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Abstract: The geometric copolymerization model is a recently introduced statistical Markov chain
model. Here, we investigate its practicality. First, several approaches to identify the optimal model
parameters from observed copolymer fingerprints are evaluated using Monte Carlo simulated
data. Directly optimizing the parameters is robust against noise but has impractically long running
times. A compromise between robustness and running time is found by exploiting the relationship
between monomer concentrations calculated by ordinary differential equations and the geometric
model. Second, we investigate the applicability of the model to copolymerizations beyond living
polymerization and show that the model is useful for copolymerizations involving termination and
depropagation reactions.
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1. Introduction

Theoretical models for copolymerization of linear binary copolymers of two monomer types A
and B are well established in polymer science. Very recently, we introduced a new statistical model [1].
Here, we investigate its limits with regard to different polymerization types and evaluate several
methods to determine the model parameters.

Mass spectrometry (MS) is frequently applied to characterize (co-)polymers, in particular
matrix-assisted laser desorption/ionization time-of-flight MS [2,3]. Mass spectra can be transformed
to copolymer fingerprints [4–7], which represent the two-dimensional distribution of all copolymer
chains. A copolymer fingerprint shows the abundance of each possible combination of monomer
numbers. This work focuses on copolymer fingerprints of linear binary copolymers.

Several theoretical models for copolymerization were devised in the past, starting with Mayo and
Lewis and their terminal model [8], which describes four propagation reactions and is determined by
the monomer reactivity ratios. Computational approaches to such a model can be categorized into
three types: ordinary differential equations (ODEs), Markov chains, and Monte Carlo methods.

By applying ODEs to the terminal model, Mayo and Lewis deduced the copolymer equation [8],
which provides the copolymer composition. Using population balance equations and ODE systems,
Kryven and Iedema were able to extract simple sequence patterns, but not the full distribution of
sequences [9]. Markov and Hidden Markov models are frequently applied in the field of synthetic
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polymers and biopolymers [10–12]. The terminal model can be represented as a Markov chain in
a straightforward way [13], which enables the probability of a single copolymer chain, but not the
distribution of all chains, to be computed. Monte Carlo methods can be used to simulate chemical
reactions [14]. In polymer science, Monte Carlo simulations have been evaluated against experimental
data [15–17] and used to compute copolymer fingerprints [18–21]. However, Monte Carlo simulations
can be time- and memory-intensive.

In a recent publication, we proposed several variants of a new Markov chain model to
characterize the whole distribution of copolymer chains based on a simple living copolymerization
scheme [1]. Unlike the traditional terminal model [8], the model allows for variable chain lengths and
time-dependent monomer probabilities to model copolymer chain length distributions and differential
monomer conversion rates, respectively. In contrast to Monte Carlo simulations, the model is exact
and deterministic. In particular, it allows for calculating the exact likelihood of any polymer chain.
Monte Carlo simulations provide a random sample, which converges to the true copolymer distribution
with an increasing number of simulated chains. However, running times and memory requirements
correlate with the number of simulated chains. We showed that the proposed model is faster and
requires less memory [1].

The model is a Markov chain with discrete time steps, so-called synthesis steps. Let us consider
a single polymer chain. In each synthesis step, the chain is propagated by some number k ≥ 0 of
monomers. To this end, the probabilities of all possible propagation events are calculated from three
different probabilities.

First, the probability of adding k monomers, which is constant for each synthesis step, has to be
calculated using either a Bernoulli or geometric probability distribution. This leads to a binomial or
negative binomial distribution of polymer lengths. The negative binomial is the discrete equivalent
to the gamma (Schulz–Zimm) distribution. This is in agreement with the literature, where several
distributions for modeling chain lengths can be found: most probable (Schulz–Flory), gamma, Poisson,
or hypergeometric distributions [13,22,23]. All these distributions are related. On the one hand, for
large chain lengths, the most probable distribution approximates the gamma distribution, while the
gamma and binomial distributions approximate the Poisson distribution for large chain lengths. On the
other hand, the gamma and Poisson distributions are the limiting cases of the hypergeometric chain
length distribution [23].

