of
diblock copolymers can be iterated, a series of exactly defined graft copolymers would be synthesized.

On the basis of the linking manner indicated in Figure 4, we proposed the iterative methodology
as illustrated in Scheme 8 [93,94]. This methodology is basically the same as those shown in
Schemes 1 and 4–6, except for the use of the living in-chain-X-functionalized diblock copolymer
as the building block. It was prepared by the sequential addition of styrene, 1, and MMA
and, after the termination, the TBDMS ether was converted to the BnBr reaction site. Another
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living in-chain-TBDMS ether-functionalized PSt–block–PMMA was reacted with the resulting
PA-functionalized PSt–block–PMMA to link the two block copolymers between the chain-end and
the in-chain. Since the TBDMS ether was also introduced, repetition of the same reaction sequence
is possible. In practice, the reaction sequence was iterated four more times. The final polymer with
five graft chains was yielded by linking the intermediate graft copolymer with a living (PMMA). The
requisite structures of the synthesized graft copolymers all were clearly evidenced from the results
summarized in Table 6. Thus, the proposed methodology satisfactorily worked as expected.
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Table 6. Characterization results of exactly defined (PMMA–graft–PSt)s synthesized by the
iterative methodology.

Polymer
Mn (kg/mol) Mw/Mn Composition (wt % wt % wt %) a)

Calcd. 1H NMR RALLS SEC Calcd. 1H NMR

AB Diblock 12.5 12.6 12.6 1.03 50/50 48/52
EG-2 b) 22.2 22.5 23.6 1.02 51/49 50/50
EG-3 c) 33.8 35.4 34.6 1.04 50/50 49/51
EG-4 d) 43.5 46.1 45.6 1.04 49/51 50/50
EG-5 e) 56.2 56.0 55.0 1.02 45/55 45/55

a) PS/PMMA.
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Each reaction sequence involves the linking reaction between two block copolymers and the
conversion to the reaction site, which are equal to the “polymer chain introduction” and “regeneration
of the same reaction site” and can be iterated via the regenerated same reaction site. The three
parameters of the resulting polymers are controlled and can be intentionally changed by the living first
and second blocks. With this in mind, three additional acid-labile segment containing exactly defined
PtBMA–graft–PSt, poly(ferrocenylmethyl methacrylate (PFMMA))–graft–PSt, and P2VPy–graft–PSt
were also synthesized by the same iterative methodology using a PA reaction site. All of these polymers
thus synthesized by the iterative methodology are the first successful (EDGP)s with more than three
graft chains.

Recently, we have succeeded in the synthesis of an EDG terpolymer with two different graft chains
per one graft point by the iterative methodology using a living in-chain-(X1 and X2)-functionalized
diblock copolymer (see Scheme 9) [97]. Both the X1 and X2 functionalities are designed so as to
be converted in turn to the first and second Y reaction sites in different reaction steps. The first
graft chain corresponding to the first PSt block was already present. The second graft chain was
introduced by linking a living polymer at the first Y reaction site converted from the X1 function. Next,
a newly prepared living in-chain-(X1 and X2)-functionalized block copolymer reacted with the second
Y reaction site from the X2 function. As the X1 and X2 functionalities were thus reintroduced, the same
reaction sequence was iterated to continue the synthesis of EDG terpolymers.

