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Abstract: The aim of this research was to prepare a novel sponge-like porous hydrogel scaffold based
on human-like collagen (HLC) that could be applied in cartilage tissue regeneration. In this study,
bovine serum albumin (BSA) was used as a porogen to prepare the porous hydrogel, which had
not been previously reported. Glutamine transaminase (TGase) was used as the cross-linker of
the hydrogel, because it could catalyze the cross-linking of BSA. During the crosslinking process,
BSA and HLC were mixed together, which affected the cross-linking of HLC. When the cross-linking
was completed, the non-crosslinked section formed pores. The microstructure, porosity, swelling
properties, and compressive properties of the hydrogel were studied. The results showed that the pore
size of the hydrogel was between 100 and 300 µm, the porosity reached up to 93.43%, and the hydrogel
had rapid water absorption and suitable mechanical properties. Finally, we applied the hydrogel to
cartilage tissue engineering through in vitro and in vivo research. The in vitro cell experiments
suggested that the hydrogel could promote the proliferation and adhesion of chondrocytes,
and in vivo transplantation of the hydrogel could enhance the repair of cartilage. In general,
the hydrogel is promising as a tissue engineering scaffold for cartilage.

Keywords: human-like collagen; sponge-like; porous hydrogel; cartilage tissue engineering;
biological cross-linker

1. Introduction

Articular cartilage has a special organization that has low cellularity, and avascular and
alymphatic characteristics, meaning the regeneration and self-repair ability of articular cartilage
is poor [1–3]. Articular cartilage injury by trauma or degenerative pathology can lead to joint pain,
osteoarthritis (OA), and even cause joint dysfunction and disability [4,5]. Traditional techniques
for cartilage repair include marrow stimulation technique (microfracture), osteochondral autograft
implantation, and allograft transplantation. Although these methods have a certain restorative effect,
each has its limitations [6]. The marrow stimulation technique is not lasting, osteochondral autograft
implantation technology lacks regenerative transparent cartilage tissue, and allograft transplantation
tends to cause immune rejection [7,8]. To address these issues, engineering scaffolds have been
attracting attention in the field of repair and regeneration of cartilage defects.

The ideal tissue engineering scaffold should have a porous interconnected structure,
good biocompatibility, biodegradability, and workability [9,10]. The tissue engineering scaffolds
should have a porous interconnected structure and high porosity, necessary to provide sufficient
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space for growth, attachment, and proliferation of cells and secretion of extracellular matrix [10].
Some researchers considered that the porosity of cartilage scaffold should be more than 90%, and the
best pore size is about 200 µm [11–13]. Conventional techniques for producing porous tissue
engineering scaffolds include solvent casting and particulate leaching, phase separation and emulsion
freeze drying, and gas foaming and electrospinning [14–16]. Solvent casting and particulate leaching,
phase separation and emulsion freeze drying, and gas foaming easily form a non-interconnected pore
structure and a nonporous skin layer at the scaffold surface. In addition, these techniques may use
toxic organic solvents that can adversely affect the biocompatibility of the scaffold [17–19]. The scaffold
formed by electrospinning has the advantages of high porosity, good connectivity, and uniformity
of pores, while electrospinning is slow and uses organic solvents [20]. In addition to these techniques,
advance manufacturing techniques, such as the Fused deposition technique and the three-dimensional
(3D) printing technique, have been used to accurately prepare porous scaffolds, according to the
presupposed shape and structure [14,21]. The main issue with the fused deposition technique is
that it is not suitable for materials that are not resistant to high temperatures [22]. The 3D printing
technique is complicated and costly, so the use of this technology is limited [23]. Each technique has
disadvantages and limitations.

To prepare an excellent cartilage scaffold, we researched a novel porous hydrogel scaffold
based on human-like collagen (HLC), which was prepared by a convenient and rapid method.
This preparation method, without using any organic solvents, is safe and non-toxic, and the porous
hydrogel prepared by this method has a homogeneous and highly-connected porous structure.
Unlike conventional hydrogels [24,25], the porous hydrogel with sponge-like properties can quickly
squeeze and absorb water in a wet state. In addition, being close to the natural extracellular
matrix (ECM), the porous hydrogel, having excellent biocompatibility, is conducive to cell adhesion,
migration, and differentiation, promotes the transport of nutrients and waste, and provides sufficient
space and mechanical stability for tissue formation. Therefore, the porous hydrogel is an ideal cartilage
tissue engineering scaffold material.

