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Abstract: The aims of this paper are: (1) to review the current state of the art in the field of cartilage
substitution and regeneration; (2) to examine the patented biomaterials being used in preclinical
and clinical stages; (3) to explore the potential of polymeric hydrogels for these applications and the
reasons that hinder their clinical success. The studies about hydrogels used as potential biomaterials
selected for this review are divided into the two major trends in tissue engineering: (1) the use of
cell-free biomaterials; and (2) the use of cell seeded biomaterials. Preparation techniques and resulting
hydrogel properties are also reviewed. More recent proposals, based on the combination of different
polymers and the hybridization process to improve the properties of these materials, are also reviewed.
The combination of elements such as scaffolds (cellular solids), matrices (hydrogel-based), growth
factors and mechanical stimuli is needed to optimize properties of the required materials in order to
facilitate tissue formation, cartilage regeneration and final clinical application. Polymer combinations
and hybrids are the most promising materials for this application. Hybrid scaffolds may maximize
cell growth and local tissue integration by forming cartilage-like tissue with biomimetic features.

Keywords: cartilage regeneration; polymeric hydrogels; polysaccharides; hybrid hydrogels;
hybrid scaffolds

1. Introduction: Current Clinical Approaches and the Need for New Developments

The aim of this paper is to review the current state of the art of materials for cartilage substitution
and regeneration. Section 1 describes the current state of the art in clinical treatments. Polymeric
hydrogels used in cartilage regeneration and the reasons hindering their clinical success are reviewed
in Section 2. The preparation techniques using polysaccharides and the resulting hydrogel properties
are described in Section 3. Finally, future trends are explored in Section 4.

Several reviews about hydrogels for cartilage regeneration have been published for the last
10 years, focusing on preparation and characterization, natural and synthetic polymer precursors,
gelation kinetics, cell and drug delivery, growth factors, mechanical properties and biocompatibility.
Nevertheless, most of those reviews do not propose new alternatives to improve hydrogels properties
which can fulfill the real clinical needs in terms of tissue regeneration, mechanical properties and
degradation kinetics. Therefore, this paper reviews relevant literature published during 2013–2017,
related to the application, fabrication, characterization, in vitro and in vivo assays of biomaterials
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based on hydrogels for cartilage regeneration. The studies selected are articles and reviews written
in English.

Currently, there are no clinical satisfactory solutions for cartilage tissue regeneration [1–3].
The most widely used clinical procedure to heal cartilage injury involves penetrating the wound
to the subchondral bone, allowing the access of blood flow and new biological material [4–7]. However,
such clinical treatments often result in the formation of fibrocartilaginous tissue (Figure 1), which is
weaker than the original one, failing to integrate properly with surrounding tissue, and degrading
over a period between 6 to 12 months [8–12].
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Figure 1. Common clinical procedure used to heal cartilage injury. Original illustration designed and
provided by the authors.

During the last few years, material scientists and tissue engineers have tried to help clinicians
by confronting the challenge of manufacturing porous 3D scaffolds which resemble the chemical
composition and architecture (Figure 2) of the extracellular matrix (ECM) of the cartilage [13–19]. Most
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of the studies are directed to determine how chemical composition and architecture influence cellular
phenotype, differentiation, integration and extracellular matrix secretion during in vitro [20–25] and
in vivo [26–32] assays.
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Figure 2. Top. How artificial scaffolds try to mimic the anisotropic characteristic in cartilage
tissue [33,34]. Reprinted with permission of [33] Sandra Camarero-Espinosa et al. Biomaterials, 74:
42–52. Bottom. Matrix regeneration within a macroporous non-degradable implant for osteochondral
defects is not enhanced with partial enzymatic digestion of the surrounding tissue. (A) Environmental
scanning electron microscopy of a longitudinal slice taken through the cartilage-bone-implant. The
specimen was retrieved at the 1 month post-operative time point. Good integration between the
implant and the surrounding bone and articular cartilage was observed. (B) Environmental scanning
electron microscopy image of a longitudinal slice taken through the cartilage-bone-implant construct at
3 months. Fibrous encapsulation of the implant is highlighted by arrows. Reprinted with permission
of [34] Aaron J. Krych et al. J. Mater. Sci. Mater. Med., 24: 2429–2437.

Several natural and synthetic polymers are being used to create novel materials, as collected in
Table 1, in attempts to produce scaffolds for tissue engineering and regenerative medicine having
clinical application [35].

Table 1. Scaffolds in clinical and preclinical use for cartilage regeneration.

Application Material Problem-result Ref.

Nose (dorsal
augmentation material in
rhinoplasty)

Tissue-engineered
chondrocyte PCS
(Porcine
Cartilage-derived
Substance) scaffold
construct.

Preliminary animal study: Excellent
biocompatibility, neocartilage formation
starts. However, it was not confirmed
that the constructs contributed to the
formation of neocartilage.

[36]
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Table 1. Cont.

Application Material Problem-result Ref.

Knee (subchondral bone)

Osteochondral
biomimetic
nanostructured scaffold
Maioregen®

Better results in healing complex lesions
in comparison with the implantation of
a purely chondral scaffold.

[37]

Cell-free biphasic
scaffold:
collagen-hydroxyapatite
osteochondral scaffold

Statistically significant improvement in
clinical scores. At 5 years, between
60.9% and 78.3% of the cases showed
complete filling of the cartilage,
complete integration of the graft, intact
repaired tissue surface and
homogeneous repaired tissue.

[38]

Nanostructured
biomimetic three-phasic
collagen-hydroxiapatite
construct

The implantations to treat chondral and
osteochondral knee defects were
effective in terms of clinical outcome,
although MRI detected abnormal
findings.

[39]

Knee (chondral defects)

Autologous ovine MNC
Cell-seeded and cell-free
DL-poly-lactide–co–
glycolide (PLGA)
scaffolds

The engineered tissue had not local or
systemic adverse effects. However, only
a poor integration of the tissue
engineering product into adjacent tissue
was reached and the formed ECM was
not mature enough for long-lasting
weight-loading resistance.

[40]

Type I
collagen-hydroxyapatite
(Maioregen®)
nanostructural
biomimetic
osteochondral scaffold

The use of the Maioregen® scaffold is a
good procedure for the treatment of
large osteochondral defects; however,
the lesion site seems to influence the
results. Patient affected in the medial
femoral condyle showed better results.