Second, the probability of the polymer chain colliding with x A-monomers and y B-monomers,
where x + y = k has to be calculated. This probability may change between synthesis steps to reflect
differential monomer conversion rates.

Third, basic collision theory has to be considered. In order for a collision of two molecules to
be successful, the collision energy needs to be higher than the activation energy. As a consequence,
the geometric model needs to incorporate the probability of a successful collision between two monomers.

In our recent publication [1], Monte Carlo simulated data was used to evaluate four variants of
the model: The number of added monomers following a Bernoulli or geometric distribution and either
using reactivity parameters or not. This work focuses on the variant which was the most accurate,
the Geometric model with reactivity parameters. In our previous paper, we suggested that it is possible
to estimate the model parameters from the observed copolymer fingerprints [1]. In this paper, we show
that determining the model parameters from copolymer fingerprints is a challenging optimization
problem. First, several methods are presented to increase the accuracy of the results and to decrease the
running times. Several general purpose optimization algorithms and the robustness of the proposed
methods against measurement noise are evaluated. Second, the accuracy of the geometric model is
evaluated using different copolymerization types beyond living polymerization: reversible living
polymerization, controlled radical polymerization, and free radical polymerization. The evaluation
uses fingerprints and copolymer chains computed by Monte Carlo simulations.
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2. Methods

In the following, we briefly explain the Geometric copolymerization model and the experimental
setup. First, copolymer fingerprints using Monte Carlo methods were computed (see below). Different
noise levels were simulated by multiplying the fingerprint abundances by log-normal distributed
random noise with mean zero and variance σ, where the noise parameter σ has the values 0, 0.05, 0.15,
and 0.25. Then, the model parameter optimizations were performed in parallel on a compute cluster
of four 2.4 GHz CPUs with 16 cores each and 6 GB RAM per process. The optimization algorithms
are single-threaded, thus the reported running times are similar to the running times to be expected
when performing an analysis on a standard laptop. Finally, the log likelihoood ratios were computed
as described below.

2.1. The Geometric Copolymerization Model

In the following, let the matrix M of size n × m be a copolymer fingerprint, in which entry
Ma,b gives the relative abundance of a copolymer with a monomers of type A and b monomers
of type B. The geometric copolymerization model is Markov chain with discrete time steps, so-called
synthesis steps. The states of the Markov chain correspond to the fingerprint entries Ma,b. However,
to incorporate the reactivity parameters, states Ma,b have to be divided into MA

a,b, copolymer chains
with a A-monomers and b B-monomers ending in A, and MB

a,b, copolymer chains with a A-monomers
and b B-monomers ending in B, with Ma,b = MA

a,b + MB
a,b. In addition, the initiator state I is defined as

I = M0,0.
In each synthesis step, the probabilities for all possible transitions MX

a,b to MY
a+x,b+y and I to MY

x,y
are calculated for X, Y ∈ {A, B} and all a, b, x and y (Figure 1). These probabilities are determined
by the probability of adding k = x + y monomers, the probabilities of adding x A-monomers and y
B-monomers and the reactivity ratios. To compute a fingerprint using the model, the states of the
Markov chain are initialized as I = 1 and MX

a,b = 0 for X ∈ {A, B} and all a and b. Subsequently,
all possible transitions are applied in each synthesis step 1 ≤ t ≤ T. Finally, the fingerprint
M = MA(T) + MB(T) is computed.

Figure 1. All possible transitions for copolymer chain lengths ≤ 2. For example, the transition from
the initiator state I to the state MA

2,0 (copolymer chains having two A-monomers and ending in A)
corresponds to adding the sequence AA. Note that transitions that add more than two monomers
correspond to multiple events. For example, the transition of I to MA

2,1 corresponds to adding the two
sequences BAA and ABA.
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2.2. Monte Carlo Reaction Schemes

We evaluate our methods against Monte Carlo simulations of different polymerization
types (Table 1): living polymerization (LP), reversible living polymerization (RLP), free radical
polymerization (FRP), and controlled radical polymerization (CRP).