HLC is a novel genetically engineered protein created with recombinant Escherichia coli BL21
highly expressed cDNA, from reverse transcription from human mRNA. Its product was isolated and
purified, and human-like collagen was obtained [26]. In addition to the advantages of collagen, HLC
has excellent water solubility, low immunogenicity, good product stability, and is virus-free [26,27].
Due to these properties, HLC is considered a promising biomaterial. HLC’s ability to be applied
in all aspects of biomedical engineering have been researched, including as a soft tissue filler [28],
a hemostatic sponge [29,30], and a vascular scaffold [31].

In this study, we prepared a sponge-like 3D porous hydrogel based on HLC by using efficient
and non-toxic Glutamine transaminase (TGase) as a cross-linking agent. Bovine serum albumin
(BSA) and sodium chloride (NaCl) were used as porogens of the hydrogel. The TGase can catalyze
the cross-linking of HLC to form a stable structure of the hydrogel, but it cannot catalyze the BSA
cross-linking, so the addition of the BSA affects the cross-linking degree of the hydrogel. NaCl can also
affect the cross-linking of the hydrogel. As a result, with the combined action of both, the hydrogel
has a highly-connected 3D porous structure and has sponge-like properties. The method for making
pores has never been reported. The physical and chemical properties of the hydrogel were analyzed by
measuring the internal structure, density, porosity, swelling performance, and mechanical properties
of the hydrogel. Then, we attempted to use the hydrogel as a cartilage scaffold, to evaluate the
biocompatibility and cartilage repair capacity of the hydrogel through cytology and zoological
experiments. The results showed that the hydrogel would have a huge application potential in the
field of cartilage tissue engineering. The HLCc hydrogel, without BSA, was used as the control group.
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2. Materials and Methods

2.1. Materials

Human-like collagen (HLC, China patent number: ZL01106757.8, Mr = 97,000) was supplied by
our laboratory. Bovine serum albumin (BSA) was obtained from Amresco (Solon, OH, USA). Glutamine
transaminase (TGase) was purchased from Shanghai Yuanye Biotechnology Co., Ltd. (Shanghai, China).
The Dulbecco’s Modified Eagle’s Medium (DMEM)/high glucose (Hyclone), fetal bovine serum (FBS, BI),
and pancreatin (Hyclone) were purchased from Xian Maoda Biotechnology Co., Ltd. (Xi’an, China).
The Cell Counting Kit-8 (CCK-8) and the Live & Dead viability assay kit were provided by KeyGEN
Biological Technology Development Ltd. Co. (KGA317, Nanjing, China). All other chemicals were of
analytical grade and were used without further purification.

2.2. Synthesis of HLCS and HLCC Hydrogels

The preparation of the HLCS hydrogel is was follows. First, HLC (120 mg/mL) and BSA
(80 mg/mL) were completely dissolved in ultrapure water at 37 ◦C. NaCl (35 mg/mL) was added into
the solution. After mixing thoroughly, the TGase (6 U/mL) was added and completely dissolved in the
solution by stirring. Then, the mixture was cross-linked at 4 ◦C for 10 h to obtain the HLCS hydrogel.
Thereafter, the hydrogel was washed with ultrapure water for 3 days to remove free BSA, TGase and
NaCl molecules. Finally, the hydrogels were frozen at −80 ◦C for 4 h followed by lyophilization in a
freeze drier for 48 h.

The HLCC hydrogel was prepared using the same method but without BSA.

2.3. SDS-PAGE of the Water Extract of HLCS Hydrogel

The HLCS hydrogel was immersed in ultrapure water for 24 h to provide the water extract.
The water extract was diluted to the appropriate concentration. Then, HLC solution (0.1%),
BSA solution (0.1%), and TGase solution (0.1%) were prepared. After the preparation of the
sample, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was performed
using the Laemmli method, then the gel being removed and stained with Coomassie Blue
R-250 (Amresco, Solon, OH, USA) for about 30 min. Finally, we observed the experimental results
after decolorization of the gel.

2.4. Morphology of Hydrogels

The surface morphology of the hydrogel was observed by a scanning electron microscope
(SEM, Carl Zeiss, Oberkochen, Germany) at an accelerating voltage of 15 kV.

