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Supplementary Materials: Exploring the Limits of the
Geometric Copolymerization Model

Martin S. Engler, Kerstin Scheubert, Ulrich S. Schubert and Sebastian Bocker

1. Monte-Carlo simulation parameters

Table S1. Initial concentrations (in mol-L™1) and reaction rates of the Monte-Carlo simulations of
living polymerizations.

Dataset Initial concentration Reaction rates
o [Alo [Blo kaa  kas ksa ke
DP, =3,rp = 0.01 1 1 2 0.01 1 0.01 1
DP, =3,rp =1 1 1 1 1 1 1 1
DP, =3,rp =2 1 1 2 2 1 2 1
DP, =25,rp =2 1 10 15 2 1 2 1
DP, =451 =2 1 20 25 2 1 2 1

2. Independence of the parameter order

In the following, let the matrix M of size n x m be a copolymer fingerprint, in which entry M, ,
gives the relative abundance of a copolymer with 4 monomers of type A and b monomers of type
B. Let T be the number of synthesis steps. Let pys be the probability of encountering a monomer,
and let p4 be a vector of size T with the probabilities that the encountered monomer is an A for each
synthesis step 1 < t < T. Let pg(t), the probability of encountering a monomer B be defined as
pe(t) =1—pa(t).

Let 71(x) be a permutation of some vector x. Let M” be the resulting fingerprint of our model
with input 77(pa). We define a model to be order-independent if the resulting fingerprints are the same
for any permutation of pp, thatis M = M™ for any .

In our previous paper, we introduced a copolymerization model with several variants similar
to a discrete Markov-chain, that append monomers in each synthesis (time) step with Bernoulli or
geometrically distributed probability [1]. Here, we will investigate if they are order-independent.

We do a simple experiment to investigate the order-independence of our models. For both
models, we compute a fingerprint with parameters pa = [0,0.1,0.2,0.4,0.5] , pp = 0.5 and varying
reactivity ratios. Subsequently, for all permutations 71(pa) we compute a fingerprint and calculate
the normalized root mean square error (NRMSE) in comparison to the first fingerprint (Fig. S1).

The distance between two fingerprints increases with the distance between pa and 7t(pa).
However, as the reactivity ratios approach one, the distance between the fingerprints decreases. In
this experimental instance, we see that the models are order-independent if the reactivity ratios are
one.

To verify that the models are order-independent for reactivity ratios of one, we investigate the
model variants without reactivity parameters. As previously described by Engler et al. [1], for the
Bernoulli model without reactivity parameters, an entry M, in the fingerprint M at synthesis step ¢
fora>0,b>0,and 1 <t < Tis given by:

Map(t) = pam-palt) - Ma_1p(t—1)
+  pmops(t) Moy (t—1) )

+ (1=pm) - Map(t=1)
For the Geometric model without reactivity parameters, we first have to derive a closed form for
M, . Let pg(k) be the geometrically distributed probability of adding k monomers in one synthesis
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Figure S1. Normalized root mean square errors of the fingerprints for all permutations 7(pa)
compared to the fingerprint of the original pa computed with the Bernoulli (left) and Geometric model
(right). The Kendall Tau distance is the number of pairwise disagreements between two permutations.

step. As previously described by Engler et al. [1], the probability of adding i monomers A and j
monomers B to a copolymer chain is given fora > 0,b > 0,and1 <t < T as:

i+j o - -
P(Myp — Mysiplt) = ( ]. ]) Peli+))- palt) - pa(t) @
We define fl“]b as:

a+b—i—j o
b= (") petab—in)) o

Now we apply Eq. 2 and Eq. 3 to find a closed form expression for a fingerprint entry M, ;:

2 Zf “opg (DT Myt —1) @

i=0j7=0

Now that we are given the equations for computing an entry in the fingerprint at a specific
synthesis step for both models without reactivity parameters, we can show that an inversion of
neighboring values in pa does not change the resulting fingerprint.

Lemma 1. Given the Bernoulli model without reactivity parameters and a permutation 1w(pa) that swaps
pa(t) with pa(t —1), then M, ,(t) = M, (t) holds foralla > 0,b > 0,and2 <t < T.

Proof. Inserting M, ;(t — 1) into the recursive equation 1 yields:

Mgp(t) = pas - PA(t) - pat—1) - My_o,(t—2)
+ pin-pe(t) - pe(t—1) Mp_o(t —2)
+  piepal®) - pe(t=1) - M4 (t—2)
+  paepe(®) - palt=1) M4 (t—2)
+ pm - (L=pum) pa(t) - Ma_1p(t —2) ()
+ v (L =pm) - palt —1) - My q(t —2)
+ pm- (L—pm) pe(t) Map1(t —2)
+ pm-(1=pm)-pe(t—1) My 1(t —2)
+ (1- PM)2 u,b(f 2)
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We replace pa(t — 1) with 7(pa) (t), pa(t) with t(pa)(t — 1), pg(t — 1) with 7t(pg)(t), and pg(t)

a  with (pg)(t —1):