Table 1. Overview of the modeled reactions types for the living polymerization (LP), reversible living
polymerization (RLP), free radical polymerization (FRP), and controlled radical polymerization (CRP).

Reaction Type LP RLP FRP CRP

Initiation × × × ×
Propagation × × × ×

Depropagation ×
Termination (Recomb. & Disprop.) × ×

Initiator Decomposition ×
(De-)Activation ×

For living polymerization, the following reaction scheme were used. An active center is donated
as X•, and a polymer chain ending with X as ∼X, where X can be one of the monomers A or B,
or initiator I. Two types of reactions, initiation and propagation reactions were modeled:

I + A
kIA−−→ ∼A•

I + B
kIB−−→ ∼B•

Initiation

∼A• + A
kAA−−→ ∼A•

∼A• + B
kAB−−→ ∼B•

∼B• + A
kBA−−→ ∼A•

∼B• + B
kBB−−→ ∼B•


Propagation.

For reversible living polymerization, the initiation and propagation reactions of the living
polymerization and additionally the following depropagation reactions were used:

∼IA•
kd

IA−−→ ∼I• + A

∼IB•
kd

IB−−→ ∼I• + B

∼AA•
kd

AA−−→ ∼A• + A

∼AB•
kd

AB−−→ ∼A• + B

∼BA•
kd

BA−−→ ∼B• + A

∼BB•
kd

BB−−→ ∼B• + B



Depropagation.

For free and controlled radical polymerization, the initiation and propagation reactions
of the living polymerization and, additionally, model chain termination by recombination and
disproportionation were used:
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∼A• +∼A•
kr

AA−−→ ∼AA∼

∼A• +∼B•
kr

AB−−→ ∼AB∼

∼B• +∼B•
kr

BB−−→ ∼BB∼

Recombination

∼A• +∼A•
kdp

AA−−→ ∼A +∼A

∼A• +∼B•
kdp

AB−−→ ∼A +∼B

∼B• +∼B•
kdp

BB−−→ ∼B +∼B


Disproportionation.

For free radical polymerization, the initiation and propagation reactions of the living
polymerization, chain termination by recombination and disproportionation, and the following
additional initiation reaction to model a decomposing initiator complex were used:

I2
kdec
−−→ 2·I

}
Initiator Decomposition.

For controlled radical polymerization, the initiation and propagation reactions of the living
polymerization, chain termination by recombination and disproportionation, and the following
additional activation and deactivation reactions were used:

IX + L
ka

I−−→ I + LX

∼AX + L
ka

A−−→ ∼A• + LX

∼BX + L
ka

B−−→ ∼B• + LX

Activation

I + LX
kda

I−−→ IX + L

∼A• + LX
kda

A−−→ ∼AX + L

∼B• + LX
kda

B−−→ ∼BX + L


Deactivation.

2.3. Datasets and Monte Carlo Parameters

For all datasets, the reaction rates (Supplementary Table S1) were chosen such that rA = 1
rB

= r,

with the reactivity ratios rA = kAA
kAB

, rB = kBB
kBA

, and the ratio of homopropagation rates r = kAA
kBB

.
For living polymerization, we use three Monte Carlo simulated datasets reported in our previous

paper [1]: rA = 0.01, rA = 1.0, and rA = 2.0. Two additional datasets were simulated with the same
reactivity ratios rA = 2.0, but different degrees of polymerization DPn = 25 and DPn = 45, respectively.
For an overview of the initial concentrations and reaction rates, please see Supplementary Table S1.

For Monte Carlo simulations of the other polymerization types, the parameters of the dataset
with DPn = 25, rA = 2.0 for initiation and propagation reactions were used. The reaction rates of the
termination and depropagation rates kd, kr, kdp varied over 0, 0.001, 0.01, and 0.1. For free radical
polymerization, a decomposition rate kDEC = 10 were used, and for controlled radical polymerization,
activation rates ka = 100 and deactivation rates kda = 0.01 were used.