2.5. Density and Porosity of Hydrogels

The following formula was used to calculate the density (ρ) of the hydrogels:

ρ = (4M)/(πD2h) (1)

where M is the mass, D is the diameter, and h is the height of the hydrogel.
The porosity of hydrogels was calculated using the following equation:

Porosity (%) = (W2 − W3 − Ws)/(W1 − W3) × 100% (2)

where W1 is the quality of the 10 mL centrifuge tube filled with absolute ethanol, W2 is the total quality
of the 10 mL centrifuge tube with hydrogel after immersing the hydrogel in absolute ethanol, W3 is
the remaining mass of absolute ethanol and the 10 mL centrifuge tube after removal of the hydrogel,
and Ws is the dry weight of the hydrogel.
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2.6. Swelling Behavior of Hydrogels

The swelling behavior of the hydrogel was examined in phosphate buffered solution (PBS, pH 7.4)
at 37 ◦C. The freeze-dried hydrogel was weighed and recorded (M0). The hydrogel was immersed in
the PBS (pH 7.4) and removed at a predetermined point in time. After removing the surface solution
of the hydrogel with filter paper, it was weighed and recorded (M1). The swelling ratio of the hydrogel
was defined with the following equation:

Swelling ratio (%) = (M1 − M0)/M0 × 100%. (3)

2.7. Compressive Mechanical Properties of Hydrogels

The compression properties of the wet hydrogel (15 mm in diameter and 10 mm height) were
tested using an INSTRON 5565 Materials Testing Machine (Instron, Norwood, MA, USA) at a loading
rate of 10 mm/min. The compression strain of the wet HLCC hydrogel and the wet HLCS hydrogel
were 60% and 80%, respectively.

2.8. Cell Culture and Viability Analysis

The hydrogel sterilized with cobalt (Co60) irradiation was immersed in the DMEM/high glucose
culture medium (0.1 g/mL) at 37 ◦C for 72 h (GB/T16886). Rat articular chondrocytes were seeded on
96-well plates at a density of 104 cells/well. After incubation for 24 h in a 37 ◦C incubator containing
5% carbon dioxide (CO2), the hydrogel extracts were added to the 96-well plates (100 µL/well).
The cytotoxicity of the hydrogel extracts was determined using the CCK-8 assay after 1, 3, 5 and 7 days
of culture. The relative cell growth (%) was calculated as:

Relative cell growth (%) = (ODtest − ODblank)/(ODcontrol − ODblank) × 100%. (4)

The mean value of eight parallel samples was determined, and the whole test was repeated
three times.

2.9. Cell Attachment and Proliferation Analysis

The sterilized hydrogel was soaked in the DMEM/high glucose culture medium. Then, the saturated
hydrogel was placed in a 24-well plate. A 100 µL of cell suspension containing 105 cells was dropped
onto each hydrogel sample. After 3 h of culture, 1 mL of fresh DMEM medium was added to each well.
The cell-adhered hydrogel was cultured in incubators for 1, 3, 5 and 7 days, and the medium was
changed daily. The viability of chondrocytes cultured on hydrogels was evaluated by Live & Dead cell
viability assay. The live cells/dead cells were observed and imaged using by a fluorescence microscope
(Olympus IX-51, Tokyo, Japan).

After 7 days of chondrocytes seeding, the morphology of the cell-adhered hydrogel was observed
by SEM (Carl Zeiss, Oberkochen, Germany). The cell-adhered hydrogels were fixed with 2.5%
glutaraldehyde for 24 h at 4 ◦C. Then, the hydrogels were gradually dehydrated with gradient
ethanol solution (30%, 50%, 70%, 90%, 95%, 100%), and each gradient was dehydrated for 15 min
and dried. Finally, the cell-adhered hydrogel sections were observed by SEM after gold coating.

2.10. Animal Implantation and Histological Evaluation

All animals were obtained from the Xi’an Jiaotong University (Xi’an, China). The study was
conducted in accordance with relevant national legislation on the use of animals for research and the
protocol was approved by the Animal Ethics Committee of Northwest University (NWU201705153).
This study used healthy New Zealand white rabbits weighing 3–4 kg. Under general anesthesia,
a cartilage defect (4.0 mm in diameter, 4.0 mm in depth) was created in the trochlear groove of the left
leg using a dental grinding machine (Saeshin, STRONG 102, Daegu, Korea). The rabbits were randomly
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divided into three groups: the HLCC group, the HLCS group, and the control group (defect only).
The rabbits were euthanized 12 weeks after the surgery.