As mentioned before, the TMS and TBDMS ethers are used as the X1 and X2 functionalities,
respectively. In the first reaction sequence, a living in-chain-(TMS and TBDMS ethers)-functionalized
PSt–block–PMMA was prepared by the sequential polymerization of styrene, 2, and MMA. The
introduced TMS group in-chain was deprotected with MeOH containing K2CO3 and the regenerated
OH group was converted to the PA reaction site. The second graft chain was introduced by
linking with a living poly(2-methoxyethyl methacrylate) (P2MEMA). The TBDMS group was then
deprotected with (C4H9)4NF, followed by converting to the reaction site. A living in-chain-(TMS and
TBDMS ethers)-functionalized PSt–block–PMMA was newly prepared and reacted with the resulting
PA-functionalized 3-arm (µ-SP) composed of PSt, (PMMA), and P2MEMA. By this linking reaction,
one branched unit was made and the TMS and TBDMS ethers were also reintroduced. Repetition
of the reaction sequence is possible via the two silyl ethers. An EDG terpolymer possessing three
branched units was yielded after iterating the reaction sequence two more times, followed by linking
with a living (PMMA) in the final step. Since all of the repeating reaction sequences proceeded almost
quantitatively, the target polymers were always obtained in ca. 100% yields.
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The polymers all were obtained with well-controlled Mn values and compositions (see Table 7).
Accordingly, the proposed methodology also effectively worked to successfully yield the target EDG
terpolymers. The three structural parameters of such graft terpolymers are also controlled and
intentionally changed by the living polymerization in each step.Polymers 2017, 9, 470  15 of 31 
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With the iterative methodology shown in Scheme 8, both graft and main chains are advantageously
introduced at the same time. We have recently developed an alternative methodology using a living
α-chain-end-(X1 and X2)-functionalized polymer (see Scheme 10) [96]. The same as Scheme 9, the
X1 and X2 functionalities are TMS and TBDMS ethers and sequentially deprotected one by one to
convert to the first and second PA (Y) reaction sites. The synthesis was started to prepare a living
α-chain-end-(TMS and TBDMS ethers)-functionalized poly(benzyl methacrylate) (PBnMA) by the
living polymerization of BnMA with the functional initiator obtained from sec-BuLi and 2. After
the termination and the conversion of the TMS ether to the reaction site, a living (PMMA) reacted
with the reaction site to result in an in-chain-TBDMS ether-functionalized (PMMA)–block–PBnMA.
The TBDMS ether was then converted to the reaction site. The in-chain-PA-functionalized
(PMMA)–block–PBnMA thus prepared was linked with a newly prepared living α-chain-end-(TMS
and TBDMS ethers)-functionalized PBnMA. By this reaction, one branched unit was made and the
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TMS and TBDMS ethers were reintroduced. The reaction sequence was iterated twice. In each of the
intermediate polymers thus obtained, the TBDMS ether was converted to the reaction site, followed by
linking with a living PBnMA, to synthesize the exactly defined PBnMA–graft–PMMA with two and
three (PMMA) graft chains.

Table 7. Characterization results of EDG terpolymers synthesized by the iterative methodology.

Polymer
Mn (kg/mol) Mw/Mn Composition (wt % wt % wt %) a)

Calcd. RALLS SEC Calcd. 1H NMR

AB Diblock 20.9 21.0 1.03 48/52/0 48/52/0
EGTP-1′ b) 29.1 30.2 1.02 35/37/28 34/38/28
EGTP-2′ c) 61.7 61.5 1.04 34/35/31 32/38/30
EGTP-3′ d) 87.8 87.1 1.04 33/34/33 31/33/35
EGTP-3 e) 97.4 97.0 1.02 39/31/30 37/32/31

a) (PMMA)/PS/P2MEMA.
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made and the TMS and TBDMS ethers were reintroduced. The reaction sequence was iterated twice. 
In each of the intermediate polymers thus obtained, the TBDMS ether was converted to the reaction 
site, followed by linking with a living PBnMA, to synthesize the exactly defined PBnMA–graft–
PMMA with two and three (PMMA) graft chains.  

The results summarized in Table 8 clearly show the successful synthesis of the exactly defined 
(PBnMA–graft–PMMA)s. Thus, it is possible to synthesize all poly(methacrylate)-based (EDGP)s by 
this methodology. Needless to say, the synthesis of such (EDGP)s is difficult by the methodology 
shown in Scheme 8. Similarly, a series of exactly defined (PBnMA–graft–P2VPy)s were synthesized 
by the same methodology, in which living P2VPy was used instead of living (PMMA) in each reaction 
sequence.  

A difunctional PBnMA with the TMS and TBDMS termini was prepared by the coupling reaction 
of a living α-chain-end-(TMS and TBDMS ethers)-functionalized PBnMA with p,p’-xylene dibromide. 
When this polymer was used as the starting polymer, (EDGP)s with two, four, and six (PMMA) graft 
chains were readily synthesized with less repetition of the reaction sequence (only three times) (see 
Scheme 11). 
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The results summarized in Table 8 clearly show the successful synthesis of the exactly defined
(PBnMA–graft–PMMA)s. Thus, it is possible to synthesize all poly(methacrylate)-based (EDGP)s by this
methodology. Needless to say, the synthesis of such (EDGP)s is difficult by the methodology shown in
Scheme 8. Similarly, a series of exactly defined (PBnMA–graft–P2VPy)s were synthesized by the same
methodology, in which living P2VPy was used instead of living (PMMA) in each reaction sequence.

Table 8. Characterization results of (EDGP)s by the iterative methodology.