[41]

DeNovo (RevaFlex)
engineered tissue graft

Preliminary evidence suggests that
DeNovo ET implant is capable of
spontaneous matrix formation with no
immune response, improving function
and recreating hyaline-like cartilage.

[42]

Knee (femoral condyles)

Biphasic cylindrical
osteochondral composite
construct of
DL-poly-lactide–co–
glycolide (PLGA). Its
lower body is
impregnated with
β-tricalcium phosphate
(TCP)

The regenerated osteochondral tissue
was evaluated as a tissue of acceptable
quality.
Regenerated cartilage was defined as
being hyaline when the ground
substance was homogeneous without
fibrous texture.

[43]

Tibial plateau
(osteochondral scaffold)

Osteochondral
biomimetic
collagen-hydroxiapatite
scaffold (Maioregen®,
Fin-ceramica, Faenza,
Italy)

MRI abnormalities. Clinical outcome
with stable results up to a mid-term
follow-up.

[44]
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Table 1. Cont.

Application Material Problem-result Ref.

Microfractured defect
(for filling
microfractures)

BioCartilageTM, product
containing dehydrated,
micronized allogeneic
cartilage, implanted with
the addition of platelet
rich plasma

No human clinical outcomes data
available. Data regarding results are
limited to expert opinion.

[45]

Chondroitin sulfate
adhesive-Poly(ethylene
glycol) diacrylate
(PEGDA) hydrogel
system combined with
standard microfracture
surgery

Significant increase in tissue fillers with
defects in a short-term follow-up. [46]

Knee (for donor site
filling)

Artificial TruFit cylinders
made of fully synthetic
material called
PolyGraft®-Material:
50% copolymer (PDLG),
composed of 85%
poly(D,L-lactide) and
15% glycolide; 40%
calcium sulfphae, 10%
PGA fibers

No clinical improvement could be
found. The regeneration of the filled
defects took more than 2 years, even
though TruFit Plugs are supposed to
stimulate cartilage and bone cell
migration from the surrounding tissue
to the synthetic cylinders.

[47]

Porous poly(ethylene
oxide)terephthalate/
butylene terephthalate)
(PEOT/PBT) implants

Treated defects did not cause
postoperative bleeding.
Well integration. Surface stiffness was
minimally improved compared to
controls. Considerable biodegradation
after 9 months. Congruent
fibrocartilaginous surface repair with
interspersed fibrous tissue formation in
implanted sites. Donor site:
fibrocartilaginous surface repair.

[48]

Shoulder
Engineered hyaluronic
acid membrane,
Hyalograft®

Using the hyaluronic membrane had no
effect on the final outcome. No
difference was observed between the
fibrocartilage tissue formed after
implementing microfractures and the
fibrocartilage tissue grown on the
hyaluronic acid membrane scaffold.

[49]

However, the complexity of the physical structure and properties of cartilage, including
mechanical [50–54], anisotropic [55–57], nonlinear [58–60], inhomogeneous [61–63] and viscoelastic
properties [64–66], are thought to be directly related to the failing of most of the attempts made to
fabricate artificial substitutes for cartilage [67–71]. As a consequence, there are not yet biomaterials for
cartilage regeneration in clinical use with satisfactory results. Scaffolds based on tissue-engineered
constructs, osteochondral biomimetic scaffolds, cell-free biphasic or three-phasic scaffolds, autologous
scaffolds, engineered-tissue grafts, porous implants have not demonstrated to be a satisfactory solution
in clinical application. Therefore, it seems evident that there is a need to designi more suitable scaffolds
and to develop new types of materials which can be used for cartilage regeneration.

In the case of articular cartilage repair, the required materials must provide successful mechanical
properties, biological delivery, fixation of the device in situ and stability to the joint. Besides, the
assays done to these materials need to be based on the intended biological effect and potential risks
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which have to be evaluated, such as toxicity, dedifferentiation, immunogenicity and contamination.
Some preclinical trials with little animal models, such as rats and white New Zealand rabbits, are
necessary to predict how biomaterials may behave during clinical assays. Moreover, some preliminary
studies can be done in cadaveric human bodies; however extensive trials with large animal preclinical
models are mandatory to obtain market approval. Therefore, just a few of the novel materials or
tissue protocols are allowed to have clinical application or even to be commercialized. When trying
to compare different studies of novel materials once they are introduced into clinical practice, there
are other problems: (1) lack of homogeneity due to the different studied population; (2) short- and
mid-follow-ups; (3) use of different evaluation systems; (4) new scaffold-based strategies for cartilage
regeneration, either cell seeded or cell-free biomaterials; (5) procedures which differ in scaffold
fixation methods, surgical approaches and postoperative rehabilitation phases. Therefore, there is the
need among scientists, clinicians, industry and regulatory experts to improve communication and
collaboration in order to overcome all the barriers in tissue engineering and to establish a defined road
map to reach clinical application.

2. Hydrogels in Cartilage Regeneration

Hydrogels are emergent candidates for applications in cartilage regeneration. Hydrogels are
three-dimensional hydrophilic polymer networks made up of water-soluble polymers, crosslinked
by either covalent or physical methods [72] (Figure 3) to form a water-insoluble hydrogel [73,74].
Hydrogels can be composed of natural polysaccharides [75–77], proteins [78–82] or synthetic
polymers [83–85]. Hydrogels are able to swell and retain great portions of water, from 20% to 99%
by weight, when placed in aqueous solutions [86–88]. Hydrogels, tested as matrices to build up
scaffolds, provide highly desirable 3D environments for cell growth, holding a great promise for the
regeneration of cartilaginous tissue as in vitro and in vivo studies showed [89–94]. Several studies
use cells to catalyze tissue formation while being distributed in 3D hydrogel matrices. Cell matrix
adhesion to hydrogel is an important interaction which regulates stem cell survival, self-renewal, and
differentiation. Using 3D culture systems (hydrogels) may provide an appropriate niche, scaffolding
and environmental bioactive signals for cells. Depending on their physical structure and chemical
composition, hydrogels can preserve a compositional and mechanical similarity with the native
extracellular matrix of cartilage [95–98]. These properties are necessary for controlling cell response,
differentiation and functional tissue regeneration [99–106].