The harvested cartilage specimens were fixed in 10% formalin for 7 days and then decalcified in
15% ethylenediaminetetraacetate dihydrate (EDTA) solution for 30 days. After being embedded in
paraffin, the samples were cut into 5 µm sections. Then, the sections were stained with hematoxylin
and eosin (H&E) and Safranin O-fast green to detect the morphology and glycosaminoglycan (GAG)
distribution. The histological staining was observed and imaged under an optical microscope
connected to a charged-coupled device (CCD) camera (DP25, Olympus, Tokyo, Japan).

2.11. Statistical Analysis

All experiments were conducted at least three times unless otherwise stated. All the data
were expressed as mean ± standard deviation and analyzed by one-way analysis of variance
(ANOVA) using Origin 8.5 software (OriginLab, Northampton, MA, USA). p < 0.05 was considered
statistically significant.

3. Results and Discussion

3.1. Preparation of the HLCS Hydrogel

The cross-linking mechanism and schematic chemical structure of the HLCS hydrogel is shown in
Figure 1, formed by the reaction of the γ-carboxamide group of a glutamine residue and the ε-amino
group of a lysine residue in HLC. The TGase can catalyze the cross-linking reaction of two groups
of HLC to form a relatively protease-resistant intermolecular or intramolecular ε-(γ-glutamyl) lysine
isopeptide bond, thus forming a stable 3D network structure [32]. However, the TGase cannot catalyze
the cross-linking reaction of BSA. During the crosslinking process, the HLC molecules around the BSA
molecules were not completely cross-linked, which affected the cross-linking degree of the hydrogel.
Therefore, after the completion of cross-linking, BSA only was physically mixed in the 3D network
structure of the hydrogel, and those non-crosslinked section formed pores. Meanwhile, the addition of
sodium chloride (NaCl) also affected the cross-linking of the hydrogel by changing the ionic strength
of the solution. Changes of the ionic strength in solution could affect protein solubility. At low
temperatures (the crosslinking temperature was 4 ◦C), suitable ion concentrations of NaCl could lead
to a certain degree of phase separation [33–35]. In this state, HLC was crosslinked by TGase, so the
HLCS hydrogel formed a sponge-like 3D porous structure. In the end, the BSA, NaCl, and TGase
molecules were washed out.
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As seen in Figure 2, the electrophoretic band of the water extract of HLCS hydrogel was like the
electrophoretic band of the BSA solution, where there was no electrophoretic band of the HLC solution.
This result showed that BSA did not participate in the cross-linking reaction and could be washed out of
the HLCS hydrogel. The electrophoretic bands of the TGase solution were partially overlapped with the
electrophoretic bands of the water extract of the HLCS hydrogel. However, as a catalyst, the enzyme was
not directly involved in the reaction, so the TGase was also washed out by ultrapure water.

Polymers 2017, 9, 638  6 of 16 

 

washed out of the HLCS hydrogel. The electrophoretic bands of the TGase solution were partially 

overlapped with the electrophoretic bands of the water extract of the HLCS hydrogel. However, as a 

catalyst, the enzyme was not directly involved in the reaction, so the TGase was also washed out by 

ultrapure water. 

 

Figure 2. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of the water 

extract of HLCS hydrogel. Lane 1 is the water extract of HLCS hydrogel. Lanes 2, 3, and 4 are bovine 

serum albumin (BSA) solution, HLC solution and TGase solution, respectively. 

Figure 3 shows the appearance and water absorption properties of the wet HLCS hydrogel. The 

wet HLCS hydrogel is translucent and has excellent flexibility and water absorption capacity. In 

addition, the hydrogel can also be formed into different shapes with a mold, which satisfies the 

requirements for clinical transplantation. 

 

Figure 3. The appearance and water absorption properties of the wet HLCS hydrogel. 

Figure 2. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of the water extract
of HLCS hydrogel. Lane 1 is the water extract of HLCS hydrogel. Lanes 2, 3, and 4 are bovine serum
albumin (BSA) solution, HLC solution and TGase solution, respectively.