Polymer
Mn (kg/mol) Mw/Mn Composition (wt % wt % wt %) a)

Calcd. RALLS SEC Calcd. 1H NMR

EGTP-1′ b) 19.7 18.7 1.02 40/60 39/61
EGTP-1 c) 30.1 28.4 1.02 60/40 60/40
EGTP-2′ d) 39.3 39.1 1.02 45/55 44/56
EGTP-2 e) 49.6 49.5 1.02 56/44 55/45
EGTP-3′ f) 59.9 60.9 1.03 47/53 47/53
EGTP-3 g) 72.7 71.3 1.03 55/45 56/44

a) Determined by SEC with RI, viscometer, and right angle laser light scattering (RALLS) detector.
b) APBnMA/PMMA.
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A difunctional PBnMA with the TMS and TBDMS termini was prepared by the coupling reaction
of a living α-chain-end-(TMS and TBDMS ethers)-functionalized PBnMA with p,p’-xylene dibromide.
When this polymer was used as the starting polymer, (EDGP)s with two, four, and six (PMMA) graft
chains were readily synthesized with less repetition of the reaction sequence (only three times) (see
Scheme 11).
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In summary, we demonstrated the successful syntheses of EDG co- and terpolymers by developing
the three iterative methodologies shown in Schemes 8–10. As often suggested in these methodologies,
they are basically the same as the methodologies for the synthesis of (µ-SP)s and (DHBP)s. Three
different building blocks, i.e., living in-chain-X-functionalized diblock copolymer, living in-chain-(X1

and X2)-functionalized diblock copolymer, and living α-chain-end-(X1 and X2)-functionalized polymer,
were employed. It should also be noted that the TBDMS ether (X), TMS ether (X1), and TBDMS
ether (X2) functionalities and the BnBr or PA (Y) reaction site are the same as those used in the
previous methodologies.

2.4. Block Polymers ((BP)s)

Although (BP)s are not generally categorized in macromolecular architectures, multiblock
polymers with more than three blocks are added to macromolecular architectures in this article
because they are composed of several polymer segments or repeating units linked in a line. In general,
well-defined (BP)s are synthesized by the sequential addition of different monomers to an appropriate
anionic initiator, so-called “sequential block polymerization” [98]. Using two monomers with
similar reactivities, all possible (BP)s are readily obtained without difficulty because the crossover
polymerization is acceptable among these monomers. In fact, AB, ABA, BAB, and (AB)n multiblock
copolymers are synthesized by the sequential block polymerization. In the case using three monomers,
the syntheses of ABC, ACB, and BAC triblock terpolymers are achieved by sequentially adding the
corresponding monomers to the initiator.

In contrast, when monomers with different reactivities are used, the synthetically feasible (BP)s
are considerably restricted because the crossover polymerization is difficult. Among these monomers,
a less reactive chain-end anion is always produced from a more reactive monomer and vice-versa. This
often causes a serious problem that a less reactive chain-end anion is not able to polymerize a less
reactive monomer. As a result, no block copolymer is formed. In this section, the synthetic difficulty
of (BP)s using monomers with different reactivities and how to overcome such the difficulty will be
described [1,5,16,17,99–104].

2.4.1. Synthetic Possibility of Triblock Co- and Terpolymers

In order to examine the synthetic possibility of triblock copolymer using two monomers with
different reactivities, styrene and MMA are chosen. As is known, MMA is more reactive (or
electrophilic) than styrene because of the stronger electron-withdrawing character of the carbonyl group
to reduce the electron-density of the vinyl group. In contrast, the (PMMA) anion becomes less reactive
(or nucleophilic) than that of PSt by the presence of the same stronger electron-withdrawing carbonyl
group, which reduces electron-density of the anion. Accordingly, (PMMA) anion cannot polymerize
less reactive styrene under the normal conditions, while MMA is readily polymerized with more
reactive PSt anion. This means that (PMMA)–block–PSt cannot be obtained by the sequential addition
of first MMA and styrene. On the other hand, less reactive styrene is first polymerized to produce
the more reactive PSt anion, followed by addition of more reactive MMA, yielding PSt–block–PMMA.
Thus, the monomer addition order is very critical. Due to the same reactivity problem, neither triblock
copolymers of PSt–block–PMMA–block–PSt and (PMMA)–block–PSt–block–PMMA nor multiblock
copolymers of PSt–block–PMMA–block–PSt–block–PMMA . . . ; i.e., (PSt–block–PMMA)n can be
synthesized. Thus, the synthesis of all possible (BP)s, except for PSt–block–PMMA, is difficult by
the sequential block copolymerization.