One important reason for the choice of hydrogels in cartilage applications is the possibility of
making them injectable which offers advantages over solid scaffolds such as the possibility of using
a non-invasive approach. Injectable hydrogels can fill any shape defect and they may provide a
homogeneous cell distribution within any defect size or shape prior to gelation [107–111]. Over
recent years, a variety of naturally [112–119] and synthetically [120–122] derived materials such
as silk [123,124], resilin [125], chitosan [126], chondroitin sulfate [127], hyaluronic acid [128–131],
gelatin [132], agarose [133], alginate [134] poly(vinyl alcohol) (PVA) [95,135] poly(acrylic acid) [136],
acrylamide [137] and many others have been used to form injectable hydrogels for cartilage repair.

Collagen II and glycosaminoglycans (GAGs) are cartilage-specific extracellular matrix
components; they play a crucial role in regulating the expression of chondrocytic phenotype and
in supporting chondrogenesis. They have been used for in vitro and in vivo assays [138]; many
attempts have been made with different GAGs precursors of hydrogels to provide an appropriate
biochemical and biomechanical environment for cells [139–146]. Unfortunately, hydrogels derived
from GAGs degrade really fast, thus different chemical modifications have to be introduced. Several
crosslinking degrees are necessary in attempt to modulate their degradation kinetics. However, their
biological response is also modified [147–151]. In general, the studies found on literature can be
divided into two main types: (1) cell-free hydrogel scaffolds; and (2) cell-seeded hydrogel scaffolds.
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2.1. Cell-Free Hydrogel Scaffolds

Investigations based on cell-free hydrogel scaffolds focus on their physico-chemical
characterization and mechanical properties [152]. These studies allow a full understanding of physical
and chemical interactions within materials and how these interactions may affect biological and
mechanical properties of scaffolds.

Poly(ethylene glycol) (PEG) and derived hydrogels are ones of the most widely used synthetic
polymer for tissue engineering. The modulus for bovine articular cartilage, measured in compression
mode, is 950 KPa, which is close to the value of the fully hydrated polyethylene glycol diacrylate
(PEG-DA) hydrogel [87]. Polyvinyl alcohol is another synthetic polymer widely used to form
hydrogels due to their excellent biocompatibility, high permeability to fluids (showing an equilibrium
water content of 32 ± 5%) and low friction coefficients (µ) in the range of 0.02 to 0.05 against
smooth and wet substances. Some studies on PVA-based scaffolds aim to demonstrate that under
tribological loading, friction and wear characteristics compatible to natural articular cartilage can be
achieved [153]. As low friction coefficients are required for engineered cartilage, polyvinyl alcohol
(PVA)/polyvinylpyrrolidone (PVP) hydrogels were synthesized with different polymerization degrees:
1700, 2400 and 2600 for the PVA; and different polymer concentrations: 10% w/w, 15% w/w and 20%
w/w of PVA/PVP. It was found that the inner structures of hydrogels tend to be denser when polymer
concentration and polymerization degree of PVA increase. While the friction coefficient increases
(from 0.037 to 0.044) with an increment in the polymerization degree of PVA (average increase rate is
approximate 3%), the friction coefficient decreases (from 0.033 to 0.03 for a 2.5 N load; from 0.049 to
0.045 for a 7.5 N load) with an increment in the polymer concentration (from 10% to 20%) in the low
load region and under liquid lubrication. Thus, there is the need to keep friction coefficients stable
under lubricated conditions [154].

Another study using PVA-based hydrogels, crosslinked with trimetaphosphate (STMP), revealed
that fully hydrated hydrogels were covalently crosslinked systems when mechanically tested, with a
rheological behavior (the G′ changed from 0.01 MPa (0.01 Hz) to 0.02 MPa (15 Hz)) similar to that of
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tibia cartilage (G′ = 0.03 for tissue surface and G′ = 0.11 for overall tissue) [86]. As previously said, it is
an important challenge to develop scaffolds which possess mechanical properties mimicking those of
cartilage tissue, since cartilage is a complex nonlinear, viscoelastic and anisotropic extracellular matrix
structure. T. Chen et al. [155] reported that hydrodynamic conditions, simulating the motion-induced
flow fields between the articular surfaces within the synovial joint, induce the formation of a distinct
superficial layer on tissue engineered cartilage hydrogels. These hydrodynamic conditions enhance,
on the superficial layers, the production of cartilage matrix proteoglycan, type II collagen and a highly
aligned fibrillary matrix which resembles the alignment pattern in native tissue surface zone.

Since many materials do not exhibit a low friction coefficient or withstand several loading
cycles, some of them are infiltrated with an interpenetrating network hydrogel to form functional
scaffolds which provide load-bearing and tribological properties, similar to native cartilage ones. For
example: (1) a porous three-dimensionally woven poly(ε-caprolactone) fiber scaffold was infused
with a “tough-gel” made of alginate and polyacrylamide [83]; (2) a boundary lubricant functionalized
PVA-based hydrogel was developed to be used as a synthetic replacement for focal defects in articular
cartilage [156]. Other techniques to develop hydrogels with high mechanical strength are: by using a
double network or two-step polymerization [88,157]; or by functionalizing hydrogels with different
organic or inorganic molecules [158].