Figure 3 shows the appearance and water absorption properties of the wet HLCS hydrogel.
The wet HLCS hydrogel is translucent and has excellent flexibility and water absorption capacity.
In addition, the hydrogel can also be formed into different shapes with a mold, which satisfies the
requirements for clinical transplantation.
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3.2. Morphology, Density, and Porosity of Hydrogels

The SEM image of HLCC hydrogel and HLCS hydrogel are shown in Figure 4. Both hydrogels have
a porous structure. However, the HLCC hydrogel pore connectivity is poor, and the pore size is less
than that of the HLCS hydrogel. The HLCC hydrogel mainly formed pores by vacuum freeze drying
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and the addition of NaCl. However, the presence of BSA affected the cross-linking of HLC, thus the
HLCS hydrogel has a highly-connected porous structure. Furthermore, the HLCS hydrogel exhibited a
relatively homogeneous pore structure, while the HLCC hydrogel showed a non-homogeneous porous
structure. Moreover, from Figure 4, the pore size of the HLCS hydrogel was in the range of 100 to
300 µm. In general, a closed and non-homogeneous pore structure is not conducive to the proliferation
and uniform distribution of cells, so the structure of the HLCS hydrogel was more conducive to cell
adhesion and proliferation.

Polymers 2017, 9, 638  7 of 16 

 

3.2. Morphology, Density, and Porosity of Hydrogels 

The SEM image of HLCC hydrogel and HLCS hydrogel are shown in Figure 4. Both hydrogels 

have a porous structure. However, the HLCC hydrogel pore connectivity is poor, and the pore size is 

less than that of the HLCS hydrogel. The HLCC hydrogel mainly formed pores by vacuum freeze 

drying and the addition of NaCl. However, the presence of BSA affected the cross-linking of HLC, 

thus the HLCS hydrogel has a highly-connected porous structure. Furthermore, the HLCS hydrogel 

exhibited a relatively homogeneous pore structure, while the HLCC hydrogel showed a 

non-homogeneous porous structure. Moreover, from Figure 4, the pore size of the HLCS hydrogel 

was in the range of 100 to 300 μm. In general, a closed and non-homogeneous pore structure is not 

conducive to the proliferation and uniform distribution of cells, so the structure of the HLCS 

hydrogel was more conducive to cell adhesion and proliferation. 

 

Figure 4. SEM images of hydrogels: (a) HLCC hydrogel, Mag = 100×; (b) HLCC hydrogel, Mag = 200×; 

(c) HLCS hydrogel, Mag = 100×; (d) HLCS hydrogel, Mag = 200×. 

The densities of the HLCC and HLCS hydrogels were 0.33 and 0.20 g/cm3, respectively (Figure 

5a). The porosities of the HLCC and HLCS hydrogels were 77.76% and 93.43%, respectively (Figure 

5b). The porosity of the HLCS hydrogel was significantly higher than that of the HLCC hydrogel, 

while the density was significantly lower than the HLCC hydrogel. This is consistent with the SEM 

results due to the higher degree of cross-linking of the HLCC hydrogel. As an ideal tissue 

engineering hydrogel, a porous interconnected structure and high porosity are required, which are 

important for nutrition supply and cell migration [36]. In brief, the HLCS hydrogel has a 

highly-connected porous structure and an excellent porosity of more than 90%, and a pore size in the 

range of 100 to 300 μm, all of which make HLCS hydrogel better for the repair and regeneration of 

cartilage tissue [11–13]. 

Figure 4. SEM images of hydrogels: (a) HLCC hydrogel, Mag = 100×; (b) HLCC hydrogel, Mag = 200×;
(c) HLCS hydrogel, Mag = 100×; (d) HLCS hydrogel, Mag = 200×.