To overcome such synthetic difficulty, we have recently proposed a more general methodology
combining living anionic sequential block copolymerization with a 1:1 addition reaction as
illustrated in Scheme 12 [100–102]. For the synthesis of PSt–block–PMMA–block–PSt, an α-chain-end-
X-functionalized PSt was first prepared by the living polymerization of styrene with an
X-functionalized initiator. The introduced X α-terminus was then converted to a Y reaction site.
A living PSt–block–PMMA was prepared by the sequential polymerization and reacted with the
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α-chain-end-Y-functionalized PSt, yielding the target PSt–block–PMMA–block–PSt. A (PMMA)–
block–PSt–block–PMMA with the opposite sequence was synthesized by the linking of a living
(PMMA) with an α-chain-end-Y-functionalized PSt–block–PMMA. Here, the X and Y functionalities
are TBDMS ether and PA reaction site, respectively, similar to several schemes shown in this
article. Furthermore, synthetically difficult PSt–block–P2VPy–block–PSt, P2VPy–block–PSt–block–P2VPy,
P2VPy–block–PMMA–block–P2VPy, and (PMMA)–block–P2VPy–block–PMMA were also obtained by
the same methodology.
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Among the above synthesized (BCP)s, P2VPy–block–PSt–block–P2VPy, (PMMA)–block–PSt–block–
PMMA, and (PMMA)–block–P2VPy–block–PMMA can be synthesized by the sequential addition of
styrene or 2VPy and either 2VPy or MMA to an appropriate difunctional initiator. In these polymers,
the P2VPy or (PMMA) both side blocks are always equal in molecular weight. Very interestingly
and importantly, the proposed methodology enables to synthesize the triblock copolymers with
molecular weight-asymmetry in both side blocks because the molecular weight of each side block
can be changed by the living anionic polymerization or sequential block copolymerization prior to
the linking reaction. The following polymers were such examples: P2VPy–block–PSt–block–P2VPy
(Mn = 19.5/10.0/10.4 kg·mol−1), (PMMA)–block–PSt–block–PMMA (Mn = 18.7/11.2/11.6 kg·mol−1),
and (PMMA)–block–P2VPy–block–PMMA (Mn = 6.30/12.6/20.5 kg·mol−1) [100].

The next question is the synthetic possibility of triblock terpolymer using three monomers with
different reactivities. In order to understand the synthetic situation, styrene, 2VPy, and MMA were
used as the three monomers. The monomer reactivity increases from styrene, 2VPy, to MMA in
this order, while the reactivity of chain-end anion decreases from living PSt (hereinafter abbreviated
as PSt−), P2VPy−, to (PMMA)−. Their relationships in the polymerization are listed in Table 9.
The most reactive PSt− initiates the polymerization of 2VPy and MMA, which are more reactive
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than styrene, while neither styrene nor 2VPy is polymerized with the least reactive (PMMA)−.
The 2VPy− with the reactivity between PSt− and (PMMA)− polymerizes more reactive MMA,
but can polymerize less reactive styrene very sluggishly along with the unwanted side reactions
during the polymerization. Based on such the relationships, it is understandable that the ABC
triblock terpolymer of PSt–block–P2VPy–block–PMMA can be synthesized, but the syntheses of
PSt–block–PMMA–block–P2VPy (ACB) and P2VPy–block–PSt–block–PMMA (BAC) are difficult by the
sequential block terpolymerization due to the monomer and anion reactivity mismatch [105–109].

Table 9. Relationships among monomers and chain-end anions in polymerization.

Growing Chain-End Anion
Monomer
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P2VPy. Similarly, the P2VPy–block–PSt–block–PMMA (BAC) could be synthesized by the linking of a
living P2VPy with an α-chain-end-PA-functionalized PSt–block–PMMA.

Both P2VPy–block–PMMA–block–PSt (BCA) and (PMMA)–block–PSt–block–P2VPy (CAB) are
considered to be the same in structure as the ACB and BAC. However, another synthetic design
is possible for these polymers (see also Scheme 13). A P2VPy–block–PMMA–block–PSt (BCA) was
synthesized by the linking of a living P2VPy-block-PMMA with a PSt with the PA α-terminus. Similarly,
a (PMMA)–block–PSt–block–P2VPy (CAB) was obtained by the reaction of a living (PMMA) with
an α-chain-end-PA-functionalized PSt-block-P2VPy. Their requisite structures were evident (see
Table 10) [100].