2.2. Cell-Seeded Hydrogel Scaffolds

Cell-based hydrogel scaffold therapy is one of the main strategies being investigated in cartilage
regeneration. Several scaffolds and materials are being evaluated. These studies focus on whether
or not the hydrogels provide an appropriate biochemical and biomechanical environment for a
long-lasting hyaline-type cartilage regeneration. Decellularized extracellular matrices from natural
tissues like dermis or adipose are being studied as functional biologic scaffolds (Figure 4). It is possible
to ensure the bioactivity of a substrate when scaffolds are seeded with a specific cell type, either
chondrocytes or stem cells, and if these cells are able to proliferate regardless of “natural” conditions.
As an example, Giavaresi G. et al. [159] evaluated in vitro the biological influence of a decellularized
human dermal extracellular matrix on human chondrocytes (NHAC-kn) and mesenchymal stromal
cells (hMSC). The study showed that at 24 h after seeding, cells adhered consistently to dermal
membranes (NHAC-kn = 93% and hMSC = 98%); at 7 days, cell viability index was 98% for both cell
cultures seeded on dermal membranes; and after 14 days of culture, the indexes increased significantly
for both cell cultures (p < 0.0005; NHAC-kn = 136% and hMSC = 263%). Furthermore, a biohybrid
composite scaffold, composed by combining a decellularized Wharton’s jelly extracellular matrix
with the polyvinyl alcohol (PVA)-based hydrogel, demonstrated its ability in promoting chondrocyte
adhesion and scaffold colonization [160]. Other studies are examining extracellular matrices developed
from porcine articular cartilage [161]. Although these substrates worked as proper scaffolds for the
growth of cells, their therapeutic and functional efficiency in cartilage regeneration still need to be
proved. Other cell therapies include implanting chondrogenic lines differentiated from mesenchymal
stem cells (MSC) into different polysaccharides or synthetic hydrogels. Collagen hydrogels have
proved to provide an appropriate 3D environment for MSC chondrogenesis, isolated from Wharton’s
jelly of human umbilical cord, and to be cytocompatible matrices with great potential for cartilage
engineering [162].
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One of the problems being reported when using cell therapies is the dedifferentiation of
chondrocytes when cultured in two-dimensional cultures, making them less functional for cartilage
repair. Wu L. et al. [163] hypothesized that functional exclusion of dedifferentiated chondrocytes
can be achieved by detecting domains formation of collagen molecules deposited by chondrogenic
cells into 3D environments. They reported a method which allows separation of functionally
active chondrogenic cells, which produce high levels of collagen II, from functionally inferior
dedifferentiated cells, which produce collagen X. To avoid dedifferentiation of cells once they are
forming constructs, Lam J. et al. [164] investigated the ability of cell-laden bilayer hydrogels, by
encapsulating chondrogenically and osteogenically pre-differentiated mesenchymal stem cells, by
varying the period of chondrogenic pre-differentiation prior to implantation. Therefore, cell phenotype
could be optimized in order to achieve ideal tissue repair. Furthermore, since regeneration of human
articular cartilage is limited, various cellular sources have been studied, including adult and juvenile
chondrocytes. Some studies have compared the formation of cartilage tissue, produced by juvenile,
adult and osteoarthritic chondrocytes, inside 3D biomimetic hydrogels composed of poly(ethylene
glycol) and chondroitin sulfate. It was found that after the cultured time, juvenile chondrocytes
showed a greater upregulation of chondrogenic gene expression than adult chondrocytes, while OA
chondrocytes showed a downregulation [101]. Another strategy being studied is the evaluation of
therapeutic effects of intra-articular injections of hydrogels containing drugs used to treat osteoarthritis
symptoms [165].

Some other studies are meant to analyze how the structure and fabrication methods of the scaffolds
influence cells behavior. Due to their intimate contact with chondrocytes, scaffolds are important
components of cell niche. Investigations into micro-architecture of scaffolds have revealed that mean
pore size is cell-type specific and influences cellular shape, differentiation and extracellular matrix
secretion (Figure 5). Studies in collagen-hyaluronic acid scaffolds, fabricated with different mean
pore size, showed that scaffolds with the largest mean pore size (300 µm) stimulated significantly
a higher cell proliferation, chondrogenic gene expression and cartilage-like matrix deposition [166].
When using synthetic materials to produce hydrogels, it is necessary to determine their in vitro
pore size and mechanical stiffness after being rehydrated, in order to predict their in vivo behavior.
Hui J. H. et al. [167] found that freeze-dried oligo[poly(ethylene glycol)fumarate] (OPF) hydrogels with
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a pore size ranged from 20 to 433 µm in diameter and a mechanical stiffness of 1 MPa when rehydrated,
enhance the formation of hyaline-fibrocartilaginous mixed tissue. However, these hydrogels, implanted
alone into cartilage defects, are insufficient to generate a homogenously hyaline cartilage repair tissue.
Kwon H. et al. [168] demonstrated that scaffolds, with different pore size and fabrication methods,
influence the microenvironment of chondrocytes and their response to proinflammatory substances.
Having high levels of proinflammatory cytokines can cause cartilage destruction and instability of
the engineered cartilage tissue. These authors found that silk scaffolds with larger pore sizes support
higher levels of cartilage matrix and leach more efficiently proinflammatory cytokines into the medium,
influencing cartilage gene expression.
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Figure 5. Bilayered cartilage scaffold (A) schematized by a diagram illustrating the electrospun fiber
zone (FZ) deposited on a particulate-templated foam (PZ). The combination of the two distinct zones is
designed to yield an anisotropic scaffold with a smooth articular surface and a more porous region for
ECM deposition. (B) Electron microscopy images (top) of the aligned fiber zone that is shared between
both scaffold varieties, (middle) the complete bilayered scaffolds with 0.3 mm3 (left) and 1.0 mm3

(right) pores, and (bottom) the sodium chloride porogens used to produce their respective scaffolds.
Reprinted with permission from [169] J.A.M. Steele et al. Combinational scaffold morphologies for
zonal articular cartilage engineering. Acta Biomaterialia. 10: 2065–2075.

Furthermore, each zone of cartilage tissue varies in regard to biochemical content, morphology
and biomechanical function. Deeper cartilage zones present higher stiffness, higher proteoglycan
concentration but lower cellular density and same collagen concentration along cartilage tissue. In a
general structural perspective, cartilage can be simplified into two main regions: (1) the superficial
zone which exhibits a high tensile strength and low friction coefficient to keep a smooth articulation;
(2) a dense ECM region rich in proteoglycan molecules which give the tissue adequate compressive
mechanical properties by producing a high osmotic pressure within the tissue. Therefore, when
fabricating a bilayer or three-layer scaffold, pore size and fabrication method of each layer influence
the microenvironment of chondrocytes. As shown by Steele J.A.M. et al. [169], tissue engineering
scaffolds can be designed to vary in morphology and function, offering a template: (1) to mimic
the structural organization and functional interface of cartilage superficial zone; (2) to increase the
extracellular matrix production; (3) to enhance the anisotropic mechanical properties. These authors
fabricated a multi-zone cartilage scaffold by electrostatic deposition of polymer microfibers onto
particulate-templated scaffolds with 0.03 mm3 and 1.0 mm3 porogens. They demonstrated that
bilayered scaffolds can closely mimic some of the structural characteristics of native cartilage due to: (1)
the addition of aligned fiber membranes enhances the mechanical and surface properties of scaffolds;
(2) zonal analysis of scaffolds showed region-specific variations in chondrocyte number, sulfated



Polymers 2017, 9, 671 11 of 32

GAG-rich extracellular matrix and chondrocytic gene expression; (3) smaller porogens (0.03 mm3)
yield higher GAGs accumulation and aggrecan gene expression.