Polymers 2017, 9, 101 6 of 14

2.4. Log Likelihood Ratio

Our model allows for computing the likelihood of a single polymer chain [24]. Let S be a sequence
(polymer chain) and H a hypothesis, i.e., the geometric model. Let P(S|H) be the likelihood of S, given
model H. Then, the log likelihood of a dataset D is:

log P(D|H) = ∑
S∈D

log P(S|H). (1)

To evaluate the models, we compare the log likelihood of the data under the model to the log
likelihood under the null hypothesis H0. In the null model, all positions in the polymer chain are
independent random variables. For each position i over all chains in the dataset, we determine the
frequencies fA and fB of A and B, respectively. Let P(si) be the likelihood of monomer i in chain S.
Then, the log likelihood of a dataset, assuming the null model, is:

log P(D|H0) = ∑
S∈D

log P(S|H0) = ∑
S∈D

|S|

∑
i=1

log P(si) = ∑
S∈D

|S|

∑
i=1

log

{
fA, if si = A,

fB, if si = B.
(2)

We compute the log likelihood ratio:

log
P(D|H)

P(D|H0)
= log P(D|H)− log P(D|H0). (3)

The log likelihood ratio is a “sanity check” for statistical models. If the ratio is below zero,
the hypothesis should be dismissed and accepted if the ratio is above zero.

3. Results and Discussion

In the following, let the matrix M of size n× m be a copolymer fingerprint, in which entry Ma,b
gives the relative abundance of a copolymer with a monomers of type A and b monomers of type B.
Let f (pA, pAA, pAB, pBA, pBB) = Mc be the fingerprint-generating function, which uses the geometric
model with reactivity parameters to compute a fingerprint Mc [1]. The model parameters are the
monomer probability pM, the reactivity probabilities pAA, pAB, pBA, pBB, and probability vector
pA of size T, which describes the probability of encountering an A-monomer for each synthesis step
1 ≤ t ≤ T. The probability of encountering a B-monomer is implicitly given because pA(t) + pB(t) = 1.
The monomer probability pM and the number of synthesis steps T can be easily computed from the
copolymer length distribution [1].

Formally, the problem to solve is finding the parameters pAA, pAB, pBA, pBB, and the vector
pA, which minimize the distance of the computed fingerprint Mc to an observed fingerprint Mo.
This corresponds to optimizing the following objective function:

arg min
pA,pAA,pAB,pBA,pBB

|| f (pA, pAA, pAB, pBA, pBB)−Mo||2. (4)

The objective function computes the difference between the computed and observed fingerprints
according to Equation (4). We use general purpose optimizers to identify the best parameters.
The optimizers use different strategies and the running times vary greatly, in the small examples
given in this work between 0.5 and 19 h (see Supplementary Figure S1). Generally, the optimization is
challenging and its computation is time-demanding. First, the question needs to be answered: what
are the main reasons for the long running time?

In our previous work [1], we introduced four variants of a discrete Markov chain copolymerization
model. The models use either reactivity probabilities or not, and the number of added monomers
per synthesis step either follows a Bernoulli or geometric distribution. A model is defined to be
order-independent if the resulting fingerprints are the same for any permutation of its parameter pA.
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The models are order-independent if the reactivity ratios are one (see the Supplementary section).
Since there are T! possible

permutations, this results in T! global optima. However, for reactivity ratios of one, the ratios of
monomers never change. As a consequence, pA is constant and there is exactly one global optimum.
However, for reactivity ratios near one, the objective values of all permutations are very similar. This is
challenging for the optimization algorithms and certainly contributes to the long running time of
the optimization.

Another contributing factor is the size T of the vector pA, resulting in a T-dimensional search
space. T can be computed from the observed copolymer length distribution. The length distribution of
the geometric model is a negative binomial distribution with the parameters T and pM [1]. In each of
the T steps, the number of added monomers is geometrically distributed. Considering usual copolymer
lengths, T can be expected to be between 10 and 100. Optimizing ∼100 variables simultaneously with
a general purpose optimizer is a challenging task and certainly contributes to the long running time of
the optimization.