The densities of the HLCC and HLCS hydrogels were 0.33 and 0.20 g/cm3, respectively (Figure 5a).
The porosities of the HLCC and HLCS hydrogels were 77.76% and 93.43%, respectively (Figure 5b).
The porosity of the HLCS hydrogel was significantly higher than that of the HLCC hydrogel, while the
density was significantly lower than the HLCC hydrogel. This is consistent with the SEM results due
to the higher degree of cross-linking of the HLCC hydrogel. As an ideal tissue engineering hydrogel,
a porous interconnected structure and high porosity are required, which are important for nutrition
supply and cell migration [36]. In brief, the HLCS hydrogel has a highly-connected porous structure
and an excellent porosity of more than 90%, and a pore size in the range of 100 to 300 µm, all of which
make HLCS hydrogel better for the repair and regeneration of cartilage tissue [11–13].
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3.3. Swelling Ratio of Hydrogels

As a biomedical material, the swelling ratio of the hydrogel is an important element in assessing
the efficacy of the material. The swelling ratio represents the water absorption capacity of the
hydrogel. In this study, the swelling ratios of the hydrogels in PBS (pH 7.4) were detected, as shown
in Figure 6. The HLCS hydrogel exhibited excellent water absorption capacity, achieving swelling
equilibrium at about 5 min, while the HLCC hydrogel took 120 min to achieve swelling equilibrium. The
highly-connected porous structure of the HLCS hydrogel allows the hydrogel to quickly absorb water,
demonstrating the sponge-like properties of the HLCS hydrogel. The swelling ratio of the HLCC

hydrogel was higher than the HLCS hydrogel, likely due to the influence of the high cross-linking
density [37]. HLC is a hydrophilic macromolecule, containing many hydrophilic groups that can attract
water molecules. The HLCC hydrogel has a high cross-linking density, smaller pore size, and poor pore
connectivity, so the HLCC hydrogel can retain more moisture and therefore have a higher swelling ratio
after swelling equilibrium. However, the HLCS hydrogel has a low cross-linking density, large pore size,
and good pore connectivity. Although the hydrophilic groups on the HLCC can attract water molecules
but the water is easily lost from the pores, so the swelling ratio of HLCS hydrogel is lower than that of
the HLCC hydrogel. In short, due to its excellent water absorption capacity, the HLCS hydrogel can
quickly absorb joint fluid and fill damaged tissue as a cartilage scaffold.
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3.4. Compressive Mechanical Properties of Hydrogels

The mechanical properties are one of the most important indicators that the properties of the
hydrogel can be matched to the tissue specificity of the extracellular matrix (ECM) [38]. Compression
is the primary means of mechanical testing of hydrogel materials. The compressive stress-strain
curve of the HLCC hydrogel and the HLCS hydrogel (ε = 60%) in the wet state is shown in Figure 7a.
The Young’s modulus of the HLCC hydrogel and the HLCS hydrogel were 5819.06 ± 552.55 KPa
and 960.31 ± 193.63 KPa, respectively (Figure 7b). The Young’s modulus of the HLCC hydrogel was
significantly higher than that of the HLCS hydrogel, due to the high cross-linking density of the
HLCC hydrogel. High levels of cross-linking form more isopeptide bonds, which stabilizes the HLCC

skeleton, resulting in the increase of the modulus. In the field of tissue engineering, cartilage tissue
requires scaffolds with higher strength mechanical properties.
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stress-strain curves of the hydrogels (ε = 60%); (b) Young’s modulus of the hydrogels (ε = 60%);
(c) Compressive stress-strain curves of the hydrogels under one compressing and releasing cycle
(εHLC

c = 60% and εHLC
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and εHLC

s = 80%).

The compressive modulus of the natural articular cartilage was reported between 0.1 and 2 MPa
by Naseri et al. The compressive modulus values of native cartilage obtained from different sources
and test conditions are different [39]. However, scaffolds with good mechanical properties are not
conducive to retaining a high porosity [10]. Good mechanical properties provide mechanical support
for new tissues, while high porosity provides a suitable 3D environment for chondrocytes growth and
nutrient transport [40–42]. A balance between mechanical properties and porous structure is key to
the success of any scaffold. Obviously, HLCC hydrogel has better mechanical properties but poor pore
connectivity and low porosity, which are not suitable for attachment and proliferation of chondrocytes.
Conversely, the HLCS hydrogel not only has excellent pore connectivity and high porosity, but also
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has mechanical properties that sufficiently meet the needs of cartilage scaffolds. Therefore, the HLCS

hydrogel has considerable potential as a cartilage tissue engineering scaffold.
Figure 7c shows that the HLCC hydrogel could support a 60% compressive strain, whereas the

HLCS hydrogel could support a compressive strain of 80%. These two hydrogels would return to their
initial shape after the release of the compressive force. The cyclic compression curve of the hydrogels
is a non-linear closed curve. When the hydrogel absorbs water, the swelling rate of the hydrogel is less
than the release rate of the machine, which might be the cause of the shape of this curve. The 10 cycles
of compression fatigue curves for the HLCC hydrogel (ε = 60%) and the HLCS hydrogel (ε = 80%) are
shown in Figure 7d. After a compression cycle, the hydrogels underwent some plastic deformation.
The HLCS hydrogel changed little, but the HLCC hydrogel significantly changed. This might be due to
sponge-like structure of the HLCS hydrogel that exhibited an excellent elastic property in the wet state.