It is important to understand the multi-scale biomechanical behavior of cartilage tissue, in
order to realize the connection among joint kinematics, tissue-level mechanics, cell mechanics and
mechanotransduction, matrix mechanics and the nanoscale mechanics of matrix macromolecules.
Therefore, understanding mechanical behavior at each scale helps to correlate cell biology, matrix
biochemistry and tissue structure/function of cartilage (Figure 6).

Moreover, the combination of cell-based therapies with growth factor delivery, which can
locally signal cells promoting their function, is also being investigated. Since morphogenetic
protein (BMP-2) and transforming growth factor (TGF-β) are cytokines proposed as stimulants for
cartilage repair, it is necessary to undertake a detailed comparative analysis of their biological effects
on chondrocytes [170]. As an example, when chondrocytes are encapsulated in PEG hydrogels
functionalized with transforming growth TGF-β1, proliferation and matrix production increase, in
comparison with cells in hydrogels where TGF-β1 is dosed in the culture medium or untreated
TGF-β1 hydrogels [171]. In another study, chondroitin sulfate-bone marrow adhesive hydrogel
was used to localize and carry BMP-2 protein, which enhance articular tissue formation. It was
demonstrated that these hydrogels were capable of supporting articular chondrocytes, viability and
phenotype retention, stimulating cells to produce hyaline-like extracellular matrix [172]. Although
expensive growth factors in cultures are used, there is still a production of cartilage with inferior
mechanical and structural properties compared with the natural tissue. However, recent evidence
suggests that GAGs incorporated into tissue engineering scaffolds can isolate and/or activate growth
factors, mimicking better the natural extracellular matrix [173]. For example, in the presence of TGF-β3
releasing microspheres, gellan gum hydrogels facilitate a greater cell proliferation than fibrin or agarose
hydrogels. Histological and biochemical analysis of these hydrogels indicated that fibrin hydrogel
was the least chondro-inductive, while agarose and gellan gum hydrogels supported more robust
cartilage formation because of a greater GAGs accumulation within the constructs. Unfortunately,
gellan gum hydrogels stained more intensely for collagen type II and collagen type I, suggesting
a fibrocartilaginous tissue phenotype [174]. There are other studies focused on calcified cartilage
zone, which provides mechanical integration between articular cartilage and subchondral bone.
Lee W.D. et al. [175] developed tissue-engineered osteochondral-like constructs with bone marrow
stromal cells (BMSC), as single cell source. Cartilage tissue and a porous bone substitute substrate
were formed with an interfacial zone of calcified cartilage. The authors found that the presence of
calcified cartilage increased the shear load that the construct may withstand at the interface. However,
preclinical studies are needed to determine if these osteochondral-like constructs could repair joint
defects in vivo.

Evaluating cell-free and cell-based hydrogels reviewed above, only a few of these biomaterials
have been used in clinical applications [45,46,74,176–179] because of four main unsolved problems
in tissue engineering: (1) toxicity of some crosslinking agents [180]; (2) lack of mechanical
integrity [156,181–187]; (3) poor control of gelation kinetics [188,189]; (4) unsuitable degradation
kinetics [190–194].

Since some of the reactions used to synthesize hydrogels are limited due to their complexity,
the use of cytotoxic reagents, instability of some functional groups, possible side reactions and low
coupling efficiency, there is the need to explore and exploit simple and highly efficient methods which
may be applicable to a great variety of biodegradable polymeric precursors.
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3. Polysaccharides Versus Synthetic Hydrogels

The degradation rate and mechanical properties of manufactured hydrogels must be compatible
with the growth of new tissue [109]. As mentioned before, hydrogels can be made of either natural or
synthetic polymers, each of them with advantages and disadvantages, or even a combination of both,
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whether or not a reduction of disadvantages from the individual components can be obtained. When
using natural precursors, good biocompatibility and bioactivity are ensured in the hydrogel scaffolds.
However, there will be a high degradation rate, in contact with body fluids or medium, and a limited
mechanical behavior, since natural polymer components are extracted from tissues and subsequently
reconstructed to form hydrogels [173,195]. Nevertheless, the strength of these natural hydrogels can
be increased by making the polymer matrix denser, using a chemical crosslinking or making chemical
modifications. On the other hand, using synthetic precursors may provide appropriate physical and
chemical properties for hydrogel scaffolds; however a good cell biological response and an adequate
degradation rate may not occur [196,197]. The strength of the synthetic hydrogels can be raised by
changing the molecular weight of the starting polymers, increasing polymer concentration or even the
degree of functionalization, using reactive groups during the crosslinking reaction.

3.1. Manufacturing Techniques and Their Influence on Hydrogel Properties

Depending on the polymer precursors, hydrogels can be synthesized in different ways. In the
first step a polymer is modified with a functional group; then the polymer is crosslinked, either
physically or chemically, to form a three-dimensional structure. While chemical hydrogels are
covalently crosslinked, physical hydrogels are not. Crosslinking can take place at the same time or
after the copolymerization [198]. In situ crosslinked cytocompatible injectable hydrogels can be formed
using: (1) non-toxic chemical crosslinkers, as in the Michael Addition Reaction, Click Chemistry, Schiff
Base Reaction, and photo-crosslinking reactions; (2) enzymes for a biological crosslinking; (3) physical
interactions, such as ionic and hydrophobic ones; (4) supramolecular chemistry utilizing self-assembly
molecules [199].