Table 10. Characterization results of ABC, ACB, BAC, BCA, and CAB triblock terpolymers.

Polymer
Mn (kg/mol) Mw/Mn Composition (wt % wt % wt %)

Calcd. RALLS SEC Calcd. 1H NMR

ABC 40.5 40.0 1.04 33/34/33 32/35/33
ACB 32.2 34.6 1.04 25/58/17 27/54/19
BAC 28.9 30.1 1.05 32/34/34 31/34/35
BCA 37.2 38.2 1.04 32/35/33 31/37/32
CAB 34.0 34.3 1.04 31/33/36 29/37/34

A, B and C blocks are PSt, P2VPy, and (PMMA), respectively.

Using monomers with different reactivities, the synthesis of all possible triblock co- and
terpolymers, except for the ABC type, is difficult by the sequential block polymerization because
of the mismatch among monomer electrophilicities and chain-end anion nucleophilicities. To overcome
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the difficulty, the new methodology combining living sequential block copolymerization with a 1:1
addition reaction has been proposed and found to allow access to such synthetically difficult triblock
co- and terpolymers without consideration about the monomer and anion reactivities.

Previously, several research groups also reported the efficient methodologies to overcome
the synthetic difficulty of block polymers using monomers with different reactivities [110–120].
It is believed that the present methodology herein proposed seems to be more general in
synthesis than those previous methodologies. The related block polymers can also be synthesized
by the living/controlled radical polymerization or the combination of living/controlled radical
polymerization with Click reactions. However, the resulting block polymers always possess relatively
broad molecular weight distributions [121–126].Polymers 2017, 9, 470  21 of 31 
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with an α-chain-end-PA-functionalized PSt-block-P2VPy. Their requisite structures were evident (see 
Table 10) [100].  

Using monomers with different reactivities, the synthesis of all possible triblock co- and 
terpolymers, except for the ABC type, is difficult by the sequential block polymerization because of 
the mismatch among monomer electrophilicities and chain-end anion nucleophilicities. To overcome 
the difficulty, the new methodology combining living sequential block copolymerization with a 1:1 
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Scheme 13. Synthesis of ACB and BAC as well as BCA and CAB triblock terpolymers by the
methodology combining linking chemistry with living sequential block copolymerization. Reproduced
with permission from reference [100]. Copyright 2011 American Chemical Society.
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2.4.2. Multiblock Copolymer Synthesis

The methodology shown in Scheme 12 was extended to the iterative methodology to synthesize
multiblock copolymers of (PSt–block–PMMA)n (see Scheme 14) [99]. In this methodology, a
living α-chain-end-TBDMS ether-functionalized PSt–block–PMMA is utilized as the building block
to simultaneously introduce both PSt and (PMMA) blocks. In the first sequence, the living
α-chain-end-TBDMS ether-functionalized PSt–block–PMMA was prepared and, after the termination,
the introduced TBDMS ether was converted to the PA reaction site. The PA-functionalized
PSt–block–PMMA was linked with a newly prepared living α-chain-TBDMS ether-functionalized
PSt–block–PMMA to yield an ABAB tetrablock copolymer of PSt–block–PMMA–block–PSt–block–PMMA
((PSt–block–PMMA)2). Since the TBDMS ether α-terminus is present, the reaction sequence is possible
to be iterated. Indeed, the reaction sequence was further iterated to synthesize a hexablock, octablock,
and even decablock copolymer of (PSt–block–PMMA)5.Polymers 2017, 9, 470  23 of 31 
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permission from reference [99]. Copyright 2011 American Chemical Society. 
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now under study. 

 

Scheme 14. Synthesis of (PS–block–PMMA)n (n = 1–5) by the iterative methodology. Reproduced with
permission from reference [99]. Copyright 2011 American Chemical Society.

As shown in Table 11, the resulting multiblock copolymers all possessed precisely controlled
Mn values and compositions, and low polydispersity indexes. Thus, requisite and well-defined
multiblock copolymers up to a decablock type were successfully synthesized. As every reaction
sequence proceeded almost quantitatively, all of the multiblock copolymers were obtained in ca. 100%
yields. As the final (PSt–block–PMMA)5 still possesses the TBDMS ether α-terminus, the reaction
sequence can be further iterated. Two more multiblock copolymers comprising PSt and either (PtBMA)
or P2VPy were also synthesized (see also Table 11) [99]. The linking reaction between the two diblock
copolymers and conversion to the reaction site in each sequence are equal to the “polymer chain
introduction” and “regeneration of the reaction site” steps. Thus, the iterative methodology herein
developed also effectively worked for the synthesis of multiblock copolymers.
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Table 11. Characterization results of (PS–block–PMMA)n, (PS–block–PtBMA)n and (PS–block–P2VP)n

synthesized by the iterative methodology.