3.5. Cell Viability Analysis

Escherichia coli (E. coli) is a Gram-negative bacterium and HLC is highly expressed by recombinant
Escherichia coli BL21, so proteins may also contain small amounts of endotoxin after being isolated and
purified. Endotoxins are toxic to cells and can be leached from the hydrogel. Therefore, we examined
the effect of the hydrogel extracts on cell proliferation using the CCK-8 assay to identify the cytotoxicity
of the hydrogels. Cell viabilities of the chondrocytes in the extracts of the two hydrogels after culturing
for 1, 3, 5 and 7 days are shown in Figure 8. After one day of culture, chondrocytes were not fully
adapted to the new environment, so the cell viability was relatively low. In general, chondrocytes
cultured with the extracts of two hydrogels showed proliferation at 3, 5, and 7 days. At 7 days,
the chondrocytes were significantly proliferated (* p < 0.05, # p < 0.05), and both chondrocytes cultured
with extracts of hydrogels had higher cell viability. Both extracts of hydrogels can promote the
proliferation of chondrocytes. This may be due in part to HLC that is not completely cross-linked
being leached out, promoting cell proliferation. After 7 days of culture, the cell viabilities of the
HLCC hydrogel and the HLCS hydrogel were 119.99% and 112.1%, respectively. According to the
ISO standards (ISO10993.12-2005), the toxicities of the HLCC hydrogel and the HLC-S hydrogel
were all grade 0. Simultaneously, we observed that HLC had an excellent effect on improving cell
growth, which could promote the regeneration of damaged tissue. Therefore, the HLCC and HLCS

hydrogels could promote cell growth and proliferation, which is in line with the requirements for
tissue engineering scaffolds.
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3.6. Adhesion and Proliferation of Chondrocytes on the Hydrogels

In this study, we observed the adhesion and proliferation of rat articular chondrocytes on the
hydrogels by Live & Dead cell viability assay. The chondrocytes were cultured on the hydrogel for 1, 3,
5 and 7 days, and the cell adhesion is shown in Figure 9. The living cells (green) grew significantly
more than dead cells (red), which indicates excellent cell viability of the hydrogels. By comparing
the chondrocytes on the hydrogels at 1, 3, 5 and 7 days, we found that the chondrocytes on both
hydrogels had significant proliferation. After 7 days of culture, the live cells on the hydrogel were
tightly connected and almost no dead cells were present (Figure 9d,h). As shown in Figure 9c,d,g,h,
the chondrocytes on the HLCC hydrogel only grew on the hydrogel surface, while the HLCS hydrogel
image showed that many chondrocytes were distributed on the pore walls and the hydrogel surface.
In addition, many chondrocytes were found in the depths of the HLCS hydrogel. Because the focal
lengths of the different planes were different, some chondrocytes that adhered to the HLCS hydrogel
are slightly blurred in Figure 9. The fluorescent staining results also showed that the HLCS hydrogel
had a 3D porous structure and the cell distribution of the HLCS hydrogel performed more uniformly.
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Figure 9. Fluorescence micrographs of cell morphology on the HLCC hydrogel for (a) 1; (b) 3; (c) 5 and
(d) 7 days. Chondrocytes seeded on the HLCS hydrogel at (e) 1; (f) 3; (g) 5 and (h) 7 days. Live and
dead cells were dyed green and red, respectively.