The morphology and physico-chemical structure of hydrogels also depend on processing
conditions applied during their formation, for example using electrospinning or cryogelation
techniques. Hydrogel morphologies may range from fibrils, characteristic of protein-based hydrogels
such as collagen and fibrin, to amorphous, characteristic of synthetic hydrogels such as PEG. When
using the electrospinning technique, it is possible to obtain hydrogels with aligned fibrils morphologies.
Mirahmadi F. et al. [200] added degummed chopped silk fibers and electrospun silk fibers to
thermosensitive chitosan/glycerophosphate hydrogels, to reinforce scaffolds for hyaline cartilage
regeneration. The results showed that mechanical properties of hydrogels were significantly enhanced;
besides the composition of the scaffolds supported the chondrogenic phenotype. Nevertheless, when
using cryogelation, because of ice crystals, a controlled porosity can be induced into hydrogels, helping
them recovering their shape [201]. Another method to fabricate three-dimensional porous hybrid
scaffolds for articular cartilage repair is combining freeze-dried [192,202,203] natural components
with synthetic polymers, provide scaffolds with mechanical strength and an environment similar to
natural ECM, to let chondrocytes proliferate. Lyophilization or freeze-drying technique produces
highly porous structures with open pores throughout the scaffolds. The pores are introduced into the
scaffolds, first by ice crystal formation, then by freeze-drying them. For this reason pore architecture
reflects the ice crystal morphology [203]. Novel collagen/polylactide (PLA), chitosan/PLA, and
collagen/chitosan/PLA hybrid scaffolds were fabricated by freeze-drying technique [204]. It was
observed that collagen binds water inside the scaffold structure and it helps cells to penetrate into
the hybrid scaffolds. To enhance anisotropic properties of cartilage scaffolds, aligned unidirectional
pores can be formed depending on the real alignment of cells and the type of extracellular matrix
that has to be repaired. Collagen-hybrid scaffolds, constructed by directional freezing, were studied.
When varying freezing rates and suspension media, it is possible to obtain collagen-hybrid scaffolds
with unidirectional pores, tunable pore sizes and pore morphologies [203]. The results demonstrated
that directed horizontal ice dendrite formation and vertical ice crystal nucleation are responsible for
aligned unidirectional ice crystal growth and, consequently, for aligned unidirectional pore structure
of the collagen-hybrid scaffolds.
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Since conventional fabrication techniques may not provide a precisely control of pore size,
interconnectivity or pore geometry for scaffolds, solid freeform fabrication (SFF) techniques are now
being used to produce 3D scaffolds with an organized interconnected pore structure which ensures
good functionality and good mechanical strength, necessary to maintain new cartilage formation.

Bioprinting and plotting are being used as freeform fabrication techniques. These emerging
techniques are used to fabricate viable 3D tissue constructs through a precise deposition of cells in
hydrogels [205]. However, scaffolds, fabricated by these printing systems, often lack of flexibility
and adequate mechanical properties [138,206]. Xu T. et al. [207] described the construction of a
hybrid inkjet printing/electrospinning system that can be used to fabricate viable cartilage engineered
tissue. They fabricated a five-layer construct, 1 mm thick, made of electrospun polycaprolactone
fibers alternated with inkjet printing of rabbit elastic chondrocytes suspended in a fibrin-collagen
hydrogel. One week after printing, evidence showed more than 80% of cell viability, cell proliferation
and formation of cartilage-like tissue in the five-layer construct, both in vitro and in vivo assays, and
demonstrated an improvement of mechanical properties, in comparison with printed alginate or
fibrin-collagen hydrogels.

Novel techniques of tissue scaffold fabrication, as ultrafast pulse DLW lithography, are
attractive due to their 3D structuring capability, spatial resolution, scaling flexibility and diversity of
working materials.

3.2. Degradation Kinetics, Physical Properties (Applicability) and Biological Effects

Hydrogels degradation kinetics should be compatible with new tissue formation kinetics, in
order to ensure a good integration of the construct. If hydrogels degrade very fast, it will trigger
occurrence of defects in the formed tissue, such as cysts. On the other hand, if a very slow degradation
occurs, hydrogels will inhibit the formation of new biological material and their integration with
the surrounding tissue. Degradation of hydrogels can take place by either hydrolytic or enzymatic
mechanisms. The hydrolytic degradation happens when hydrogel is kept in contact with fluids
by breaking the polymer chains or the crosslinked network. This type of degradation mechanism
can be controlled by limiting the amount of degradable precursor, used to synthesize hydrogels.
The enzymatic degradation is caused by cells when they begin to invade the hydrogel or when
encapsulated cells within the hydrogel start to proliferate or migrate throughout it. Many natural
origin proteins have sites of cleavage in the protease, allowing hydrogels to degrade during the
replacement of the ECM. This type of degradation may also depend on the degree and the type of
chemical crosslinking in the hydrogels used as scaffolds [201].

3.3. Specificities of Polysaccharide-Based Hydrogels

When trying to manufacture biomimetic scaffolds for cartilage tissue regeneration,
naturally-derived hydrogels are widely used, due to their macromolecular properties and because
the employed biopolymers are part of the natural tissue that needs to be healed. Most of the studied
naturally-derived hydrogels are based on biopolymers such as collagen, gelatin, chitosan, hyaluronic
acid, chondroitin sulfate, agarose, alginate and fibrin [109,208].

3.4. Biological Response of Polysaccharide-Based Hydrogels

Since hyaluronic acid is a fundamental component of natural cartilage matrix, some studies have
shown its importance and its good qualities as an excellent naturally derived polymer. Injections
of hyaluronan into osteoarthritic joints have proved to restore viscoelasticity, augment joint fluid
flow, normalize endogenous hyaluronan synthesis, and provide joint function [109,112]. Some other
studies [198] have demonstrated that hyaluronic acid is favorable for cell response, by maintaining
chondrogenic phenotype and increasing collagen type II production and angiogenesis during in vivo
assays. Another example of an excellent natural polymer is chitosan. Chitosan can easily form
polyelectrolyte complexes with hyaluronan and chondroitin sulfate [112,209]. Hu X. et al. [198] tried
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to mimic the natural cartilage extracellular matrix by synthesizing a biological hydrogel made of
hyaluronic acid, chondroitin sulfate modified with 11-azido-3,6,9-tri-oxaundeca-1-amin and gelatin
modified with propiolic acid, via click chemistry. Even though the molecular modifications made
to the biopolymers let biological hydrogels have good response (making chondrocytes adhere and
proliferate on them during in vitro assays), degradation process was too fast. They showed a loss of
45% w in 4 weeks, and a release of 20% w of gelatin and 10% w of chondroitin sulfate during the first
two weeks, leading to macroscopic shrinkage of hydrogels.

Furthermore, when combining both naturally-derived and synthetically-derived polymers,
adequate degradation kinetics and biological response can be achieved. Park H. et al. [129] created,
by photocrosslinking, injectable hydrogels consisting of methacrylated glycol chitosan (MeGC)
and hyaluronic acid. The photopolymerized hydrogels were cytocompatible. The incorporation
of hyaluronic acid increased cell proliferation while encapsulated chondrocytes improved the
cartilaginous extracellular matrix production. Following the same guideline, based on fabricating
a hybrid scaffold containing both biological and synthetic components, B.R. Mintz et al. [209]
studied a hybrid scaffold, made of a hyaluronic acid-based hydrogel combined with a porous
poly(ε-caprolactone) material. They tried to understand better the interface and the potential for
integration between tissue engineered cartilage scaffolds and surrounding native tissue. They noticed
that precursors provide a microenvironment which supports chondrocyte infiltration and proliferation,
while maintaining seeded phenotype and structural integrity over a 6-week culture period.