3.1. Parameter Space Reduction

The two main challenges for the optimization algorithms are the very similar objective values for
reactivity ratios near one and—more importantly—the large search space defined by the length of the
model parameter vector pA. We focus on the second challenge and propose two approaches to change
the fingerprint-generating function in order to speed up the optimization.

The first approach is to optimize only a fraction of the T values in pA (25% in this work), and
linearly interpolate all other values in between. Furthermore, we restrict the search space by forcing
pA to be either increasing or decreasing. To this end, a decreasing pA is defined as:

pA(t) = p(t) · pA(t− 1),

pA(1) = p(1),
(5)

and an increasing pA as:
pA(t) = pA(t− 1) + p(t) · (1− pA(t− 1)),

pA(1) = p(1).
(6)

The second approach is to exploit the relationship between pA and monomer concentrations.
We define T time intervals, such that the change in concentration is the same for each interval.
Subsequently, the mean concentrations [̃A](t) and [̃B](t) are calculated for each interval 1 ≤ t ≤ T.
Then, the probability vector pA(t) can be calculated as:

pA(t) =
[̃A](t)

[̃A](t) + [̃B](t)
. (7)

There is also a relationship between the reaction rates and the reactivity model parameters.
For X, Y ∈ {A, B}, the reactivity parameters are:

pXY =
kXY

kXA + kXB
. (8)

The second approach uses both relationships: first, an ODE system using the living
copolymerization reaction scheme is solved. Second, the reactivity parameters are computed from
the reaction rates and pA from the concentration gradient. Then, the fingerprint Mc can be computed
using the geometric model. This allows us to optimize the ODE parameters (reaction rates and initial
concentrations) according to Equation (4). Thus, the dimension of the search space is constant and
independent of T.
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3.2. Parameter Optimization

In the following, we compare three fingerprint-generating functions: directly optimizing pA
(Direct), interpolating pA (Spline), and optimizing the ODE parameters (ODE), with the spline and
ODE approaches as described above. All three of the functions use the geometric model with reactivity
parameters to compute the copolymer fingerprint. The transformation from the model parameters to
the copolymer fingerprint is highly nonlinear. To the best of our knowledge, no special purpose solvers
exist for such a function. Therefore, we have to resort to general purpose optimization algorithms.
We use the algorithms implemented in the Optimization Algorithm Toolkit [25,26] and Apache Math
Commons 3.2 library [27]. The algorithms use different strategies to find the best parameters and
do not require computing gradients. The performance of the optimizers is application-specific and
depends on the selected fingerprint-generating function.

We choose several instances with low degree of polymerization DPn = 3 and three different
reactivity ratios rA, rB and homopropagation ratios r. Please note that, for all datasets, rA = 1

rB
= r.

First, we choose the reactivity ratio rA = 2.0, for which the geometric model can provide a good fit [1].
Second, we choose rA = 0.01, since this results in a copolymer with binomial-like length distribution
(in contrast to a more common Schulz–Zimm-like distribution), which should be more challenging for
the geometric model [1]. Third, we choose rA = 1.0. This results in constant monomer concentrations
and, thus, the optimal pA is also constant. This means that the optimum lies on the parameter space
limits when using the spline fingerprint-generating function, which should be a challenging task
for the optimizers. Furthermore, we also select two instances with rA = 2.0 and higher degrees of
polymerization DPn = 25 and DPn = 45, which are copolymer lengths to be expected in practice.

First, we choose the top three algorithms with highest log likelihood ratio for each
fingerprint-generating function (Table 2). To this end, all algorithms are evaluated on the
DPn = 3, rA = 2.0 dataset without noise (see Supplementary Figures S1–S3) and the log likelihood
ratios of the results are calculated. In addition to comparing the log likelihoods, the ratio also acts as a
“sanity check” for the model parameterizations. The ratio compares the likelihoods to the likelihood of
a null hypothesis. The null hypothesis assumes that all positions are independent random variables.
If the log likelihood ratio is below zero, the null model has a higher likelihood and the parameterization
should be dismissed.