The adhesion of chondrocytes to hydrogels was also evaluated by SEM. The morphology of the
chondrocytes adhering to the hydrogels after 7 days in culture is shown in Figure 10. Chondrocytes
adhered and proliferated on both hydrogels and exhibited good morphology. The shape of the
chondrocytes attached to the surface of the hydrogels was spindle or irregular. The chondrocytes on
the HLCS hydrogel adhered to the pore walls and were uniformity distributed (Figure 10c,d), whereas
the chondrocytes on the HLCC hydrogel only adhered to the surface of the hydrogel and were unevenly
distributed (Figure 10a,b). This was consistent with the results of the Live and Dead cell viability assay
(Figure 9). In conclusion, the fluorescence micrographs and the SEM micrographs of the chondrocytes
both suggested that the HLCC and HLCS hydrogels possessed excellent biocompatibility. Moreover,
the 3D porous structure of HLCS hydrogel is more conducive to the adhesion and proliferation
of chondrocytes.
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Figure 10. The SEM micrographs of the chondrocytes adhering to the hydrogels: (a) Chondrocytes
seeded on the HLCC hydrogel, Mag = 500×; (b) Chondrocytes seeded on the HLCC hydrogel,
Mag = 1000×; (c) Chondrocytes seeded on the HLCS hydrogel, Mag = 500×; (d) Chondrocytes seeded
on the HLCS hydrogel, Mag = 1000×.

3.7. Observation and Histological Evaluation of Cartilage Repair

The repair status of the cartilage defects 12 weeks after surgery is shown in Figure 11. Compared
to the picture of initial defect in Figure 11a, the defect in the control group was not filled (Figure 11b),
whereas the defects were observed to be filled by a semitransparent tissue in the HLCC group
(Figure 11c) and the HLCS group (Figure 11d). The defect in the HLCC group was shallower and was
filled with semitransparent cartilage-like tissue, but remained discontinuous. The defect in the HLCS

group was filled with a uniform cartilage-like tissue with a flat surface. Only a blurred boundary was
observed between the defect and the adjacent normal cartilage.
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The microscopic morphology of the cartilage defect area was observed by H&E staining and
Safranin O-fast green staining 12 weeks after surgery (Figure 12). The defect in the control group
without implant was not filled, and only a few loose fibrous tissues were found (Figure 12a,d).
The Safranin O-fast green staining image also indicated that the defect in the control group was
not filled with no GAG deposition (no red). The defect in the HLCC group was partly filled with
relatively dense fibrous tissue, but the fibrous tissue was thinner than the adjacent normal cartilage
tissue (Figure 12b,e). Like the control group, the defect in the HLCC group was not observed with
Safranin O-fast green staining (red), without GAG deposition. Compared to the control group and the
HLCC group, the defect in the HLCS group was filled with uniform cartilage-like tissue, which was
well-integrated with adjacent normal cartilage tissue (Figure 12c,f). In addition, regenerated cartilage
tissue in the defect site was observed to be stained with Safranin O-fast green staining (red), indicating
that there was adequate GAG deposition in the regenerated cartilage tissue. In summary, the gross
observation and histological analysis of the regenerated tissues revealed that the implant of the HLCS

group could effectively repair articular cartilage defects.
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Figure 12. Histological analysis of the cartilage defect area: (a) The control group 12 weeks after surgery,
stained with H&E; (b) The HLCC group 12 weeks after surgery, stained with H&E; (c) The HLCS group
12 weeks after surgery, stained with H&E; (d) The control group 12 weeks after surgery, stained with
Safranin O-fast green; (e) The HLCC group 12 weeks after surgery, stained with Safranin O-fast green;
(f) The HLCS group 12 weeks after surgery, stained with Safranin O-fast green. The defects are marked
with white arrows in the images. OC: original cartilage tissue. RC: repaired cartilage tissue.

4. Conclusions

In this study, we used TGase as a cross-linker to prepare the HLCS hydrogel for cartilage
tissue engineering. We proposed a novel pore-forming method that used BSA as porogen to
obtain the porous structure of the hydrogel. From the SEM images, the HLCS hydrogel had a
highly-connected 3D porous structure. The physical and chemical properties of the hydrogel were
explored by a series of experiments. The results showed that the HLCS hydrogel had high porosity,
rapid water absorption capacity, and suitable mechanical properties. In vitro cell culture results
demonstrated that chondrocytes could adhere to the HLCS hydrogel and had good cell viability and
cell morphology. The in vivo experiments demonstrated that the HLCS hydrogel could effectively
repair rabbit articular cartilage damage. Therefore, the HLCS hydrogel could be an ideal biomaterial
for cartilage tissue engineering.
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