4. Future Trends: From Combination of Materials to Hybrid Hydrogels

Identified problems hindering the application of hydrogels in cartilage regeneration, as
described along this paper, include: mechanical properties [210] and mechanical instability [209,211];
dedifferentiation of chondrocytes [163]; toxicity of some of the used crosslinking agents [180]; poor
control of gelation kinetics [188,189]; unsuitable degradation kinetics [190–194]. Figure 7 illustrates the
combining requirements needed to create materials with biomimetic features.

Mechanical instability inhibits the integration of hydrogels with the surrounding native
cartilage tissue when they are implanted [209,211]. In order to synthesize mechanically stable
hydrogels and improve their mechanical properties, several options have been proposed. One
of the most promising options relays on the principle that materials combination must show the
ability to support matrix formation [210], as demonstrated by Boere K.W.M et al. [80]. In this
research, it was determined that, when grafting two materials covalently (a 3-D-fabricated poly
(hidroxymethylglycolide–co–ε–caprolactone)/poly(ε-caprolactone) thermoplastic polymer scaffold,
functionalized with methacrylate groups and covalently linked to a chondrocyte-laden gelatin
methacrylamide hydrogel), the binding strength between the materials improved significantly,
resulting in the enhanced mechanical integrity of the reinforced hydrogel. Embedded chondrocytes
in hydrogel scaffolds also showed significant cartilage-specific matrix deposition, both in vitro and
in vivo assays.

Another promising option to enhance mechanical stability is by regenerating cartilage and bone
tissue simultaneously using a two-phased scaffold, since ceramic-to-bone interface has a better and
faster integration compared to hydrogel-to-cartilage interface [80]. Additionally it has been observed
that bone integration is much faster than cartilage integration, occurring during 2 and 24 weeks after
transplantation, respectively.
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It is possible to have a stable fixation of a cartilage scaffold by exploring a fixation technique with
the subchondral bone [206]. One way to accomplish this stable fixation is fabricating an osteochondral
scaffold which facilitates fixation and integration with the surrounding cartilage tissue, accelerating
the repair of defected articular cartilage when implanted. The general idea is that bone scaffolds
act as anchors, providing mechanical stability for cartilage tissue regeneration, besides, the join
between the bone component and the cartilage component should be strong enough to prevent
dislocation or delamination on in vivo environment. In order to follow the theory mentioned above,
Seol Y.-J. et al. [206] reinforced osteochondral scaffolds by developing combined scaffolds, made of
hydrogel scaffolds anchoring to cartilage tissue and ceramic scaffolds anchoring to bone tissue. For
in vivo assay, the combined scaffolds were press-fitted into osteochondral tissue defects, in rabbit
knee joints. Hydrogel scaffolds and combined scaffolds were compared. After 12 weeks, in vivo
experiments demonstrated that regeneration of osteochondral tissue, especially articular cartilage
tissue regeneration, was better with combined scaffolds than with hydrogel scaffolds. Hydrogel
scaffolds could not keep their initial position, suggesting that ceramic scaffolds in combined scaffolds
provided mechanical stability for hydrogel scaffolds. Moreover, G. Camci-Unal et al. [202] realized
that combined hydrogels can be biologically and physically tuned to yield within a range of different
cell responses and, according to these responses, combined hydrogels may show potential therapeutic
possibilities to treat either chondral or osteochondral lesions.
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Following this trend, Yang S.S. et al. [138] developed a 3D plotting system to manufacture a
biphasic graft which consists of cartilage and subchondral bone for application to osteochondral
defects. A combined material (PLGH/alginate) was fabricated as supporting structure to induce
a mature osteochondral graft. Cartilage-derived ECM or hydroxyapatite substances were blended
with alginate and plotted together with human fetal cartilage-derived progenitor cells, either in the
cartilage layer or in the subchondral bone one. The plotted biphasic osteochondral graft showed
good integration between layers because no structural separation was observed, while there was
dominant cartilage and bone tissue formation during differentiation assay. One of the limitations
of using the osteochondral approach in combination with bone marrow derived MSCs is their
terminal differentiation, as they seem to follow an endochondral ossification which can arrest
differentiation at a stable cartilage hyaline-like phenotype during the chondrogenic process. For
this reason, a chondrogenic stimulator, such as the recently described kartogenin which regulates
Runx1 expression [212], has to be incorporated with a known inducer of chondrogenic differentiation
and a suppressor of hypertrophy.

Another alternative to fulfill the inadequate mechanical strength of hydrogel is constructing
a solid-supported thermogel, comprising hydrogel systems or demineralized bone matrix.
Huang H. et al. [213] combined chitosan thermogel with demineralized bone matrix to produce
solid-supported hydrogel scaffolds. This type of scaffolds provided sufficient strength for cartilage
regeneration. They retained homogeneously more bone-derived mesenchymal stem cells (BMSCs) and
they proved to have superior matrix production and chondrogenic differentiation in comparison with
pure hydrogels and demineralized matrix by their own.

Using fibers of different natural materials to reinforce hydrogels is another way to offer mechanical
strength to hybrid scaffolds [205,211]. Mechanical characteristics can be improved or modified
using different strategies: (1) varying the number of fiber layers in the laminate; (2) combining
different kinds of fibers and nanofiber sheets; (3) modifying crosslinking degree of hydrogels
and fibers; (4) changing fibers content and surface treatment; (5) shifting fiber orientation. Fibers
anisotropy is an excellent property to reach strong mechanical reinforcement at low charge levels. For
example, Buchtová N. et al. [214] developed an injectable hydrogel based on a silanized cellulose
derivative: hydroxypropyl methylcellulose interlinked with silica fibers. They proved that the
compressive modulus of the hydrogel could be tunable, depending on the covalent bonding between
biopolymer and silica fibers. In other approaches, the incorporation of bioactive species, such as cells,
growth factors, peptides and proteins into the materials, is proposed to improve hydrogel scaffolds
properties [73,215].