Table 2. Overview of the top three optimization algorithms for each fingerprint-generating function,
selected based on Supplementary Figures S1–S3. We ranked the results of the algorithms for each
dataset based on the log likelihood ratios and counted the ranks.

Algorithm #Ranks
1st 2nd 3rd

Direct
Cloning, Information Gain, Aging (CLI) [28] 4 5 7

Probabilistic Crowding (PC) [29] 6 5 5
Restricted Tournament Selection (RTS) [30] 6 6 4

Spline
Covariance Matrix Adaptation Evolution Strategy (CMAES) [31] 3 6 7

Deterministic Crowding (DC) [32] 3 8 5
Generalized Extremal Optimization (GEO) [33] 10 2 4

ODE
Genetic Algorithm (GA) [34] 5 9 2

Generalized Extremal Optimization (GEO) [33] 8 0 8
Mutation Hill Climber (MHC) [35] 3 7 6

After selecting the top three algorithms for each fingerprint-generating function, we evaluate
the robustness of the chosen algorithms. We run the top three algorithms for each function on the
other dataset with increasing simulated noise. The highest noise level with σ = 0.25 results in strongly
perturbed data (Figure 2 and Supplementary Figures S4–S6). For each resulting parameterization,
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we rank the top three algorithms by their log likelihood ratio and count the ranks for all instances
(Table 2). No algorithm outperforms its rivals. Therefore, in the following, we use all chosen algorithms.

0 5 10 15 20 25
0

5

10

15

20

25
no noise

Direct

Spline

ODE

0 5 10 15 20 25
0

5

10

15

20

25
noise σ= 0. 25

Direct

Spline

ODE

Figure 2. Filled contours: copolymer fingerprints of DPn = 25 computed by Monte Carlo
simulations with no (left) and high applied noise (right). Contours: fingerprints computed by the
geometric model using the best parameters computed by the optimization algorithms for each of the
fingerprint-generating functions (direct, spline, and ODE).

To compare the three approaches (direct, spline, and ODE), we average the log likelihood ratios
over all three algorithms for each fingerprint-generating function. Figure 3 shows the averaged log
likelihood ratios as a function of the noise level. There are two different behaviors for rA = 0.01 and
the rest of the instances. For rA = 0.01, there is a significant decrease with increasing noise and only the
ODE function is able to produce a good parameterization. For the Schulz–Zimm like copolymers with
rA > 0.01, the behavior of the log likelihood ratios of the ODE and direct function is not significantly
different. However, for the ODE function, the range between minimum and maximum log likelihood
ratio is larger and the ratio decreases more with increasing noise. Thus, using the ODE function is less
robust against noise than the direct method. Unexpectedly, the optimizers using the spline function
fail on all instances and result in ratios below zero in almost all cases.

Then, we average the running times for each fingerprint-generating function for each degree
of polymerization DPn = 3, 25, and 45 (Figure 4). As the running times largely depend on the
selected optimization algorithms, the comparison of running times between the fingerprint-generating
functions should be taken with a grain of salt. This means that using different optimizers may shift the
numbers, but we can still infer general trends from Figure 4.

The running times of the optimizers using the direct and ODE functions behave as expected.
The running time using the direct function increases with the degree of polymerization because the size
of pA increases. Thus, the number of parameters increases, the main reason for the long running time.
In contrast, the ODE function always has the same number of parameters and therefore the running
time is independent of the degree of polymerization. Different from our expectations, using the
spline function results in even higher running times than using the direct function, despite optimizing
only a fraction of the pA parameter values and using the generally fast optimizers CMAES and GEO
(see Supplementary Figures S1–S3).
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Figure 3. Log likelihood ratios of the results computed by the optimization algorithms as a function
of noise. The ratios are averaged over all three algorithms for each fingerprint-generating function
(direct, spline, ODE). The higher the ratios, the better the observed data is “explained” by the identified
model parameterizations. If the ratio is below zero, the null model achieves a higher likelihood than
the geometric model with the given parameterization.
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running time [h]
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=

4
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=

3 Direct
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ODE

Figure 4. Running times of the optimizations averaged over all datasets with degree of polymerization
DPn = 3, 25, and 45 for each fingerprint-generating function (direct, spline, ODE).