Polymer
Mn (kg/mol) Mw/Mn Composition (wt % wt % wt %)

Calcd. RALLS SEC Calcd. 1H NMR

PS–b–PMMA 10.5 11.4 1.03 50/50 48/52
(PS–b–PMMA)2 26.4 28.2 1.03 46/54 47/53
(PS–b–PMMA)3 37.0 40.5 1.03 45/55 43/57
(PS–b–PMMA)4 51.0 53.6 1.04 45/55 43/57
(PS–b–PMMA)5 64.5 66.4 1.06 45/55 45/55
(PS–b–PtBMA)2 24.0 25.8 1.03 47/53 46/54
(PS–b–PtBMA)3 41.5 46.6 1.06 48/52 46/54
(PS–b–P2VP)2 24.3 25.3 1.04 49/51 49/51
(PS–b–P2VP)3 37.2 38.3 1.03 49/51 48/52

As illustrated in Scheme 15, the same multiblock copolymers can be obtained by the similar
methodology using a living α-chain-end-X-functionalized polymer as the building block. However,
the use of living α-chain-end-X-functionalized diblock copolymer is much more preferable because of
the reaction step reduction. The synthesis of (ABC)n multiblock terpolymers may be feasible by the
methodology with the use of living α-chain-end-X-functionalized ABC triblock terpolymer and is now
under study.Polymers 2017, 9, 470  24 of 31 
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(EDGP)s, and multiblock polymers with more than three blocks. In this methodology, two reaction 
steps, i.e., the polymer chain introduction and the regeneration of the same reaction site, are involved 
in each reaction sequence and iterated to construct the above-mentioned polymers. The following 
key building block is individually designed and used on the basis of their architectures: living chain-
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reaction site with different reactivities generally required for macromolecular architecture synthesis are 
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It is believed that the syntheses of triblock copolymers, triblock terpolymers except for
the ABC type, and multiblock copolymers are difficult by the direct sequential block co- and
terpolymerization using monomers with different reactivities. The methodology combining living
sequential block copolymerization with a 1:1 addition reaction and the extended iterative methodology
have demonstrated the useful means to successfully synthesize such (BP)s difficult by sequential
block polymerization.

3. Concluding Remarks and Future Outlook

Throughout this article, we have demonstrated the successful development of a novel all-around
iterative methodology for the syntheses of multicomponent (µ-SP)s, high generation (DHBP)s, (EDGP)s,
and multiblock polymers with more than three blocks. In this methodology, two reaction steps,
i.e., the polymer chain introduction and the regeneration of the same reaction site, are involved
in each reaction sequence and iterated to construct the above-mentioned polymers. The following
key building block is individually designed and used on the basis of their architectures: living
chain-end-X-functionalized polymer (Scheme 1), living α-chain-end-((X)2 or (X)4)-functionalized
polymer (Schemes 4–6), living in-chain-X-functionalized diblock copolymer (Scheme 8), living
in-chain-(X1 and X2)-functionalized diblock copolymer (Scheme 9), living α-chain-end-(X1 and
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X2)-functionalized polymer (Scheme 10), and living α-chain-end-X-functionalized diblock copolymer
(Scheme 14). The X, X1, and X2 functionalities are TBDMS ether, TMS ether, and TBDMS ether
convertible to the BnBr or PA reaction site. In certain cases, the functional anions with TMS (X1),
TBDMS (X2), and THP ethers (X3) are employed (Schemes 2 and 3) instead of living functionalized
polymers. One more important advantage of this methodology is that the use of complicated multistep
selective reactions and reaction site with different reactivities generally required for macromolecular
architecture synthesis are completely avoided because the polymer segment(s) are introduced one by
one in each reaction step.

As often mentioned, all the iterative methodologies herein developed are basically the same in
concept as the all-around iterative methodology mentioned in introduction. As the future synthetic
potential, it is expected that different key building blocks can be employed together in the same
methodology to result in the synthesis of more complex macromolecular architectures with mixed
structures. Thus, synthetic limitation and difficulty of macromolecular architectures have been greatly
surpassed with the progress of the iterative methodology.
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