It can be deduced, from the reviewed studies, that combination of components yield up reinforced
mechanical properties. However, to overcome the other requirements mentioned above, something
different has to be done from the already investigated methods to fabricate materials. In authors’
opinion, there is a barely explored alternative in material science: studying the potential of hybrid
hydrogels based on natural polymers and inorganic components. Hybrids are considered to be
materials formed by two components bonded at a molecular level. Commonly one of these components
is organic and the other one is inorganic. The new hybrid materials (Figure 8) may show superior
characteristics in comparison with the two component phases. This possibility may offer a great
potential to design new materials with the complex properties required for cartilage regeneration.

Since degradation rate and mechanical properties can be fine-tuned through chemical and/or
physical modifications on either naturally or synthetically derived scaffolds, an excellent opportunity
is given to hybrids to emerge as a promising solution for cartilage regeneration. When fine-tuned,
hybrids can acquire amorphous, semicrystalline, hydrogen-bonded or supramolecular physical
structures [109,210].
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Hydrogels made from purely organic precursors are being used as viable materials for cartilage
repair due to their ability to retain grate portions of water, swollen, distend and exhibit large changes
of dimensions (volume changes of several- to 10-fold are common) [216,217]. These characteristics
provide hydrogels with a low interfacial tension with water and other fluids, allowing them to
reduce mechanical friction between tissues during implantation. The hydrophilic characteristics of
hydrogels are caused by the presence of special hydrophilic molecules (–OH, –CONH, –CONH2, and
–SO3H) found in the polymeric components. These molecules give hydrogels different absorption
potential [216] and the ability to respond to a range of different stimuli, including temperature, pH,
salt, specific (bio)chemical signals, and electric fields [217]. Nevertheless, hydrogels, based on a certain
type of precursors, undergo uniform volumetric expansion and contraction, in response to several
stimuli; therefore, the great added value of hybrid hydrogels is combining their precursors potential
and restrictions. For example, to determine their degradation kinetics and enhanced biological and
mechanical properties, it is possible to use: stiffer components like silica-based materials, which restrict
swelling in hydrogels in certain positions or directions; or natural polysaccharide-based polymers
hybridized with inorganic materials (hydroxyapatite, SiO2, or demineralized bone matrix), which
restrict the number and type of hydrophilic molecules.

A further step may be the integration of nanotubes with different chemical composition into
hybrid scaffolds which may provide them with bioactive and mechanical properties. This is the case of
three-dimensional porous collagen sponges where single-walled carbon nanotubes are incorporated
into [218]. The incorporation of single-walled carbon nanotubes improved cell proliferation and
GAGs production in the in vivo microenvironment, because nanotubes were internalized by cells, with
benefit for controlled and localized delivery of biological factors. Another study is the design of a
biomimetic nanostructured composite cartilage scaffold, via biologically-inspired rosette nanotubes
(RNTs) and biocompatible non-woven poly (L-lactic acid) (PLLA) [219]. It was concluded that, RNTs
have a similar morphology with native collagen fibers when self-assembled in aqueous conditions, and
besides they increase glycosaminoglycan, collagen and protein production; their nanotopography and
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surface chemistry enhance chondrogenic differentiation. Another study tested the biocompatibility
of 3D artificial hexagonal-pore shaped hybrid organic-inorganic microstructured scaffolds in a rabbit
model [220].

The association of silica and polysaccharides within composites or hybrids has demonstrated
therapeutic benefits in a wide range of bio-inspired silica-collagen materials [221]. Although this
kind of materials has been prepared over nearly 15 years, their application in cartilage regeneration
treatments has not been exploited. The great value of hybrid materials (Figure 7) is that it can be
synthesized a large variety of structures and properties, from soft mineralized hydrogels to hard
compact xerogel, depending on the soft (cartilage) or hard (osteochondral) tissue wanted to be repaired
or regenerated. Moreover, to fully comprehend these potential materials and to raise their value for
the development of innovative biomedical devices for cartilage regeneration, it is important studying
the interplay between the organic-inorganic precursors, which is to follow carefully the polymer
self-assembly process and the inorganic condensation mechanisms. Therefore, biological, mechanical
and degradation properties can be modulated, guaranteeing bioactivity, cytocompatibility, and an
eventual biocompatibility.

5. Concluding Remarks

Currently, there are no clinical satisfactory solutions for cartilage tissue regeneration. From this
problem, it raises the need for developing new types of materials and designing more suitable scaffolds
which can be used for cartilage regeneration. Investigations based on cell-free hydrogel scaffolds have
focused on the optimization of physical-chemical and mechanical properties of matrices. Whereas,
cell-seeded hydrogel scaffold studies focus on whether or not they provide an appropriate biochemical
and biomechanical environment for regenerating a long-lasting hyaline-type cartilage. Since many
materials neither exhibit a low friction coefficient nor withstand several loading cycles, many
combinations of polysaccharides and synthetic hydrogels have been assayed to obtain load-bearing
and tribological properties similar to native cartilage tissue ones. However, some unsolved problems
hinder the application of these materials to the clinic: (1) toxicity of some crosslinking agents; (2) lack
of mechanical integrity; (3) poor control of gelation kinetics; (4) unsuitable degradation kinetics.

Among the most promising options, to synthesize mechanically stable hydrogels which support
matrix formation, there is the combination of materials to regenerate cartilage and bone tissue
simultaneously, using a two/several-phased scaffold. These combinations can be biologically and
physically tuned to yield, within a range of different cell responses and according to these responses,
combined hydrogels which may show potential therapeutic possibilities to treat either chondral or
osteochondral lesions. Osteochondral treatment introduces a new problem and requires the use
of a chondrogenic stimulator, such as the recently described kartogenin, to induce chondrogenic
differentiation and suppress hypertrophy. From materials science perspective, hybrid hydrogels
based on natural polymers and inorganic components may offer a fine tuning of mechanical and
biological response, required to reproduce the complexity of the cartilage tissue environment. Silica,
hydroxyapatite or demineralized bone matrix/polysaccharide-based hybrids restrict swelling in
hydrogels in certain positions or directions by reducing the number and the type of hydrophilic
molecules. The association of silica and polysaccharides within composites or hybrids has
demonstrated therapeutic benefits in a wide range of bio-inspired silica-collagen materials. To fully
comprehend these potential materials and to raise their value for the development of innovative
biomedical devices for cartilage regeneration, it is important studying the interplay between the
organic-inorganic precursors, which is to follow carefully the polymer self-assembly process and the
inorganic condensation mechanisms. Therefore, biological, mechanical and degradation properties can
be modulated, bioactivity and cytocompatibility guaranteed and biocompatibility eventually achieved.
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