44

45

B
o

a7

49

50

51

O

Map(t) = pha-(pa) () - (pa)(t = 1) - My_a(t —2)
+ paem(pe) (1) m(pe)(t—1) - Map(t = 2)
+ i e(pa)(8) - m(pe)(E—1) - Ma1p-1(t —2)
+ i m(pe) (1) - (pa)(E—=1) - Ma_1p1(t = 2)
+ pm - (1= pum) - (pa)(t) - Ma_1,5(t —2) (6)
+ v (U =pam) - 7t(pa)(t=1) - My_1p(t =2)
+ pm (1*rfm) (pe)(t) - Map1(t =2)
+  pm- (A —pm)-7(pe)(t—1) - Mgp1(t—2)
+ (1- PM)Z ab(t 2)
We simplify the equation to:
Map(t) = pam-7t(pa)(t) - Ma—qp(t = 1)
+  pm-7(pe)(t) - Mapa(t —1) @)
+ (1= pm) - Map(t—1)
Which can be further simplified to:
Mo p(t) = Mgy (t) ®)

Lemma 2. Given the Geometric model without reactivity parameters and a permutation 7t(pa) that swaps
pa(t) with pa(t — 1), then M, ,(t) = M, (t) holds foralla > 0,b > 0,and2 <t < T.

Proof Sketch. Inserting M; ;(t — 1) into the recursive equation 4 yields:

Z Z . pg(t)

i=0j=0

)
i ] ]

-ZZ foipalt =1k pg(t =17 My (t - 2)

k=01=0

Writing the terms of the sums explicitly yields a large equation of the following form:
Map(t) =fgopat) pe(t)’

+ f5rpat)p <t>H (£ Moot —2) + £ pe(t)Moa(t —2))
+ Fin el e (1) (Moot —2) + A pA(t)Muo(t —2))

+ fpa(t) Tpe(t) ( 00 Moo(t—2) + fiy pa(t)Myo(t —2) (10)

+fo1pe(OIMoa(t—2) + f{1 pa(t)ps() My (t = 2))
+...
+ £ (fahMoo(t =2) + -+ £y pa(t = 1)"pa(t = 1)" My (t —2))

If we now expand this equation, we see that for every term of the form pa(t)*pg(t)Ppa(t —

1)Ypg(t — 1)° there is a corresponding term pa (t)7pg(t)°pa(t — 1)*pg(t)P and we change equation 9
to:
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a b

ZZ palt—1)"" pg(t— 1)~
i=0j=0 (11)
Z Z kzPA Kope(t) T My (t—2)
=01=0

We replace pa
with r(pg)(t —1):

—~

t—1) with 7(pa)(t), pa(t) with 7w(pa)(t = 1), pg(t —1) with 7t(pg)(t), and pg(t)

(12)

l-'-

We simplify the equation

Mgp(t) = Mgy (t) (13)
O

For the models without reactivity parameters, we know from Lemma 1 and 2 that no inversion
of neighboring values in pa changes the resulting fingerprint. Any permutation of a vector can be
constructed by a sequence of inversions of neighboring elements. Therefore, for the Bernoulli and
Geometric model without reactivity parameters, all permutations of a probability vector pa have the
same resulting fingerprint.

3. Parameter optimization

1 2 5 0 5 10 15 20
log likelihood ratio le5 running time [h]

(@]
=
>
m
| wn
N
II
.

w
£

Figure S2. Left: Log likelihood ratio of all optimization algorithms using the direct method on the
DPy, = 3,ra = 2.0 instance without noise. The top three algorithms are marked in red. Right: Running
times of the algorithms.
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Figure S3. Left: Log likelihood ratio of all optimization algorithms using the spline method on the
DP, = 3,ra = 2.0 instance without noise. The top three algorithms are marked in red. Right: Running
times of the algorithms.
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Figure S4. Left: Log likelihood ratio of all optimization algorithms using the ODE method on the
DP, = 3,rp = 2.0 instance without noise. The top three algorithms are marked in red. Right: Running
times of the algorithms.
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Figure S5. Filled contours: Fingerprints of the datasets DP, = 3,7ro = 0.01, DP;, = 3,ro = 1.0,
DP, = 25,rp = 2.0, and DP, = 45,rp = 2.0, (top to bottom) with increasing noise (left to right).
Contours: Fingerprints computed by the model using the direct method.
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Figure S6. Filled contours: Fingerprints of the datasets DP, = 3,7ro = 0.01, DP;, = 3,rp = 1.0,
DP, = 25,rp = 2.0, and DP, = 45,rp = 2.0, (top to bottom) with increasing noise (left to right).
Contours: Fingerprints computed by the model using the spline method.
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Figure S7. Filled contours: Fingerprints of the datasets DP, = 3,7ro = 0.01, DP;, = 3,rp = 1.0,
DP, = 25,rp = 2.0, and DP, = 45,rp = 2.0, (top to bottom) with increasing noise (left to right).
Contours: Fingerprints computed by the model using the ODE method.
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Figure S8. Filled contours: Fingerprints of the controlled radical copolymerizations with increasing

recombination k" and disproportionation rates k%f. Contours: Fingerprints computed by the model

using the ODE method.
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Figure S9. Filled contours: Fingerprints of the free radical copolymerizations with increasing
recombination k" and disproportionation rates k%f. Contours: Fingerprints computed by the model
using the ODE method.
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Figure $10. Filled contours: Fingerprints of the reversible living copolymerizations with increasing
depropagation rates k%. Contours: Fingerprints computed by the model using the ODE method.
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