3.3. Beyond Living Polymerization

Here, we investigate copolymerizations beyond a simple living polymerization. We select the
DPn = 25, rA = 2.0 instance and repeatedly run Monte Carlo simulations with increasing termination
and depropagation rates. For radical polymerizations, long and short length chains appear as a result of
the termination by recombination and disproportionation, respectively. For free radical polymerization,
the chosen decomposition rate of the initiator leads to lower average lengths. For reversible living
polymerization, low length chains are appearing because of the depropagation reactions (Figure 5 and
Supplementary Figures S7–S9).
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Figure 5. Filled contours: copolymer fingerprints of the Monte Carlo simulations of controlled
radical polymerization (CRP, left), free radical polymerization (FRP, center), and reversible living
polymerization (RLP, right) with the highest used termination and propagation reaction rates
of 0.1. Contours: fingerprints computed by the model with the best parameters resulting from the
optimizations using the ODE fingerprint-generating function.

We select the ODE method to identify the optimal model parameters. Figure 6 shows the log
likelihoods and log likelihood ratios averaged over the top three algorithms for the ODE method
as a function of termination and depropagation reaction rates. The radical and reversible living
polymerizations show different behaviors. For radical polymerization, the log likelihood is almost
constant, but the ratio increases significantly. For reversible living polymerization, the likelihood
increases significantly, but the ratio increases less.
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Figure 6. Log likelihoods (left) and log likelihood ratios (right) of the results from the optimizations
using the ODE fingerprint-generating function for the controlled radical polymerization (CRP), free
radical polymerization (FRP), and reversible living polymerization (RLP) as a function of termination
and depropagation rates.

Different from our expectations, the log likelihood ratios of all three copolymerization types
increase with increasing termination and depropagation rates, due to a decreasing likelihood of the
null model. We find that the geometric model can be applied for systems involving termination and
depropagation reactions, even though it was designed for living copolymerization.

4. Conclusions

In a previous publication, we evaluated four variants of a statistical copolymerization model [1].
Here, we concentrated on the variant, which was the most accurate, the geometric model with reactivity
parameters. The model computes a copolymer fingerprint.

First, the problem solve is to find the optimal model parameters from observed data. To this
end, three fingerprint-generating functions were compared, which all use the model to compute the



Polymers 2017, 9, 101 12 of 14

fingerprint at the end, but differ in the number of parameters. General purpose optimizers were used
to find the optimal parameters for each function. Fitting the parameters using the model directly is the
most robust method for copolymers with a Schulz–Zimm-like length distribution, but has a long and
impractical running time. A simple approach to decrease the parameter search space using splines
fails both in accuracy and in decreasing the running time. By exploiting the relationship between
monomer concentration and the geometric model, we find a compromise between running time and
robustness against noise. For copolymers with a binomial-like length distribution, this approach
performs best. For Schulz–Zimm-like copolymers, this method is slightly less robust against noise
than the direct approach, requiring good input data. However, the running time is significantly shorter.
More importantly, it is independent of the degree of polymerization and, therefore, can be used for
long-chained copolymers. We recommend to use this method in practice.

For those interested in the theoretical aspects, the question remains open on whether the objective
function is convex and smooth. More interesting from a practical viewpoint, the geometric model
allows for computing previously inaccessible statistical properties of synthesized copolymers. This will
be described in a forthcoming publication. Also of interest would be extending the current model to
block copolymers in a two—or more—step process, with additional intermediate fingerprints for each
synthesized block.

Second, we investigated polymerizations beyond living polymerization: controlled and free
radical polymerization, and reversible living polymerization. We show that the geometric model can
be useful for copolymerization involving termination and depropagation reactions. Still to determine
is if the model can be improved further by including termination and depropragation probabilities.

The usefulness of the model for copolymerizations beyond living polymerization is important,
since these reaction systems are widely used in practice. Furthermore, termination and propagation
reactions often occur accidentally in living polymerizations.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4360/9/3/101/s1.
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